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Abstract Prediction-based estimating functions (PBEFs), introduced in Sørensen
(Econom J 3:123–147, 2000), are reviewed, and PBEFs for the Heston (Rev Financ
Stud 6:327–343, 1993) stochastic volatility model are derived with and without the
inclusion of noise in the data. The finite sample performance of the PBEF-based esti-
mator is investigated in a Monte Carlo study and compared to the performance of
the Generalized Method of Moments (GMM) estimator from Bollerslev and Zhou (J
Econom 109:33–65, 2002) that is based on conditional moments of integrated vari-
ance. We derive newmoment conditions in the presence of noise, but we also consider
noise correcting the GMM estimator by basing it on a realized kernel instead of real-
ized variance. Our Monte Carlo study reveals great promise for the estimator based on
PBEFs. The study also shows that the PBEF-based estimator outperforms the GMM
estimator, both in the setting with MMS noise and in the setting without MMS noise,
especially for small sample sizes. Finally, in an empirical application we fit the Heston
model to SPY data and investigate how the two methods handle real data and possi-
ble model misspecification. The empirical study also shows how the flexibility of the
PBEF-based method can be used for robustness checks.
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1 Introduction

Continuous time stochastic volatility (SV) models are widely used in econometrics
and empirical finance for modeling prices of financial assets. Considerable efforts
have been put into modeling and estimation of the latent volatility process. Most
of this research is surveyed in part II of Andersen et al. (2009). Stochastic volatility
diffusionmodels, such as theHeston (1993)model, represent a popular class ofmodels
within the continuous time framework. The Heston model will be the baseline model
considered in this paper, since it is one of the most widely used models in financial
institutions, due to its analytical tractability.

Parameter estimation in SV models is difficult because the volatility process is
latent. The hidden Markov structure complicates inference, since the observed log-
price process will not in itself be a Markov process, which implies that computing
conditional expectations of functions of the observed process is practically infeasible.
As a consequence, martingale estimating functions will not be a useful tool for con-
ducting inference in SVmodels. Likewise, likelihood inference is not straightforward,
because an analytical expression for the transition density is almost never available
and methods based on extensive simulations are called for.

We will circumvent the above-mentioned problems for conducting inference in SV
models using prediction-based estimating functions (PBEFs), introduced in Sørensen
(2000), which are a generalization ofmartingale estimating functions. This generaliza-
tion becomes particularly useful when applied to observations from a non-Markovian
model. PBEFs are estimating functions basedonpredictors of functions of the observed
process.

In this paper, we investigate and contrast two estimation approaches. First, PBEFs
will be reviewed, detailed, and used for parameter estimation in the Hestonmodel. The
estimation method is fairly easy to implement and fast to execute, as the construction
of PBEFs relies only on the computation of unconditional moments. When the Heston
SVmodel is considered, no simulations are needed for constructing the PBEFs used in
the paper.1 As a benchmark, we consider the method suggested in Bollerslev and Zhou
(2002). In Bollerslev and Zhou (2002), a Generalized Method of Moments (GMM)
type estimator basedon thefirst and secondorder conditionalmoments of the integrated
variance (IV) is derived. Since IV is latent, realized variance (RV) is used as a proxy and
the samplemoments ofRVarematched to the populationmoments of IV implied by the
model.When high-frequency data are available, several other simulation-freemethods
have been suggested in the literature, see for instance Barndorff-Nielsen and Shephard
(2002), Corradi and Distaso (2006), and Todorov (2009). Common to these methods,
including the GMM-based estimator from Bollerslev and Zhou (2002), is that they are
all based on time series of daily realized measures, such as realized variance (RV) and

1 An implementable version of the optimal PBEF will however require simulation of a covariance matrix.
Simulation based estimation methods for continuous time SV models, such as indirect inference, see
Gourieroux et al. (1993), the efficient method of moments (EMM), see Gallant and Tauchen (1996), or
Markov Chain Monte Carlo (MCMC), see Eraker (2001), are not as easily implemented, since many of
them require substantial computational efforts. Another way of tackling the difficulties, that arise when con-
sidering parameter estimation in continuous time SV models, is based on approximations of the likelihood
function, see for example Ant-Sahalia and Kimmel (2007).

123



Prediction-based estimating functions 435

bipower variation (BV). Instead of being transformed into daily realized measures, the
squared intra-daily returns are used directly when constructing PBEFs. This means
that PBEFs have a potential informational advantage, the strength of which will be
investigated throughout this paper. More specifically, this paper investigates the finite
sample properties of the PBEF-based estimator in a Monte Carlo study and compares
its performance to that of the GMM estimator from Bollerslev and Zhou (2002).

Both the case where the efficient price is assumed to be directly observable and
the case where noise is present in data are considered. In particular, we contribute by
extending the two competing methods to handle the presence of noise. The usage of
PBEFs for estimating SV models was suggested, among others, in Barndorff-Nielsen
and Shephard (2001), but to the best of our knowledge this is the first time the finite
sample performance of PBEFs applied to SV models is being studied. In fact, this is
the most extensive Monte Carlo study of the finite sample performance of the PBEF-
based estimation method. In Nolsøe et al. (2000) the authors conduct a small Monte
Carlo study for the case where a Cox–Ingersoll–Ross (CIR) process is observed with
additive white noise, but the potential of using PBEFs to estimate SV models has not
previously been studied.

This paper also addresses the link between the estimation method based on PBEFs
and GMM based on the moment conditions underlying the PBEF. Especially, the
connection between the optimal PBEF and the optimal choice of the weight matrix in
GMM estimation is established.

Lastly, an empirical application using SPY data is carried out, investigating how the
two estimation methods handle real data characteristics and possible model misspeci-
fication. In the empirical application we also study how different choices in the flexible
PBEF-based estimation method might impact the parameter estimates. In particular,
we investigate how considering different choices of the predictor space might serve
as a robustness check of whether there is a need for additional volatility factors in the
model.

This paper is organized as follows: In the following section the PBEF estimation
method is reviewed and detailed. The connection to GMM estimation is established,
and a brief review of the GMM-based estimator from Bollerslev and Zhou (2002) is
provided. For both methods, the estimator of the parameters in the Heston model is
derived with and without the inclusion of noise in the data. In Sect. 3, we present
our Monte Carlo study. This includes an investigation of how i.i.d. noise impacts the
performances of the two methods and how the noise-corrected estimators perform.
Section 4 contains an empirical application to SPY data that investigates how the
methods handle real data and if and how the choice of estimation method impacts the
parameter estimates. The final section concludes, and ideas on further research are
outlined. Some details have been relegated to a separate appendix that can be obtained
from the authors upon request.

2 Estimating stochastic volatility models

In this section, the two estimation methods from Sørensen (2000) and Bollerslev and
Zhou (2002) are reviewed and extended to handleMMS noise.We also discuss the link
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between the optimal PBEF and a GMM estimator with the optimal choice of weight
matrix. The focus of this paper is on the performance of the two considered estimation
methods used for estimating SV models of the form

dXt = √
vtdWt , dvt = b(vt ; θ)dt + c(vt ; θ)dBt , (1)

where W and B are independent standard Brownian motions. The independence
assumption rules out the possibility of leverage effects, but it is only imposed for
computational ease and could be relaxed in other applications. In particular, we are
interested in studying inference for the Heston SV model

dXt = √
vtdWt , dvt = κ(α − vt )dt + σ

√
vtdBt , (2)

where the spot volatility, vt , is a CIR-process. The parameter, α, is the long run average
variance of the observed process, {Xt }, and the other drift parameter, κ , is the rate at
which vt reverts to the long run average. The third parameter, σ , can be interpreted as
the volatility of volatility. The Heston model is widely used in mathematical finance
where the observed process, {Xt }, would be the logarithm of an asset price. The
popularity of theHestonmodel in financial institutions is primarily due to the analytical
tractability of the model, which allows for (quasi) closed form expressions for prices
of financial derivatives, such as European options.

2.1 Estimation using prediction-based estimating functions

First, we explain the general setup and ideas underlying the estimation method based
on PBEFs that was introduced in Sørensen (2000) and further developed in Sørensen
(2011). Then, following Sørensen (2000), we derive the PBEFs for the Heston model
withoutMMS noise. Finally, we addMMS noise to the observations and derive PBEFs
in this setting.

2.1.1 The general setup and ideas

The estimationmethod based on PBEFs is used for conducting parametric inference on
observations Y1,Y2, . . . ,Yn from a general stochastic process. The stochastic process
is assumed to belong to a class of models parametrized by a p-dimensional vector,
θ ∈ � ⊆ R

p, that we wish to estimate. An estimating function is a p-dimensional
function Gn(θ) that depends on the data Y1,Y2, . . . ,Yn and θ , and an estimator is
obtained by solving the p equations Gn(θ) = 0 w.r.t. θ . Specifically, the estimating
functions we study have the form

Gn(θ) =
n∑

i=1

�(i−1)(θ)
[
f (Yi ) − π̂ (i−1)(θ)

]
, (3)

where the function to be predicted, f (Yi ), is defined on the state space of the data
generating processY . The function f is assumed to satisfy the condition Eθ [ f (Yi )2] <
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∞ for all θ ∈ � and for i = 1, . . . , n. �(i−1)(θ) = (
π

(i−1)
1 (θ), . . . , π

(i−1)
p (θ)

)
has

elements that belong to Pθ
i−1, the predictor space for predicting f (Yi ), and π̂ (i−1)(θ)

is the minimum mean square error (MMSE) predictor of f (Yi ) in Pθ
i−1. For each i ,

the predictor space,Pθ
i−1, can be chosen as closed linear subspace of the Hilbert space

Hθ
i−1 . So π̂ (i−1)(θ) is the orthogonal projection of f (Yi ) onto Pθ

i−1 w.r.t. the inner
product in Hθ

i .
2 This orthogonal projection exists and is uniquely determined by the

normal equations

Eθ

[
π

[
f (Yi ) − π̂ (i−1)(θ)

]] = 0, for all π ∈ Pθ
i−1, (4)

see e.g. Theorem 3.1 in Karlin and Taylor (1975).3

A special class of PBEFs is the class of martingale estimating functions (MGEFs),
which is obtained by choosing Pθ

i−1 := Hθ
i−1. In this case, the MMSE predictor of

f (Yi ) in Pθ
i−1 is the conditional expectation, π̂ (i−1)(θ) = Eθ

[
f (Yi )|Y1, . . . ,Yi−1

]
,

and Gn(θ) becomes a Pθ -martingale w.r.t. the filtration generated by the data process.
MGEFs are however mainly useful when considering Markovian models, since for
Non-Markovian models it is practically infeasible to calculate conditional expecta-
tions, conditioning on the entire past of observations. The idea underlying PBEFs is
to use a smaller and more tractable predictor space in place of Hθ

i−1 and think of the
resulting PBEF as an approximation of the MGEF. The advantage of considering this
approximation is that it is only based on unconditional moments, which are much
easier to compute, or simulate, than conditional moments.

In the rest of the paper, we will restrict our attention to finite-dimensional predictor
spaces, Pθ

i−1, and assume that the observed process {Yi } is stationary. For asymptotic
properties of the estimator in this setting, consult Sørensen (2000) andSørensen (2011).
In order to obtain even more tractable PBEFs, we will only consider q+1 dimensional
predictor spaces with basis elements of the form Z (i−1)

k = hk(Yi−1, . . . ,Yi−s), k =
0, . . . , q, where hk : R

s �→ R, s ∈ N and where the functions h0, h1, . . . , hq are
linearly independent and do not depend on θ . The predictor space used for predicting
f (Yi ) is then given by Pθ

i−1 = span{Z (i−1)
0 , Z (i−1)

1 , . . . , Z (i−1)
q }. The basis elements

of the predictor space are no longer assumed to be functions of the entire past, but they
are instead functions of the “most recent past” of a period of length s. The predictors
in Pθ

i−1 will therefore be of the form a0 + a′Z (i−1), where a′ = (a1, . . . , aq) and

Z (i−1) = (
Z (i−1)
1 , . . . , Z (i−1)

q
)′, imposing that h0 = 1.4 The normal equations (4)

2 One could also choose to predict functions of the type f (Yi , . . . ,Yi−s ), see Sørensen (2011), but for

the purpose of this study f (Yi ) will be general enough. The function f can be chosen freely but will

often take the form f (Yi ) = Y ν
i , ν ∈ N, such that the moments needed to find the (optimal) PBEF are

easier to calculate. PBEFs can in fact be further generalized to a setup where several functions of the data,

f j (Yi ) j = 1, . . . , N , are predicted, see Sørensen (2000) and Sørensen (2011). This generalization will,

however, not be necessary for estimating the SV model we are considering.
3 Unique in the sense of mean square distance.
4 In the case of theHestonmodel, wewill consider basis elements of the form Z (i−1)

k = Y 2
i−k , k = 1, . . . q.
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lead to the MMSE predictor

π̂ (i−1)(θ) = â0(θ) + â(θ)T Z (i−1), (5)

where â(θ)) = C(θ)−1b(θ) and â0(θ) = Eθ [ f (Yi )] − â(θ)′Eθ [Z (i−1)]. C(θ)

denotes the q×q covariance matrix of Z (i−1) and b(θ) = [
Covθ (Z

(i−1)
1 , f (Yi )), . . . ,

Covθ (Z
(i−1)
q , f (Yi ))

]′. Note that, since the observed process {Yi } is stationary, the
coefficients of theMMSE predictor do not depend on i , but stay constant across time.5

For a formal derivation of the expressions for the coefficients in (5) see Appendix A.
From (3)–(5) it follows that PBEFs can be calculated if we can calculate the first- and
second-order moments of the random vector

(
f (Yi ), Z

(i−1)
1 , . . . , Z (i−1)

q
)
.

Within the setup of the finite-dimensional predictor spaces considered above, we
now turn to the specification of the p × 1-vector �(i−1)(θ) from (3). Since each
element of the vector�(i−1)(θ) belongs to the predictor spacePθ

i−1, the j th element of

�(i−1)(θ) is of the form π
(i−1)
j (θ) = ∑q

k=0 a jk(θ)Z (i−1)
k , where, as before, Z (i−1)

0 =
1. Note that the coefficients a jk(θ) do not depend on i but are, like the coefficients of
the MMSE, â(θ) and â0(θ), constant over time. Therefore, in order to ease notation,
we define

A(θ)
p×(q+1)

=
⎛

⎜⎝
a10(θ) · · · a1q(θ)

...
...

...

ap0(θ) · · · apq(θ)

⎞

⎟⎠ , H (i)(θ)
(q+1)×1

=
⎛

⎜⎝
Z (i−1)
0

[
f (Yi ) − π̂ (i−1)(θ)

]

...

Z (i−1)
q

[
f (Yi ) − π̂ (i−1)(θ)

]

⎞

⎟⎠ ,

for i = 1, . . . , n and Fn(θ) := ∑n
i=s+1 H

(i)(θ).6 With this notation at hand we are
considering PBEFs of the form

Gn(θ) = A(θ)Fn(θ), (6)

where we need p ≤ q + 1 to identify the p unknown parameters. Finding the optimal
PBEF within a class of PBEFs of the type (6) is then a question of choosing an optimal
weight matrix, A∗(θ). The optimal PBEF will then be the estimating function, within
the considered class of estimating functions of type (6), that is closest to the score in an
L2-sense. For further details on the optimal PBEF see Sørensen (2000) or Appendix B.

2.1.2 Relating PBEFs to GMM estimation

The PBEFs and martingale estimating functions share many similarities with GMM
estimation from the econometrics literature. In this subsection we will explain the link
between the optimal PBEF and the optimal GMM estimator based on the moment
conditions from the normal equations.

5 PBEFs with finite-dimensional predictor spaces can also be computed for non-stationary processes,
but in this case computing the MMSE predictor, π̂(θ), is a bit more complicated since the coefficients,
â0(θ), . . . , âq (θ), become time varying.
6 Note that the sum starts at i = s + 1 since Z (i−1)

k is only well defined for i ≥ s + 1.
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The PBEF-based estimator is obtained by solving Gn(θ) = 0 for θ , but for numer-
ical reasons it is often easier to minimize Gn(θ)′Gn(θ) w.r.t. θ ∈ �. We employ this
approach and find an estimator by solving

min
θ∈�

Gn(θ)′Gn(θ) = min
θ∈�

Fn(θ)′A(θ)′A(θ)Fn(θ).

This expression looks very similar to the GMM objective function that emerges if we
perform GMM estimation using the q + 1 moment conditions Eθ [H(θ)] = 0. In this

case theGMMobjective function tobeminimized is
(

1
n−s Fn(θ)

)′
Wn(θ)

(
1

n−s Fn(θ)
)
,

which is equivalent to minimizing Fn(θ)′Wn(θ)Fn(θ). In the latter case, the corre-
sponding p first-order conditions are

2
(
∂θ Fn(θ)

)′
Wn(θ̂)Fn(θ) = 0, (7)

ifwe evaluate theGMMweightmatrix,Wn(θ̂), at some consistent parameter estimate θ̂

such that theweightmatrix does not dependon θ . Thefirst-order conditions (7) have the
same structure as the PBEFs in (6). The only difference is that the term in front of Fn(θ)

in (7) becomes data dependent. However, it turns out that there is a strong link between
(7) with Wn(θ̂) chosen optimally and the optimal PBEF of type (6). The optimal
PBEF takes the form G∗

n(θ) = A∗
n(θ)Fn(θ), where A∗

n(θ) = U (θ)′Mn(θ)−1 and the
expression for U (θ) and Mn(θ)−1 can be found in Sørensen (2000) or Appendix B.
Straightforward calculations show that

− 1

n − s
∂θ Fn(θ)′ p−→ U (θ)′, when n −→ ∞. (8)

From the theory on GMM estimation, we know that the optimal choice of weight
matrix, Wn(θ), is the inverse of the covariance matrix of Fn(θ) since the H (i)’s are
correlated. In the GMM setting this weight matrix will in practice be constructed
using the sample version of the covariance matrix. When Wn(θ) is chosen optimally,
Wn(θ) equals 1

n−s Mn(θ)−1 and (7) becomes the empirical analog of the optimal
PBEF, G∗

n(θ) = A∗
n(θ)Fn(θ). Constructing the optimal PBEF is therefore the same as

constructing the theoretical first-order conditions that emerge from the optimal GMM
objective functions based on the moment conditions, Eθ [H(θ)] = 0, from the normal
equations. The choice of f and predictor space then translates into which moment
conditions to use in the GMM estimation. Hence, these choices will also impact the
efficiency of the resulting PBEF-based estimator. Once these choices are made, the
optimal PBEF-based estimator is linked to the optimal GMM estimator, based on the
moment conditions from the normal equations, as described above. Note that a sub-
optimal choice of the weight matrix Wn(θ) will lead to a sub-optimal PBEF, but the
class of PBEFs is in general broader than the ones having the structure (7).

2.1.3 PBEFs for SV models without noise in the data

We now return to the setup from (1) and, following Sørensen (2000), review how to
compute PBEFs for SV models without MMS noise.
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Suppose the process X has been observed at discrete time points X0, X�, X2�, . . . ,

Xn�. In this setup, inference based on MGEFs becomes practically infeasible, since
the conditional expectations appearing in the MGEFs, which are based on f (Yi ) −
Eθ [ f (Yi )|Yi−1, . . . ,Y1], are difficult to compute analytically, as well as numerically.
One feasible approach for conducting inference is to use PBEFs instead. In fact, for
many models, such as the Heston model, we are able to derive analytical expressions
for the PBEFs. Then the continuous time returns from (1) are given by

Yi = Xi� − X(i−1)� =
∫ i�

(i−1)�

√
vt dWt , (9)

which allows for the decomposition Yi = √
Si Zi , where the Zi ’s are i.i.d. standard

normal random variables independent of {Si }, and where the process {Si } is given by
Si = ∫ i�

(i−1)�vt dt . We will assume v to be a positive, ergodic, diffusion process with
invariant measure μθ and that v0 ∼ μθ is independent of B, which implies that v is
stationary.

To construct PBEFs, we have to decide on which function of the data to predict.
Since the Y ′

i s are uncorrelated, trying to predict Yi using Yi−1,Yi−2, . . . Yi−q will not
work and f (y) = y is a bad choice. To match empirical data, where we have volatility
clustering, squared returns from the considered SV models are often correlated, and a
natural choice for f would therefore be f (y) = y2. The decomposition Yi = √

Si Zi

also reveals that f (y) = y2 is a convenient choice, as it eases the computation of the
moments required to construct the PBEFs.Other choices of f might result in efficiency
gains, but without further knowledge of the intractable score functions that we aim to
estimate, we will stick to the class of polynomial PBEFs as they offer computational
ease.7 We choose Pθ

i−1 = {a0 + a1Y 2
i−1 + . . . + aqY 2

i−q |ak ∈ R k = 0, 1, . . . , q}
as our predictor space. Hence, Z (i−1)

k = Y 2
i−k for k = 1, 2, . . . , q having the same

functional form as the function of the data to predict.8 Notice that in this case s = q
since Pθ

i−1 is spanned by the “most recent past of squared returns of length q”.9 With
the above choice of f and predictor space, the MMSE predictor is given by

π̂ (i−1)(θ) = â0(θ) + â(θ)′Z (i−1), with Z (i−1) = (Y 2
i−1, . . . ,Y

2
i−q),

â(θ) = C−1(θ)b(θ), â0(θ) = Eθ (Y
2
1 )[1 − (â1(θ) + · · · + âq(θ))]. (10)

As before, C denotes the covariance matrix of Z (i−1), and b is the q × 1-vector
with j th element given by Covθ (Y 2

i− j ,Y
2
i ). Together with (6), this means that we are

considering PBEFs of the form

7 Higher power of y could also have been considered, but very high moments are often not reliable for
empirical investigations, and we choose to stick with f (y) = y2 as suggested in Sørensen (2000).
8 It should be noted that one does not have to choose a predictor space spanned by variables of the same
functional form as f , even though it seems like the most natural choice.
9 When the volatility process {vt } is ρ-mixing the coefficient âk (θ) decreases exponentially with k. Then
q is not required to be very large since q represents the “‘required” information for predicting f (Y ), [see
Theorem 3.3 in Bradley (2005)].
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Gn(θ) =
n∑

i=q+1

�(i−1)(θ)︸ ︷︷ ︸
p×1

[Y 2
i − (â0(θ) + â1(θ)Y 2

i−1 + · · · + âq(θ)Y 2
i−q)], (11)

with �(i−1)(θ) = A(θ)Z̃ (i−1), where Z̃ (i−1) = (1,Y 2
i−1, . . . ,Y

2
i−q)

′. In our Monte
Carlo study we will use the following sub-optimal, yet simple weight matrix

A(θ) =
⎛

⎝
1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

⎞

⎠ ,

since computing the optimal weight matrix A∗(θ) involves computing the covariance
matrix of Fn(θ).10 The resulting sub-optimal PBEF is

Gn(θ) =
n∑

i=q+1

⎛

⎝
1

Y 2
i−1

Y 2
i−2

⎞

⎠ [Y 2
i − (â0(θ) + â1(θ)Y 2

i−1 + · · · + âq(θ)Y 2
i−q)]. (12)

Equating (12) to zero and solving for θ gives a
√
n-consistent estimator, but we may

loose some efficiency for not using the optimal weight matrix A∗(θ). However, the
aim of the paper is to study the finite sample performance of an easy implementable
and simulation-free PBEF. As we shall see in our Monte Carlo study, the estimator
based on the sub-optimal PBEF performs well in finite samples, and a study of the
possible further improvements from using the optimal PBEF is left for future research.

The sub-optimal PBEF from (12) can now be computed if we can calculate
â0(θ), â1(θ), . . . , âq(θ). For this we need Eθ [Y 2

i ],Varθ (Y 2
i ) and Covθ (Y 2

i ,Y 2
i+ j ) for

j = 1, . . . , q. Following (Barndorff-Nielsen and Shephard 2001, pp. 179–181), the
required moments can be calculated from the moments of the volatility process {vt }.
For the Heston they are given by

Eθ [Y 2
i ] = �α, Varθ (Y

2
i ) = 6ασ 2

2κ3

(
e−κ� + κ� − 1

) + 2�2α2, and

Covθ (Y
2
i ,Y 2

i+ j ) = ασ 2

2κ3

(
e−κ� j [e−κ� − 2 + eκ�

])
.

2.1.4 PBEFs for SV models with noisy data

We now add noise to the observation scheme from (9). More specifically, we add i.i.d.
Gaussian noise to the log-price process

Xi = X∗
i +Ui , Ui i.i.d. N (0, ω2), (13)

10 A task that involves computing Eθ [Y 2
i Y

2
j Y

2
k Y

2
1 ] for i ≥ j ≥ k. For further details on how to compute

optimal PBEFs for stochastic volatility models, see Sørensen (2000). In Sørensen (2000) an analytical
formula for the optimal PBEF for an affine SVmodel, such as the Heston model, is also given. Even though
an analytical expression for A∗(θ) is in principle available, it is a very complicated expression and not
easily implementable. In practice, a feasible strategy could be to simulate A∗(θ).
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where the efficient log-price process X∗ comes from the Heston model and X∗ andU
are assumed to be independent. The additive error termUi will be interpreted asmarket
microstructure (MMS) noise due to market frictions such as bid-ask bounce, liquidity
changes, and discreteness of prices. WhenMMS noise is present, the observed returns
have the following structure

Yi = Xi − Xi−1 = (X∗
i − X∗

i−1) + (Ui −Ui−1) = Y ∗
i + εi , (14)

where the MA(1) process, ε, is normally distributed, N (0, 2ω2), and independent of
the efficient return process Y ∗.

To correct for MMS noise in the PBEFs, the moments used to construct the MMSE
predictor have to be recalculated. That is, Eθ [Y 2

i ],Varθ (Y 2
i ) and Covθ (Y 2

i ,Y 2
i+ j ) need

to be computed in the setting from (14).
Straightforward calculations give Eθ [Y 2

i ] = �α+2ω2, since Y ∗ and ε are indepen-
dent and havemean zero.We can now derive the bias inα that can be expected to occur,
when performing the PBEF-based estimation procedure without correcting for MMS
noise. If the MMS noise is not taken into account, then the equation, Eθ [Y 2

i ] = �α,
is erroneously used for constructing the PBEF. Therefore, the expected bias in α is
given by 2ω2

�
, and as we shall see, this quantity matches with the bias found in our

Monte Carlo Study. Since we do not have an analytical expression for the estimators,
we will not attempt to derive the bias encountered in κ and σ .

As for the variance of the squared returns, it follows from (14) that Y 2
i = Y ∗2

i +
ε2i + 2Y ∗

i εi , and since the three terms are uncorrelated, we have that

Varθ (Y
2
i ) = Varθ (Y

∗2
i ) + Varθ (ε

2
i ) + 4Varθ (Y

∗
i εi ). (15)

Given the structure of the noise process, and since the noise process is normally
distributed with mean zero and a variance of 2ω2, we find that Varθ (ε2i ) = 8ω4. The
efficient return process and the noise process are independent, and both have mean
zero, so Varθ (Y ∗

i εi ) = Eθ [ε2i ]Eθ [Y ∗2
i ] = 2ω2�α. Plugging this into (15) yields

Varθ (Y
2
i ) = Varθ (Y

∗2
i ) + 8ω4 + 8ω2�α. (16)

Regarding the covariance structure of the squared returns, only the first-order covari-
ance will change due to the MA(1) structure in the return errors ε. By, once again,
exploiting that Y ∗ and ε are independent and both have mean zero, we obtain the fol-
lowing expression for the first-order covariance of the observed squared return series

Covθ (Y
2
i ,Y 2

i+1) = Covθ (Y
∗2
i ,Y ∗2

i+1) + Covθ (ε
2
i , ε

2
i+1) = Covθ (Y

∗2
i ,Y ∗2

i+1) + 2ω4.

(17)

We can now compute the noise corrected version of the PBEF previously described.
Note that we can choose to estimate the variance of the noise, ω2, in a first step, by for
instance, plugging a non-parametric estimator into the noise corrected PBEF used for
estimating κ, α and σ . Another approach would be to expand the parameter vector to
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θ = (κ, α, σ, ω2) and use the noise corrected PBEF to estimate all four parameters. In
the last approach one would have to choose a 4 × (q + 1) weight matrix, A(θ). This
will result in a 4× 1 estimating function Gn(θ), such that our estimator θ̂ is obtained
by solving four equations in four unknowns. We will follow the last approach and
estimate all four parameters in one step. Since we have chosen q = 3 and wish to
estimate ω2, the weight matrix will be a 4 × 4 matrix. This means, that the weight
matrix can be ignored when solving Gn(θ) = 0, under the assumption that A(θ) is
invertible and the sub-optimal PBEF we have considered so far will, in this setting, be
optimal.

2.2 A GMM estimator based on moments of integrated volatility

In this subsection, the GMM-based estimation procedure from Bollerslev and Zhou
(2002) is reviewed and extended to handleMMS noise. In Bollerslev and Zhou (2002),
the moment conditions for constructing the GMM estimator arise from the analytical
derivations of the conditional first- and second-order moments of the daily integrated
variance (IV) process. We will consider both a parametric and a non-parametric way
of accounting for the presence of MMS noise in the data used for constructing the
GMM estimator. In the parametric approach, the moment conditions are adjusted to
hold in the MMS noise setting, and in the non-parametric approach we use a noise
robust estimate of IV, namely the realized kernel (RK) from Barndorff-Nielsen et al.
(2008a).

2.2.1 The GMM estimator without noise in the data

Wenow review theGMMestimator fromBollerslev and Zhou (2002) in the casewhere
we have observations from the Heston model without MMS noise. Since the daily
IV is latent, the realization of this time series is approximated by the daily realized
variance (RV). Replacing population moments of IV with sample moments of RV
results in an easy-to-implement GMM estimator. The GMM-based estimation method
crucially depends on the availability of high-frequency data, since high-frequency data
will ensure that RV is a good approximation of IV the moment conditions will hold
approximately for RV.

When considering the Heston model, the conditional moment conditions used for
constructing the GMM estimator are given by

Eθ [IVt+1,t+2 − δ IVt,t+1 − β|Gt ] = 0,

Eθ [IV2
t+1,t+2 − H(IV2

t,t+1) − I (IVt,t+1) − J |Gt ] = 0,
(18)

where IVt,t+1 denotes the integrated variance from day t to day t − 1 and Gt =
σ
({IVt−s−1,t−s |s = 0, 1, 2, . . . ∞}). The functions δ, β, H, I , and J are functions of

the parameters κ, α, and σ and can be found inAppendix C. The functions δ and β only
depend on the drift parameters κ and α which is why the second moment condition is
needed. For further details on the derivation of the two conditionalmoments conditions
see Bollerslev and Zhou (2002) or Appendix C. To get enough moment conditions to
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identify θ , the two moment conditions are augmented by IVt−1,t and IV2
t−1,t , yielding

a total of six moment conditions. By replacing daily IV with daily RV, and using
the unconditional versions of the moment conditions, a feasible GMM estimator is
obtained from

θ̂T = argmin
θ

(
1

T − 2

T−2∑

t=1

ft (θ)

)′
Ŵ

(
1

T − 2

T−2∑

t=1

ft (θ)

)
, (19)

with Ŵ = Ŝ−1, where Ŝ is a consistent estimate of the asymptotic covariance matrix
of gT (θ) = 1

T−2

∑T−2
t=1 ft (θ) and ft (θ) is given by

ft (θ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

RVt+1,t+2 − δRVt,t+1 − β

RV2
t+1,t+2 − H(RV2

t,t+1) − I (RVt,t+1) − J[
RVt+1,t+2 − δRVt,t+1 − β

]
RVt−1,t[

RV2
t+1,t+2 − H(RV2

t,t+1) − I (RVt,t+1) − J
]
RVt−1,t

[
RVt+1,t+2 − δRVt,t+1 − β

]
RV2

t−1,t[
RV2

t+1,t+2 − H(RV2
t,t+1) − I (RVt,t+1) − J

]
RV2

t−1,t

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

2.2.2 Parametrically correcting for noisy data in the GMM approach

Recall, when MMS noise is present, the observed returns have the following structure

Yi = Xi − Xi−1 = (X∗
i − X∗

i−1) + (Ui −Ui−1) = Y ∗
i + εi .

If we denote the realized variance based on the MMS noise contaminated returns by
RVMMS and the realized variance based on the efficient return process by RV∗, we can
rewrite RVMMS over day t as

RVMMS
t,t+1 = RV∗

t,t+1 +
m∑

i=1

ε2i,t + 2
m∑

i=1

εi,t Y
∗
i,t , (21)

where the number of intra-day observations is given by m := �−1.
The idea is to noise correct theGMMestimation approach fromBollerslev andZhou

(2002) by adjusting the moment condition from (20) such that they hold for RVMMS.
In order to do so, we have to extend the filtration we condition on to a larger filtration,
making RVMMS measurable w.r.t that filtration. The moment conditions from Boller-
slev and Zhou (2002) were derived using the sigma-algebra Gt = σ

({IVt−s−1,t−s |s =
0, 1, 2, . . .}), that was approximated by Ĝt = σ

({RV∗
t−s−1,t−s |s = 0, 1, 2, . . .}).

Instead of Ĝt , we will now consider the larger filtration, Ĥt , generated by RV∗, the
efficient returns process, Y ∗, and the noise process, ε, up until the beginning of day t .
Define

Ĥt := σ
({RV∗

t−s−1,t−s,Y
∗
i,t−s−1, εi,t−s−1|s = 0, 1, 2, . . . and i = 1, 2, . . . ,m}),
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where Y ∗
i,t−1 and εi,t−1 for i = 1, 2, . . . ,m denote the intra-day returns of the efficient

price process and the MMS noise process during day t − 1 respectively. We now
consider how to extend the first conditional moment condition from (18), using the
decomposition from (21)

Eθ

[
RVMMS

t+1,t+2 − δRVMMS
t,t+1 − β|Ĥt

]

= Eθ

[
RV∗

t+1,t+2 − δRV∗
t,t+1 − β|Ĥt

]
(22)

+ Eθ

[
m∑

i=1

ε2i,t+1 − δ

m∑

i=1

ε2i,t |Ĥt

]

+ 2Eθ

[
m∑

i=1

εi,t+1Y
∗2
i,t+1 − δ

m∑

i=1

εi,t Y
∗2
i,t |Ĥt

]
.

Let us first consider (22). From the moment conditions used in the no noise case
we know that we approximately get a zero when conditioning on Ĝt in (22) instead.
Under the assumption that the efficient return series, {Y ∗}, up till time t do not add
significant explanatory power compared to the information contained in Ĝt , (22) will
also equal zero approximately, since both the {RV∗} and {Y ∗} series are independent
of the noise process. We do not use overnight returns, so the MA(1) structure in the
noise process only holds within the trading day. This means that it will not impact
the calculation of the conditional expectation, which will just equal the unconditional
expectation (1 − δ)2ω2m. Since, as just discussed, the noise process is independent
of any realizations from previous days and has mean zero, the conditional expectation
will just equal zero. All in all, this leaves uswith the noise adjustedmoments condition

Eθ

[
RVMMS

t+1,t+2 − δRVMMS
t,t+1 − β − (1 − δ)2ω2m|Ĥt

]
≈ 0. (23)

As in the no MMS noise case we will augment the conditional moment condition (23)
by RVMMS

t−1,t and (RVMMS
t−1,t )

2 to get two additional moment conditions.
Turning our attention to the second conditional moment condition from (18), we

wish to compute

Eθ

[
(RVMMS

t+1,t+2)
2 − H(RVMMS

t,t+1)
2 − I (RVMMS

t,t+1) − J |Ĥt
]
. (24)

This task is however not feasible since it involves computing Eθ [Y ∗2
i,t+1|Ht ] and

Eθ [Y ∗2
i,t |Ht ]. If this was possible, we could use these expressions to form martin-

gale estimating functions and would not need to use PBEFs for the estimation of our
SV model. The problem is that we do not have an analytical expression for the condi-
tional expectation of the squared returns during day t +1 and day t given the filtration
generation by the return series up until time t . Instead we will settle for four moment
conditions and simply use the unconditional expectation of (24) given by
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Eθ

[
(RVMMS

t+1,t+2)
2 − H(RVMMS

t,t+1)
2 − I (RVMMS

t,t+1) − J − K − L
] ≈ 0,

K = (1 − H)(4m2ω4 + 4mω2α + 12mω4 − 4mω4 + 8ω2α),

L = −2mω2 I (25)

The derivation of the moment condition above can be found in Appendix C.

2.2.3 Non-parametrically correcting for noisy data in the GMM approach

In the presence of i.i.d. MMS noise that is independent of the efficient log-price
process, Hansen and Lunde (2006) show that the bias in RV equals 2�−1ω2.

In fact, the variance of RV also diverges to infinity as the sampling frequency
increases. In the setting with MMS noise, RV is no longer a consistent estimator of
IV. We will therefore use a noise robust estimate of IV when constructing the GMM
estimator. Instead of basing the estimation procedure on the time series of daily RV,
we will use the time series of daily realized kernels (RK) from Barndorff-Nielsen
et al. (2008a). The estimator is then constructed using the moment conditions (20),
replacing RVwith RK.We use the flat-top Tukey–Hanning2 kernel, since the resulting
RK is closest to being efficient in the setting of i.i.d. noise that is independent of the
observed process. As for the bandwidth, H , we follow the asymptotic derivations from
Barndorff-Nielsen et al. (2008a) and let H ∝ (1/�)1/2, in order to obtain the optimal
rate of convergence, (1/�)1/4, of RK to IV.11

3 A Monte Carlo study of the finite sample performances

3.1 The setup and the case without noisy data

In this subsection and the following, the finite sample performances of the PBEF-
based estimator from Sørensen (2000) and the GMM estimator from Bollerslev and
Zhou (2002) are investigated in a Monte Carlo study. This subsection investigates
the potential of using the intra-day returns directly in the PBEF-based estimator in
a setting without MMS noise. The benchmark used for evaluating the performance
of the PBEF-based method is the GMM approach from the previous subsection. In
the next subsection, we first consider a setup with mild model misspecification, in
the sense that we now add MMS noise to the simulated data and investigate how
this impacts the two estimation methods. Afterwards, the performance of the noise
corrected estimation methods are studied.

The data used for constructing the estimators are simulated realizations from the
Heston model (2). We use a first-order Euler scheme to simulate the volatility- and
log-price processes. The log-price is sampled every 30s in the artificial 6.5h of daily
trading, for sample sizes of T = 100, 400, 1000 and 4000 trading days. Using the
simulated data, daily realized variances based on the artificial 5-min returns are con-

11 For further details on how the bandwidth is chosen, consult section 4 of Barndorff-Nielsen et al. (2008a).
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structed. We will think of the five-minute returns as our available data. Since we are
using 5-min returns over 6.5h of trading, we have � = 1/78.

To get a better grasp of the finite sample performance of the estimator based on
PBEFs, as well as the GMM estimator, we conduct our Monte Carlo experiment in
three different scenarios of parameter configurations.

• Scenario 1: (κ, α, σ ) = (0.03, 0.25, 0.10). The volatility process is highly per-
sistent (near unit-root). The autocorrelation is given by r(u, θ) = e−κu and the
correlation between the volatility processes sampled five minutes apart equals
e−0.03∗1/78 = 0.9996. The half-life of the volatility process equals 23.1 days.

• Scenario 2: (κ, α, σ ) = (0.10, 0.25, 0.10). Here we have a slightly less persistent
volatility process due to the increase in themean-reversion parameter. The half-life
now equals 6.93 days.

• Scenario 3: (κ, α, σ ) = (0.10, 0.25, 0.20). The local variance of volatility is now
increased. This process is also close to the non-stationary region since the CIR
process is stationary if and only if 2κα ≥ σ 2, and here 2κα−σ 2 = 0.01 (compared
to 0.04 in scenario 2).

The same scenarios were considered in theMonte Carlo study conducted in Bollerslev
and Zhou (2002). In Bollerslev and Zhou (2002), the authors only consider the rather
large sample sizes T = 1000 and T = 4000, corresponding to 4 and 16years of data.
Our Monte Carlo study therefore also contributes by investigating the usability of
this method when less data are available. We impose strict positivity of the parameter
estimates κ̂, α̂ and σ̂ and use the true values of θ as starting values in the numerical
routines. In each case the number of Monte Carlo replications is 1000.

An interesting question that arises when considering PBEFs is how to optimally
choose q. No theory exists for this choice, as this would require knowledge of the
intractable conditional expectation Eθ

[
f (Yi )|Y1, . . . ,Yi−1

]
that we wish to approx-

imate. One approach for answering this question could be to consider the partial-
autocorrelation function for f (Yi ) and the functions used for predicting f (Yi ) and
then choose q as the cutoff point where the function dies out. In our setting this cor-
responds to considering the partial-autocorrelation function for the squared returns.
However, inverting the covariance matrix C(θ) can cause numerical challenges and
inaccuracies for large values of q.

Instead, we start at the smallest interesting choice, q = 3, and then later on inves-
tigate the sensitivity w.r.t the choice of q.12 When the parameters θ = (κ, α, σ ) are
estimated, weminimizeGn(θ)′Gn(θ) instead of solvingGn(θ) = 0. In the implemen-
tation of the GMM estimation procedure, we use continuously updated GMM, where
the weight matrix is estimated simultaneously with the parameters θ . The asymptotic
covariance matrix of gT (θ) is estimated using the heteroscedasticity and autocorrela-
tion consistent estimator from Newey and West (1987). Regarding the lag length in
the Bartlett kernel we follow a rule-of-thumb from Newey and West (1987), that is
�4(T/100)2/9�. The results on the finite sample performance of the two estimation
methods in the absence of noise are summarized in Table 1.

12 q = 2 would automatically result in an optimal PBEF because the weight matrix A(θ) would then be a
3 × 3 matrix and could be disregarded when solving Gn(θ) = 0.
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The potential of PBEFs is clear from Panel A in Table 1. The estimators are practi-
cally unbiased for the large sample sizes, T = 1000, 4000, and the bias for the small
sample size is of an acceptable size. For the small sample sizes, there is a small down-
wards bias in κ and a more pronounced upwards bias in σ . The root MSREs behave as
expected, decaying with T and are roughly halved when the sample size grows from
T = 100 to T = 400 and from T = 1000 to T = 4000. The mean-reversion rate,
κ , is most accurately estimated in terms of root MSRE, whereas the other drift para-
meter, α, has the highest root MSRE. All three parameters are easiest to estimate in
Scenario 2, where the volatility process is less persistent and less volatile. This could
be because the other two scenarios are closer to the non-stationary region where the
Feller condition is violated. In Scenario 1, with a highly persistent volatility process,
the root MSREs are higher compared to the other two scenarios.

Turning our attention to Panel B of Table 1, we see that the GMM estimator from
Bollerslev and Zhou (2002) performs poorly when the sample size is small. In fact,
the results for T = 100 indicate that the method is not working for sample sizes this
small. For the larger sample sizes, our results match those found in Bollerslev and
Zhou (2002). The table reveals an upwards bias in κ and a smaller downwards bias in
α. The volatility of volatility parameter σ has a small, yet systematic, upwards bias
that actually seems to worsen when the sample size increases.13 The drift parameters
again appear to be easiest to estimate in Scenario 2. In contrast to the results for the
PBEF-based estimator, the most accurate estimates of σ are now found in Scenario 3,
where the volatility of volatility is high.

If we compare Panel A and B of Table 1, it is clear that the PBEF-based method
outperforms the GMM approach, especially when the sample size is small. The infor-
mational content of 100 observations of daily realized variance is too small to fully
extract the dynamics of the underlying volatility process compared to 7800 obser-
vations of intra-day squared returns, and in general it seems that the PBEF-based
estimator is able to exploit the extra information contained in the intra-daily returns.
Furthermore, a GMMestimator based on 100 observations will, in general, often result
in inaccurate estimates. The gains from using PBEFs aremost prominent for themean-
reversion rate, κ , whereas the root MSREs for α are similar across the two estimation
methods for the larger sample sizes.

To investigate the optimal choice of q in the PBEF, the impact on the root MSREs
from increasing q is examined. In Fig. 1 the three different scenarios are considered
for T = 1000, and the root MSREs for the three parameters are plotted against the
choice of q. The shape of the plots for κ and σ looks almost identical. In Scenarios 1
and 3, where the volatility process is close to the non-stationary region, q = 3 seems
to be the optimal choice for κ and σ . In Scenario 2, q = 6 appears to be the optimal

13 This bias in σ can, as found in Bollerslev and Zhou (2002), be explained by the variance of the dis-
cretization error ut,t+1 := RVt,t+1 − IVt,t+1, since Barndorff-Nielsen and Shephard (2002) show that
RV2

t,t+1 , is for any fixed sampling frequency, an upwards biased estimator of IV2
t,t+1. To account for

this discretization error, Bollerslev and Zhou (2002) introduce a nuisance parameter, γ , and approximate
IV2

t+1,t+2 by RV2
t+1,t+2 − γ . We also implemented this simple discretization error correction and found,

in line with Bollerslev and Zhou (2002), that it helps remove the systematic bias in σ , but also roughly
doubles the root MSRE. We will therefore proceed without this correction in the rest of our Monte Carlo
study. The results with discretization error correction are available upon request.
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Fig. 1 Normalized root MSRE for the three parameter estimates in scenario 1–3, with T = 1000, plotted
as a function of the number of predictor variables q. The root MSREs are in each case normalized to have
a minimum of 1

choice for both parameters. Looking at the three plots for α there does not seem to be
much variation in the root MSRE across the choice of q. In Scenario 1 and 3, where
we are close to the non-stationary region, the root MSRE decreases when q increases.
Therefore, we chose q = 3 in our Monte Carlo Study even though the variations in
the root MSREs are small.

3.2 Including noise in the observations

In this section, the impact of MMS noise on the parameter estimates from the two
estimation procedures is investigated. We consider the noise level, ω2 = 0.001, as this
choice is in line with the empirical estimates found for stock returns in Hansen and
Lunde (2006).14 First, we will simulate data from the Heston model with the inclusion
of MMS noise and then perform parameter estimation ignoring the presence of noise.
The resulting estimates will be analyzed in the next subsection. Then, in the following
subsection, the finite sample performance of the noise corrected estimators will be
investigated.

14 We also considered the noise level, ω2 = 0.0005, and the results are available upon request.
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3.2.1 The impact of failing to correct for the presence of noise

The finite sample performances of the two estimation methods without noise cor-
rection are summarized in Table 2. Panel A of the table reports the results for the
PBEF-based estimator, and Panel B reports the results for the GMM estimator based
on RV.

From the results, it follows that the inclusion ofMMS noise in the observed process
leads to biases in the parameters. Panel A of the table shows that the downwards bias
in κ has worsened in the presence of noise and the small downwards bias in α has
turned into a severe upwards bias. The bias in α matches exactly the expected bias,
2ω2

�
, which in relative terms equals 62.4%. The upwards bias in σ has also worsened,

but α is the parameter that is most affected by ignoring the presence of noise. For all
three parameters, the highest root MSREs still occur in Scenario 1, and the lowest in
Scenario 2. In Panel B, the results for the performance of the GMM estimator based
on RV reveal that the bias in κ has roughly doubled compared to the no noise setting,
and it is approximately twice the size of the bias in κ in Panel A. As for the other drift
parameter, the downwards bias in α has been turned into a severe upwards bias of a
similar size as the one found in Panel A. The sign of the bias in σ has also changed,
and the table now reports a downwards bias around the same size as the upwards bias
in Panel A.

The root MSREs reported in Table 2 have all gone up compared to the no noise case
from Table 1, and the results show that failing to correct for noise strongly impacts
the parameter estimates. The long run mean of volatility, α, appears to be affected
the most. As in the no noise setting of Table 1, the performance of the GMM-based
estimator is quite poor for small sample sizes, and it only produces trustworthy results
when T = 400 and we are in Scenario 2 or 3. When the larger sample sizes T = 1000
and T = 4000 are considered, the root MSREs of κ are higher in Panel B, but the
impact of noise on the root MSREs of α and σ appears to be the same across the two
estimation methods.

3.2.2 Finite sample performances of the noise corrected estimation procedures

The performances of the estimator based on the noise corrected PBEF and the GMM
estimator where noise is corrected for parametrically are reported in Table 3. Table 4
presents the results for the GMM estimator based on RK.

The results in Panel A of Table 3 show that the noise corrected PBEF-based esti-
mation procedure is able to correctly account for the presence of noise and produce
unbiased estimates for the larger sample sizes. In fact, the small upwards bias inσ found
in Table 1 has decreased significantly for the smaller sample sizes, and it disappears as
the sample size grows. The variance of the noise process, ω2, is also accurately esti-
mated. The root MSREs for κ are in general very similar to those reported in Table 1.
For the other drift parameter, α, the root MSREs have now gone down, compared
to the no noise setting. Due to the bias reduction in σ , for the smaller sample sizes
T = 100 and T = 400, the root MSREs are also lower than what was reported in
Table 1. For the larger sample sizes T = 1000 and T = 4000, the root MSREs for σ
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are a bit higher or similar to those found in Table 1. For all three parameters, the root
MSREs are smallest in Scenario 2, as was also the case in the no noise setting.

The performance of the parametrically noise corrected GMM estimator is summa-
rized in Panel B of Table 3. An inspection of the results shows that although the GMM
estimator does not produce unbiased estimates it succeeds at incorporating the noise
and produce estimates with small biases comparable to those from Table 1. In fact,
the biases are now a bit lower than in Table 1, with the difference being most apparent
in Scenario 3. The results for the smallest sample size, T = 100, appear unreliable,
in the sense that 100 observations are simply not enough to infer the dynamics of the
underlying volatility process and produce estimates with an acceptable level of bias
and rootMSREs. Comparing the rootMSREs to those reported in Table 1, we find that
the root MSREs are in general similar to the no noise setting, with the root MSREs for
κ and σ being a bit bigger than in Table 1 and the root MSREs for α a bit smaller. The
patterns, found in Panel B of Table 1, across the different scenarios are repeated, the
drift parameters have lower root MSREs in Scenario 2, whereas σ is most accurately
estimated in Scenario 3.

When comparingPanelAandBofTable 3, it is clear that thePBEF-based estimation
method produces more accurate parameter estimates. The root MSREs of α are quite
similar for the two methods, but the root MSREs are lower in Panel A, for the other
two parameters and the noise variance. The difference between the two methods is
most prominent for the mean-reversion parameter, which is extremely well estimated
with the PBEF-based method.

We also considered estimating theHestonmodel using noisy data, by simply replac-
ing RV with a realized kernel, RK, in the original moment conditions from Bollerslev
and Zhou (2002). The finite sample performance of this estimator is summarized in
Table 4. Even though the estimator is based on six moment conditions, compared to
the four moment conditions used for constructing the parametrically noise corrected
estimator, the performance is not nearly as good. The biases in the parameters are
larger, but have the same signs as in Panel B of Table 3. The small systematic bias in σ

due to the discretization error and noisy data has also increased compared to Table 1.
This could be explained by the slower rate of convergence of RK to IV, compared to
the convergence rate of RV. The biases in the drift parameters are however comparable
to those reported in the no noise setting, and for κ the bias is in fact a bit lower. The
two ways of correcting for noise in the GMM approach give rise to somewhat similar
results for the mean-reversion rate κ , but the root MSREs are lower for α and σ when
the noise corrected estimator based on RV is employed. The investigation of robust-
ness towards misspecification of the noise process is outside the scope of this paper.
In our setting, without model misspecification, the parametric approach of correcting
for the noise outperforms the non-parametric approach.

In conclusion, the PBEF-based estimation method produced promising results, and
it appears that the method is able to exploit the extra information contained in directly
using the dynamics of the intra-day returns, instead of aggregating them into realized
measures.What remains to be investigated is how the two estimationmethods perform
empirically.
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4 Empirical application

In this section, we use actual 5-min returns as input in the two estimation methods
analyzed in our Monte Carlo study. We are aware that the Heston model might not fit
the chosen data. As such our application should be seen as a check of what happens
when the estimation methods are used to fit a (possibly misspecified) model to real
data.

4.1 Data description

For our empirical illustration we use 5-min returns for SPDR S&P 500 (SPY). SPY is
an exchange traded fund (ETF) that tracks the S&P 500. The sample covers the period
from January 4, 2010 through December 31, 2013. We sample the first price each day
at 9:35 and then every 5 minute until the close at 16:00. Thus, we have 77 daily 5-min
returns for each of the 1006 trading days in our sample, yielding a total of 77,462 5-
min returns. We cleaned the data following the step-by-step cleaning procedure used
in Barndorff-Nielsen et al. (2008b).

As a first inspection of the data characteristics, we consider the empirical autocor-
relation functions for the squared 5-min returns, reported in the top panel of Fig. 2.
The autocorrelation function does not seem to be exponentially decaying, revealing
that the Hestonmodel will not be able to properly account for the dynamics of the data.
However, our main interest lies in investigating whether the two estimation methods
will yield similar parameter estimates or whether they perform differently. The auto-
correlation function also exhibits cyclical patterns corresponding to a lag length of one
trading day. This is due to the well-documented intra-day periodicity in volatility in
foreign exchange and equity markets, see for instance Andersen and Bollerslev (1997)
or Dacorogna et al. (1993).

The intra-daily periodicity in the volatility might cause the two estimation methods
to perform differently. The intra-daily periodicity should not affect the GMM-based
estimator much, since the intra-daily pattern in volatility will be “smoothed out” when
the 5-min returns are aggregated into the daily realized measures. The same does not
apply for the estimator based on PBEFs, since this estimator is based directly on the
squared 5-min returns. Hence, the intra-daily periodicity might effect the parameter
estimates when the PBEF-based estimation method is carried out. In order to avoid
this, the intra-daily volatility pattern is captured by fitting a spline function to the
intra-daily averages of 5-min returns using a non-parametric kernel regression.

The data are then adjusted for periodicity in intra-daily volatility by dividing the
squared returns through by the fitted values from the spline function, matched accord-
ing to the intra-daily 5-min interval in which the observation falls. Finally, the squared
returns are normalized such that the overall variance of the squared returns remains
unchanged. The bottom panel of Fig. 2 displays the autocorrelation function for the
adjusted data. From the figure, it is clear that the intra-daily periodicity has been
removed. It is however also evident that the autocorrelation function is not exponen-
tially decaying, rendering the Heston model a poor model choice. There seems to be
a need for at least a two factor SV model, in order to properly capture the dynamics of
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460 A. F. Brix, A. Lunde

Fig. 2 Autocorrelation function for the squared 5-min returns (top) and the adjusted squared 5-min returns
(bottom) on SPY

the autocorrelation function. One factor is needed for capturing the fast decay in the
autocorrelation function at the short end, whereas the other factor should be slowly
mean reverting and thereby account for the persistent or long memory-like factor in
the variance.

4.2 Estimation results

In the Heston model, the decay rate of the autocorrelation function for the squared
returns is uniquely governed by the mean-reversion parameter κ . Due to the dynamic
structure of the autocorrelation function, discussed above, the choice of prediction
space might heavily influence the estimated value of κ . Depending on the largest time
lag of past squared returns included in the predictor space, different dynamicsmight be
captured. When fitting the Heston model to the adjusted data, we hold the dimension
of the predictor space fixed at 4, (q = 3), but consider four different choices of basis
elements, spanning the predictor space. The four cases correspond to having 1h, 1,
2, and 4days between each of the basis elements.15 The time lag between the basis
elements will be denoted by the l variable. The simple choice of weight matrix used

15 That is, in the first case we let the predictor space be spanned by Y 2
i−1, Y

2
i−13, Y

2
i−25 and a constant. In

the second case we choose Y 2
i−1, Yi−78, Yi−155 and a constant as the basis elements of the predictor space

and so on.
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in the Monte Carlo study is also employed when constructing the PBEFs. We will
only consider the noise corrected estimators, as MMS noise is a stylized feature of the
present data. The variance of the noise process is not estimated in the GMM approach
based on RK, so instead we report the non-parametric estimate of the dailyMMS noise
variance, using the formula favored in Barndorff-Nielsen et al. (2008a),

ω̌2 = exp[log(ω̂2) − RK/RV],

with RK and RV constructed using the intra-daily adjusted 5-min returns and where
ω̂2 = RV/2m. In our case m = 77, and the overall estimate of the MMS noise
variance is found by averaging the 1006 daily estimates. For the SPY data we find
ω̌2
avg = 0.0015629. The realized kernel is now computed using the parzen kernel with

H ∝ (1/�)3/5 as recommended in Barndorff-Nielsen et al. (2008b) for empirical
applications. The obtained convergence rate of RK to IV is now (1/�)1/5. The choice
of bandwidth H , that resulted in the convergence rate of (1/�)1/4 in our Monte Carlo
study, relies heavily on the assumption of i.i.d. MMS noise which might not hold
in practice. The results from fitting the Heston model to the data, using the various
estimators, are reported in Table 5. Computation of asymptotic standard errors for the
PBEF-based estimator is challenging. It involves computation of the matrix Mn(θ),
that also enters the expression for the optimal weight matrix A∗(θ), and was in fact the
main reseason why we focused on the sub-optimal PBEF in our Monte Carlo study.
Therefore, we resort to bootstrapmethods for computing standard errors. The standard
errors and 95% confidence intervals (CI) reported in Table 5 are computed using the
moving block bootstrap, as recommended in Lahiri (1999). The confidence intervals
are equal tail intervals, constructed using the percentilemethod.As for the block length
in the bootstrap method, then T 1/3(≈10) days is the rule-of-thumb advocated in Hall
et al. (1995) for constructing standard errors. Due to the strong persistence in the data,
we choose to be conservative and use a block length of 20days.

Table 5 also reports the fit to the moments of the adjusted squared returns implied
by the parameter estimates from using the various estimation methods. The obtained
parameter estimates vary across the different estimation methods, but all are mean-
ingful and within the same range. From Table 5, we see that the two different ways
of noise correcting the GMM estimator impact the parameter estimates, especially
σ . The estimated noise variance in the parametrically noise corrected method is only
about half of the non-parametric estimate ω̌2

avg. It also becomes evident that the choice
of the predictor space, represented by the variable l, highly impacts the parameter
estimates. When l is low, κ is high, and more emphasis is put, by the PBEF estimator,
on capturing the fast decaying part in the short end of the autocorrelation function. As
the l variable increases, κ drastically drops and reveals the need for several volatility
factors in order to fully capture the dynamics of the data. The split between howmuch
of the mean of the squared adjusted returns is due to the long run mean of the volatility
process, α, and howmuch is due to the variance ofMMS noise,ω2, also varies with the
l variable. An exception is when l = 77, where the estimated noise variance is similar
to the estimate obtained with the parametrically noise corrected GMMmethod, other-
wise the noise variance is either severely underestimated or potentially overestimated.
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This could be a consequence of the i.i.d. Gaussian noise assumption, which might not
hold. It could also be that the PBEF-based method has problems identifying ω2 and α

in the data at hand. We therefore also consider fixing the noise variance at the estimate
ω̌2
avg and only estimate the three parameters from the Heston model. This procedure

is denoted by PBEF 2 step in the Table. The results from the PBEF 2 step method
reveal that fixing the noise variance mainly affects the estimate of α, which is now
constant across the choice of predictor space. The PBEF 2 step method also appears
more stable, with the relative standard errors16 being constant across the values of the
time lag in the predictor space, except for the intra-day time lag (l = 12). Checking
for parameter stability across the different predictor spaces employed could serve as
a general robustness check that might reveal model misspecification.

The last three columnsofTable 5 report themodel-impliedfit to the samplemoments
of the data. The mean of the adjusted squared returns is extremely well fitted by the
PBEF 2 step procedure, whereas the other methods do not give as good fits. The
variance is however reasonably well matched when the lower values of l are used in
the PBEF 1 step procedure, but is poorly matched when l is high. The PBEF 2 step
procedure and the GMM estimator based on RK also produce reasonable fits to the
variance. The first-order autocorrelation of the squared returns is best matched by the
GMMmethod based on RV and the PBEF 1 step method with l = 12, with the PBEF
2 step approach being the runner-up. Not surprisingly, the overall best fit is obtained
by the PBEF-based method, and the fit appears more stable when the PBEF 2 step
approach is used.

From Table 5 we also observe that the Feller condition is violated in all the esti-
mation procedures, indicating that the Heston model provides a poor fit to the data.17

However, this has no influence on the specific aim of this section which was to inves-
tigate how the two different estimation methods handle real data with possible model
misspecification. The problem seems to be that the dynamic structure implied by the
Heston model is not flexible enough to adequately model the observed dynamics. The
need for allowing for several volatility factors is best highlighted by the PBEF-based
estimation method. The flexibility of the PBEF-based method can in general serve as
a robustness check of the specified model, including the noise specification.

5 Conclusion and final remarks

The general theory underlying PBEFs was reviewed and detailed. We explicitly con-
structed PBEFs for parameter estimation in the Heston model with and without the
inclusion of noise in the data. The link between optimal GMM estimation and the
optimal PBEF was also derived. As a benchmark, we considered the GMM estimator
from Bollerslev and Zhou (2002), and we extended the method to handle noisy data in
a parametric and non-parametric way. The finite sample performance of the estimator
based on PBEFs was investigated in a Monte Carlo study and compared to that of

16 The standard errors normalized by the parameter estimate.
17 0 is actually contained in the CI’s for the FC variable when the GMM method based on RK and the
PBEF 1 step method with l = 12 and l = 77 are employed, but only barely.
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the GMM estimator. In the no MMS noise setting, there are gains to be made from
using PBEFs, both in terms of bias and root MSRE, especially when the sample size
is small. The gain from using the PBEF-based method was most prominent for the
mean-reversion parameter, κ , that was extremely well estimated. The PBEF-based
method produced promising results in all three parameter configurations, but the root
MSREs were lower when the volatility process was less persistent and less volatile.

Including MMS noise in the observation equation, but neglecting to correct for it,
produced biased estimates with the upwards bias in the long run average variance, α,
being most severe.

We then considered the performance of the noise corrected estimationmethods. The
PBEF-based estimator and the parametrically noise corrected GMM estimator pro-
duced results similar to those found in the no MMS noise setting. The non-parametric
approach, where the GMM estimator is based on RK, did not perform as well. Hence,
the GMM estimator could not compete with the results obtained using the noise cor-
rected PBEF.

In our empirical application, by fitting the Heston model to SPY data, we inves-
tigated how the two different approaches handle real data. The empirical application
revealed that the choice of estimation approach impacts the parameter estimates. The
study alsomade it clear, how the great flexibility of the PBEF-based estimationmethod
could serve as a way of conducting robustness checks, for instance by checking for
parameter stability across different time spans of the predictor space.

It would be of interest to see how the estimation method based on PBEFs performs
if we extend the Monte Carlo setup by leaving the assumption of i.i.d. noise. This
would however complicate the construction of the MMS noise corrected PBEF and
the recalculation of the moments used for constructing the GMMestimator. A solution
to this potential problemcould be to filter out the noise in a first step using themethod of
pre-averaging introduced by Jacod et al. (2009), instead of modeling the noise directly.
The performance of this approach is still to be investigated. Since the PBEF-based
estimation method is quite general, an important contribution to the existing literature
would be to consider PBEFs in a setting where the driving sources of randomness are
general Lévy processes, like the models considered in Brockwell (2001), Barndorff-
Nielsen and Shephard (2001), and in Todorov andTauchen (2006). Finally, quantifying
the gain from using the optimal PBEF in different settings, as well as how to simulate
or approximate the optimal weight matrix, would also be a topic for future research.
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