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Abstract Coherent forecasting for discrete-valued stationary time series is consid-
ered in this article. In the context of count time series, different methods of coherent
forecasting such as median forecasting and mode forecasting are used to obtain h-step
ahead coherent forecasting. However, there are not many existing works in the context
of categorical time series. Here, we consider the case of a finite number of categories
with different possible models, such as the Pegram’s operator-based ARMA(p,q)
model, the mixture transition distribution model and the logistic regression model,
and study their h-step ahead coherent forecasting. Some theoretical results are derived
along with some numerical examples. To facilitate comparison among the three mod-
els, we use some forecasting measures. The procedure is illustrated using one real-life
categorical data, namely the infant sleep status data.

Keywords Pegram’s model · Markov model · MTD model · Logistic regression
model · Coherent forecasting

1 Introduction

Discrete-valued time series can broadly be classified into two categories, namely the
count time series and the categorical time series. Categorical time series can again be
of ordinal or nominal type. Some examples of count time series are the annual counts
of hurricanes, the number of patients treated each day in an emergency department
or the daily counts of swine flu cases in Mexico. Sleep status in successive minutes

R. Maiti · A. Biswas (B)
Applied Statistics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108, India
e-mail: atanu@isical.ac.in

R. Maiti
e-mail: rajumaiti@gmail.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10182-014-0243-3&domain=pdf


338 R. Maiti, A. Biswas

is one example of ordinal categorical time series. On the other hand, a sequence of
rainfall data in which successive days are recorded as “wet” or “dry” is one example
of nominal categorical time series.

This paper is concerned about the coherent forecasting of discrete-valued time
series, i.e., for data which are discrete in nature. By coherent forecasting, we mean
that the forecasting values are either integer or categorical. In the count time series
context, very few works are available in modeling as well as for coherent forecast-
ing. Freeland and McCabe (2004) discussed some methods of coherent forecasting
for thinning operator-based Poisson integer-valued autoregressive model of order 1
[denoted by PINAR(1)], which was introduced in McKenzie (1985) and Al-Osh and
Alzaid (1987). Later, this thinning-based INAR(1) model was extended to INAR(p),
INMA(q) and INARMA(p, q) models by McKenzie (1988) and Alzaid and Al-Osh
(1990). Although the h-step ahead conditional mean to make h-step ahead forecasting
can be derived without knowing the exact h-step ahead forecasting distribution, in
general this conditional mean may not be an integer and hence it is not coherent. Also
for nominal categorical time series, where one cannot assign numerical values to the
categories, conditional mean does not make any sense and hence cannot be used for
forecasting purpose. However, many authors obtained the exact expression for h-step
ahead forecasting distribution and used its median and mode, which are coherent by
its nature, to study the h-step ahead coherent forecasting. Later Jung and Tremayne
(2006), Bu and McCabe (2008) and Silva et al. (2009) also used the same methods to
study the coherent forecasting in more general setup. But, in general, these models are
not applicable in modeling categorical time series with finite number of categories.

Jacobs and Lewis (1978a, b, c), in a series of papers introduced a simple method
for obtaining a stationary sequence of dependent random variables with a specified
marginal distribution and correlation structure chosen independently. It was perhaps
the first attempt to obtain a general class of simple models for discrete variate time
series including categorical processes. These models are structurally based on the
well-known autoregressive-moving-average processes and are referred to as DARMA
models. However, the most well-known approach towards fitting categorical time
series data is perhaps the mixture transition distribution (MTD) model, a class of
models based on time homogeneous higher order Markov chain, proposed by Raftery
(1985). Later it had been modified and generalized by Berchtold and Raftery (2002)
and references therein. In contrast, Pegram (1980) used a very special kind ofMarkov-
ian model towards fitting discrete-valued time series, especially for categorical time
series. It is important to note that the model proposed by Pegram (1980) is equivalent
to the DAR(p) model considered by Jacobs and Lewis (1978c, 1983). In particular, the
DAR(1) process in Jacobs and Lewis (1978c) is exactly same as that of the Pegram’s
AR(1) process. In the recent past, Biswas and Song (2009) had extended the Pegram’s
autoregressivemodel of order p, denotedbyPAR(p), tomoregeneral setup—Pegram’s
autoregressive andmoving-average model [denoted by PARMA(p,q)] which is equiv-
alent to theNDARMA(p,q)model of Jacobs andLewis (1983).Also see the alternative
representation of the model inWeiß and Göb (2008). Regression model for categorical
time series was also developed and applied in sleep status data by Fokianos andKedem
(2003).
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In this article, we derive the exact h-step ahead coherent forecasting distributions
of three discrete time series models, namely PARMA(p, q), MTD model of order p
or MTD(p) and logistic regression model of order p or Logistic(p). It is important to
note that, if a categorical time series has k + 1 categories, then the number of para-
meters to be estimated in the PARMA(p, q) model is only (k + p + q), whereas it is
(k(k + 1) + p − 1) for theMTD(p)model and pk2 for the Logistic(p)model. In other
words, the PARMA models involve much less number of parameters compared to the
other twomodels for sufficiently large values of k and p. In addition, the PARMAmod-
els exhibit the classical Yule–Walker serial dependence structure and it carries simple
stochastic properties such as stationarity, ergodicity and so on. However, the model
has one big disadvantage that it can only be used for time series exhibiting long runs of
a certain value. In spite of the limitation, it is evident that the PARMAmodels are more
flexible in terms of the range of correlation and the ease of interpretation. Therefore,
in this article, forecasting study for the PARMA(p,q) model is carried out in detail
with MTD and logistic models. Different methods of coherent forecasting for ordinal
and nominal categorical time series, e.g., median and mode predictors are discussed.
To study the forecasting performance, different measures of forecasting accuracy are
studied. The list includes percentage of true prediction, Kolmogorov–Smirnov dis-
tance, Euclidean distance, maximum absolute distance between true and predicted
distributions. In addition, we introduce a different notion of interval forecasting based
on highest predicted probability (HPP), namely 100(1 − α)% HPP set, and study its
performance using some simulation studies. All these methods are illustrated using
one real dataset of ordinal categorical time series, namely infant sleep status data.

The rest of the article is organized as follows. In Sect. 2, different methods of
coherent forecasting with some measures of forecasting accuracy are discussed to
study the forecasting performance. Coherent forecasting for PAR(p), PMA(q) and
PARMA(p, q) models is presented in Sect. 3. Coherent forecasting for MTD(p) and
Logistic(p) models is discussed in Sects. 4 and 5, respectively. Some extensive sim-
ulation results are presented in Sect. 6. In Sect. 7, a practical categorical data, namely
infant sleep status data, are analyzed to illustrate the proposed methods. Section 8
concludes. All technical proofs are relegated to the Appendix.

2 Coherent forecasting

It is important to note that, forecasting which is an integral part of time series analysis,
has received very little attention in the discrete-valued time series literature, especially
in categorical time series analysis. In the context of count time series, Freeland and
McCabe (2004) have introduced some coherent methods of h-step ahead forecast-
ing. The list includes nearest integer of mean predictor, median predictor and mode
predictor. If the time series data are categorical, then the nearest integer of mean pre-
dictor cannot be used since moments are not defined there. To use median predictor
for categorical time series, the order of the categories is mandatory and hence median
predictor can only be used for ordinal/ordered categorical time series. However, mode
predictor does not depend on the order of the categories, and hence can always be used
to obtain the h-step ahead coherent forecasting.
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On the other hand, to examine the forecasting accuracy for time series of real-valued
data, one can always use the popular measures like predicted root mean squared error
(PRMSE) or predicted mean absolute error (PMAE) which can be defined as follows.
Let {Yt }, t = 1, 2, . . . , N be a time series and let us denote Yn = {Yn,Yn−1, . . . ,Y1},
then

PRMSE(h) =
√
E

((
Yn+h − Ŷn+h

)2 |Yn

)
; h = 1, 2, . . .

=̂
√√√√ 1

M

M∑
i=1

(
ŷ(n+h)i − y(n+h)i

)2
,

PMAE(h) = E
(∣∣Yn+h − Ŷn+h

∣∣ |Yn
) ; h = 1, 2, . . .

=̂ 1

M

M∑
i=1

∣∣̂y(n+h)i − y(n+h)i
∣∣ .

where y(n+h)i be the true i th observation at time point (n + h) and ŷ(n+h)i be the
predicted observation at the same time point observed by some forecasting methods
and M is the number of iterations.

Unlike for time series of real-valued data, the PRMSE and PMAE cannot be
observed, particularly for nominal categorical time series. For ordinal categorical
process, although these measures can be observed after assigning some numbers to
the categories, but these may lead to some wrong conclusions since there is a no
unique way to assign numbers to the ordinal categories (discussed earlier). However,
to examine the forecasting accuracy for count and categorical data, we can always use
measure like percentage of true prediction (PTP) which is defined as

PTP(h) = E
(
I (Yn+h = Ŷn+h)|Yn

) × 100; h = 1, 2, . . .

=̂ 1

M

M∑
i=1

I (y(n+h)i = ŷ(n+h)i ) × 100.

In addition, we intend to propose some popular distance functions between true and
predicted distributions as themeasures of forecasting accuracy to study the forecasting
accuracy for categorical time series analysis. The list includes (discrete) Kolmogorov–
Smirnov distance (KSD), Euclidean distance (ED) (see, e.g., Carruth et al. 2012), and
maximum absolute difference (MAD) which are defined as follows.

Let {Yt }, t = 1, 2, . . . , N be a time series of categorical data with (k + 1) many
categories {C0,C1, . . . ,Ck}, and let us assume that ph = (ph(0), ph(1), . . . , ph(k))

denotes the h-step ahead true distribution of Yn+h given Yn with
∑k

i=0
ph(i) = 1,

where ph(i) denotes the probability mass function of Yn+h at Ci given Yn . Let p̂h
denote the h-step ahead forecasting distribution, then KSD, ED and MAD functions
can be defined as
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KSD(ph, p̂h) = max
0≤i≤k

∣∣∣∣∣∣
i∑

j=0

ph( j) −
i∑

j=0

p̂h( j)

∣∣∣∣∣∣,

ED(ph, p̂h) =
√√√√ k∑

j=0

(ph( j) − p̂h( j))
2,

and

MAD(ph, p̂h) = max
0≤ j≤k

|ph( j) − p̂h( j)|.

It is important to mention that unlike KSD, the other two measures can be applied
to any type of categorical time series—nominal or ordinal. However, KSD which is
the maximum absolute difference between cumulative distribution functions depends
on the ordering of the categories. Thus, when there is a natural ordering of the data,
KSD is recommended, while the ED and MAD are more reliable and more easily
understood than the KSD when there is no natural ordering (or partial order). In the
context of goodness of fit of categorical data analysis, a comparison study between
ED and KSD is also available in Carruth et al. (2012).

As far as the interval forecasting for categorical time series process is concerned,
especially for nominal time series, it is not feasible to obtain the usual prediction
interval of Yn+h given Yn . However, we can use some notion of prediction set in place
of prediction interval, e.g., highest predicted probability (HPP) set which is defined
as follows:

Definition A 100(1 − α)% HPP set of Yn+h given Yn , denoted by Sh and is defined
as

Sh = {C j , j ∈ J : ph( j) ≥ kα}

where J = {0, 1, . . . , k} and kα is the largest number such that

P(Yn+h ∈ Sh |Yn) =
∑

{ j :C j∈Sh}
ph( j) ≥ (1 − α).

Based on the above definition, we can obtain the 100(1 − α)% HPP set, Sh , of
Yn+h given Yn . It is important to notice that Sh does not depend on the nature of the
categories, and the usual length of Sh (like the length of the prediction interval) does
not make sense here. Therefore, we introduce a notion of length of Sh , namely the
cardinality of Sh , denoted by n(Sh) which gives the number of elements in the set,
and study its behavior using some simulation studies to obtain the interval forecasting
accuracy against h in the later sections.
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3 Coherent forecasting for Pegram’s operator-based ARMA( p, q) models

3.1 Pegram’s operator

Pegram’s operator ∗, when operated on U and V , say, defines a new random variable
Z as a mixture of U and V with mixing coefficients φ and 1 − φ. This is defined as

Z = (U, φ) ∗ (V, 1 − φ), (3.1)

where the marginal probability function of Z is given by

P(Z = j) = φP(U = j) + (1 − φ)P(V = j), j = 0, 1, . . .

The mixing operator ∗ can be easily extended to handle more than two discrete vari-
ables. Pegram’s (1980) construction has been extended to ARMA(p,q) model by
Biswas and Song (2009) and Biswas and Guha (2009). The extension is equivalent to
the NDARMA model by Jacobs and Lewis (1983). Also an alternative representation
of the NDARMA model is available in Weiß and Göb (2008). The key advantage of
Pegram’s operator is that it provides a flexible mixing operation that enables us to
define the mixture among a finite number of probability distributions of categorical
random variables. It may be noted here that in this model the value of the variable
of interest at time t depends on its value at time (t − 1) only through the probability
of being equal to it and so on, as pointed out by Raftery (1985), who argued that the
dependence patterns for such models are restricted.

3.2 Pegram’s operator-based AR(p) model

Based on the above mixing operator ∗, Pegram (1980) constructed a stationary AR(p)
process. Let {Yt } denote the response series with (k+1) categories {C0,C1, . . . ,Ck, }.
Then the process {Yt } is defined as

Yt = (I (Yt−1), φ1)∗(I (Yt−2), φ2)∗· · ·∗(I (Yt−p), φp)∗(εt , 1−φ1−φ2−· · ·−φp),

(3.2)
which is a mixture of (p + 1) discrete distributions, where P(εt = Ci ) = pi , i =
0, 1, . . . , k, and it is denoted by εt ∼ D((Ci , pi ), i = 0, 1, . . . , k), with respective

mixing weights being φ1, . . . , φp with φi ∈ (0, 1), i = 1, . . . , p, and
∑p

i=1
φi ∈

(0, 1). For every t = 0,±1,±2, . . . the conditional probability function takes the
form

P(Yt = Ci |Yt−1 = Ci1, . . . ,Yt−p = Cip ) = φ1 I (i1 = i) + · · · + φp I (i p = i)

+(1 − φ1 − φ2 − · · · − φp)pi , (3.3)

where φ j , j = 1, . . . , p, are chosen such that the polynomial equation 1−φ1z−· · ·−
φpz p = 0 has roots lying outside of the unit disc. Here I (·) is the indicator function
such that I (A) = 1 or 0 whether A occurs or not.
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Taking expectation in both sides of (3.3), we observe that P(Yt−h = Ci ) = pi for
h = 1, . . . , p, resulting in P(Yt = Ci ) = pi , which implies the marginal stationarity,
i.e., marginally Yt ∼ D((Ci , pi ), i = 0, 1, . . . , k) for all t .

For a stationary PAR(1) model the following simple Theorem is proved in Biswas
and Song (2009).

Theorem 1 For h ≥ 1, we have

P(Yt+h = Ci |Yt = C j ) = φh I ( j = i) + (1 − φh)pi . (3.4)

A more general result for the NDARMA(p, q) model, which is equivalent to the
PARMA(p, q) model, was derived by (Weiß and Göb, 2008, Section 5), although the
transition probability distribution for h > 1 was not derived there.

It is important to mention that, if the time series is categorical, especially nominal
categorical, where one cannot assign numerical values to the categories, the moments,
autocorrelation function cannot be defined. Although the autocorrelation function
is not defined, some measures of serial association can always be defined for such
processes. In the recent past, Weiß and Göb (2008) proposed several measures of
association in the context ofmodeling categorical time series. The list includes popular
measures like Goodman and Kruskal’s τ , Goodman and Kruskal’s λ, Cramer’s ν,
Cohen’s κ and many others (see Weiß and Göb 2008 for details). These measures can
also be used to select the order of the models. Even if the categories are ordinal type
where one can assign some ordered numerical scalings, the above measures can also
be used as alternatives to the autocorrelation. This is because different people using
their own numerical scalings will get different values of moments and autocorrelation
for the same categorical time series. Based on these measures, a detailed numerical
study is carried out in latter sections.

Now to study the different notions of h-step ahead coherent forecasting and different
measures of forecasting accuracy discussed in earlier section, we derive the following
results.

Theorem 2 For a stationary PAR(p) model, the h-step ahead forecasting distribution
of Yn+h given Yn is given by

ph(i;φ) = P(Yn+h = Ci |Yn)

= ηh1 I (Yn = Ci ) + · · · + ηhp I (Yn−p+1 = Ci ) + (1 − ηh1 − · · · − ηhp)pi
= ηT

h e + (
1 − ηT

h 1
)
pi ,

(3.5)
where the vector of h-step ahead parameters ηh = (

ηh1, ηh2, . . . , ηhp
)T

is given by

ηh = �h−1φ, (3.6)
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with

� =

⎛
⎜⎜⎜⎜⎜⎝

φ1 1 0 · · · 0 0
0 φ2 1 · · · 0 0
...

...
...

...

0 0 0 · · · φp−1 1
0 0 0 · · · 0 φp

⎞
⎟⎟⎟⎟⎟⎠
,φ =

⎛
⎜⎜⎜⎝

φ1
φ2
...

φp

⎞
⎟⎟⎟⎠, e =

⎛
⎜⎜⎜⎝

I (Yn = Ci )

I (Yn−1 = Ci )
...

I (Yn−p+1 = Ci )

⎞
⎟⎟⎟⎠,

and �h−1 = � × � × · · · × �︸ ︷︷ ︸
h−1

.

Proof See Appendix A. ��
From the above Theorem, ergodicity of the above process can be established as

follows.

Proposition 1 Under the above setup, it can be obtained that

lim
h→∞ P(Yn+h = Ci |Yn) = pi ,

that is, predicted distribution reduces to marginal one if one predicts sufficiently long
time ahead.

Proof See Appendix B. ��
Although this property was already discussed in Pegram (1980), here we have proved
the result using Theorem 2. However, an equivalent result was also provided in Jacobs
and Lewis (1978c) for the DAR(p) process. In fact, a generalized result for the
NDARMA process is available in Jacobs and Lewis (1983).

3.3 PMA(q) model

Based on the Pegram’s operator, Biswas and Song (2009) proposed a stationaryMA(q)
process, denoted by PMA(q), in the context of discrete time series analysis and is
defined as

Yt = (εt , θ0) ∗ (I (εt−1), θ1) ∗ · · · ∗ (I (εt−q), θq),

which implies that for every t ∈ 0,±1,±2, . . ., the conditional probability function
takes the form

P(Yt = Ci |εt , εt−1, . . . , εt−q) = θ0 I (εt = Ci ) + θ1 I (εt−1 = Ci )

+ · · · + θq I (εt−q = Ci ),

where θi ≥ 0 for all i , and
∑q

i=0
θi = 1. It is easy to see that the marginal distribution

of Yt ∼ D{(Ci , pi ), i = 0, 1, . . . , k} for all t . It is to be noted that the PMA(q) process
due to Biswas and Song (2009) is indeed equivalent to the DMA(q) model proposed
by Jacobs and Lewis (1978a, b).
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3.3.1 Coherent forecasting

Consider a stationary PMA(1) model, then the h-step ahead forecasting distribution
can be obtained as follows:

For h = 1,

p1(i) = P(Yn+1 = Ci |Yn)

= P(Yn+1 = Ci |Yn)
= θ0θ1{I (Yn = Ci ) − pi } + pi ,

and for h > 1,

ph(i) = P(Yn+h = Ci |Yn) = pi .

In general, for a stationary PMA(q) model, the h-step ahead forecasting distribution
is somewhat complicated with the following representation. For 1 ≤ h ≤ q and
l = q − 1,

ph(i) = P(Yn+h = Ci |Yn = Ci0 , . . . , Yn−l = Cil )

=
∑q

rh=0

∑q

r0=0
· · ·

∑q

rl=0
θrh θr0 · · · θrl P(εn+h−rh = Ci , εn−r0 = Ci0 , . . . , εn−l−rl = Cil )∑q

r0=0
· · ·

∑q

rl=0
θr0 · · · θrl P(εn−r0 = Ci0 , . . . , εn−l−rl = Cil )

,

(3.7)
and for h > q, ph(i) = P(Yn+h = Ci |Yn) = pi .

An explicit expression of the h-step ahead forecasting distribution for the PMA(2)
model is derived in Appendix C.

Thus, the expression for the h-step ahead forecasting distribution of Yn+h given the
observed values Y1, . . . ,Yn is quite cumbersome for h ≥ 2. To avoid such complicated
results, we suggest to use the following alternative, the h-step ahead forecasting dis-
tribution of Yn+h given only the present observed value Yn , to obtain the h-step ahead
coherent forecasting. The advantage of using the following forecasting distribution is
that it has a nice and simple expression for all h. Specifically, for 0 < h ≤ q, we have

P(Yn+h = Ci |Yn = C j ) = P(Yn+h = Ci ,Yn = C j )

P(Yn = C j )

=
⎛
⎝q−h∑

r=0

θrθr+h

⎞
⎠ {I (i = j) − pi } + pi , (3.8)

and P(Yn+h = Ci |Yn) = pi for h > q.
To study the difference between the conditional distribution of Yn+h given Yn pre-

sented in (3.8) and the true forecasting distribution given in (3.7), we carry out one sim-
ulation study for the PMA(2) processwith different possible choices of themodel para-
meters.We reported the results based on n = 500withmodel parameters (θ0, θ1, θ2) =
(0.2, 0.6, 0.2) and the marginal distribution p = (0.2, 0.1, 0.5, 0.15, 0.05) defined on
the state space S = {0, 1, 2, 3, 4}. Based on the simulated data, we obtained the exact
forecasting distribution using the formula given in Appendix C and the conditional
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Fig. 1 h-step ahead forecasting and conditional distributions for the PMA(2) process with (θ0, θ1, θ2) =
(0.2, 0.6, 0.2) and marginal distribution p = (0.2, 0.1, 0.5, 0.15, 0.05)

distribution of Yn+h given the present observation Yn given in (3.8). The fitted forecast-
ing distribution and the fitted conditional distribution are presented in Fig. 1. As one
can see, no significant difference is visualized. Therefore, one can use the conditional
distribution given in Eq. (3.8) as an alternative to the actual forecasting distribution
given in Eq. (3.7) whose expression is quite cumbersome to handle while making the
coherent forecasting.

3.4 PARMA(p, q) model

Pegram’s operator-based ARMA(p, q) model, denoted by PARMA(p,q) due to
Biswas and Song (2009) (which is equivalent to NDARMA model by Jacobs and
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Lewis 1983), can be constructed by combining the PAR(p) and the PMA(q) models
as follows:

Yt = (I (Yt−1), φ1) ∗ · · · ∗ (I (Yt−p), φp) ∗ (εt , θ0) ∗ (I (εt−1), θ1) ∗ · · · ∗ (I (εt−q), θq),

which implies that for every t = 0,±1,±2, . . ., the conditional distribution takes the
form

P(Yt = C j |Yt−1, . . . ,Yt−p, εt , . . . , εt−q)

= φ1 I (Yt−1 = C j ) + · · · + φt−p I (Yt−p = C j )

+ θ0 I (εt = C j ) + · · · + θq I (εt−q = C j ),

with θ j ≥ 0 for all j , φi ≥ 0 for all i , and
p∑

i=1

φi +
q∑
j=0

θ j = 1.

In particular, the PARMA(1,1) model takes the form

Yt = (I (Yt−1), φ1) ∗ (εt , θ0) ∗ (I (εt−1), θ1) ,

with φ1, θ0, θ1 ≥ 0 and φ1 + θ0 + θ1 = 1. Marginal stationarity is guaranteed.
It is easy to obtain the h-step ahead forecasting distribution for the PARMA(1,1)

model. For h = 1, it is given by

P(Yn+1 = Ci |Yn = C j ) = φ1 I ( j = i) + θ0 pi + θ1
{θ0 I ( j = i) + (1 − θ0)p j }pi

p j
,

and for h > 1,

P(Yn+h = Ci |Yn = C j ) = φh
1 I ( j = i) + (1 − φh

1 )pi .

The forecasting distribution for the PARMA(p,1) model can similarly be obtained as

p1(i) = P(Yn+1 = Ci |Yn = Ci0 , . . . ,Yn−p+1 = Cip−1)

= φ1 I (i0 = i) + · · · + φp I (i p−1 = i) + θ0 pi

+ θ1
{θ0 I (i0 = i) + (1 − θ0)pi0}pi

pi0

= φT e + θ0 pi + θ1
{θ0 I (i0 = i) + (1 − θ0)pi0}pi

pi0
,

where e = (
I (i0 = i), I (i1 = i), . . . , I (i p−1 = i)

)T and for h > 1,

ph(i) = ηh1 I (i0 = i) + · · · + ηhp I (i p−1 = i) + (1 − ηh1 − · · · − ηhp)pi
= ηT

h e + (
1 − ηT

h 1
)
pi ,
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where the h-step ahead parameter ηh is given in (3.6). Similarly, for the PARMA(p,2)
model and for h = 1 we have,

p1(i) = φ1 I (i0 = i) + · · · + φp I (i p−1 = i) + θ0 pi

+θ1
{θ0 I (i0 = i) + (1 − θ0)pi0}pi

pi0

+θ2
{θ0 I (i1 = i) + (1 − θ0)pi1}pi

pi1

= φT e + θ0 pi + θ1
{θ0 I (i0 = i) + (1 − θ0)pi0}pi

pi0

+θ2
{θ0 I (i1 = i) + (1 − θ0)pi1}pi

pi1
,

and for h = 2,

p2(i) = φ1 p1(i) + φ2 I (i1 = i) + · · · + φp I (i p−1 = i)

+θ0 pi + θ1 pi + θ2
{θ0 I (i0 = i) + (1 − θ0)pi0}pi

pi0
,

and for h > 2,

ph(i) = ηh1 I (i0 = i) + · · · + ηhp I (i p−1 = i) + (1 − ηh1 − · · · − ηhp)pi
= ηT

h e + (
1 − ηT

h 1
)
pi .

It can be further extended for the PARMA(p,q) model.

4 Coherent forecasting for the MTD model

4.1 MTD model

The MTD model was introduced by Raftery (1985) and it bypasses the problem of an
exponentially increasing number of free parameters for a Markov chain by specifying
the conditional probability of Yt given the past as a linear combination of contribution
from Yt−1,Yt−2, . . . ,Yt−p. More precisely, MTD(p) model assumes that

P(Yt = Ci |Yt−1 = Ci1, . . . ,Yt−p = Cip ) =
p∑

j=1

λ j P(Yt = Ci |Yt− j = Ci j )

=
p∑

j=1

λ j qi j i , (4.1)

where i, i1, . . . , i p ∈ {0, 1, . . . , k}, qi j i s are elements of the (k + 1) × (k + 1) tran-
sition probability matrix Q and vector of lag parameters λ = (λ1, . . . , λp)

T satisfies
p∑

j=1

λ j = 1, λ j ≥ 0 for all j , so that the right-hand side of (3.1) lies between 0 and 1.
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4.2 h-step ahead forecasting distribution

One-step ahead forecasting distribution follows from the model itself, that is

p1(i) = P(Yn+1 = Ci |Yn = Ci1 , . . . ,Yn−p+1 = Cip ) =
p∑

l=1

λlqil i , (4.2)

Two-step ahead forecasting distribution is given by

p2(i) = P(Yn+2 = Ci |Yn = Ci1 , . . . ,Yn−p+1 = Cip )

=
k∑

j0=0

P(Yn+2 = Ci |Yn+1 = C j0 ,Yn = Ci1, . . . ,Yn−p+2 = Cip−1)

×P(Yn+1 = Ci0 |Yn = Ci1, . . . ,Yn−p+1 = Cip )

=
k∑

i0=0

p∑
l=1

λlqil−1i

p∑
k=1

λkqik i0 =
p∑

l=1

p∑
k=1

λlλk

⎛
⎝ k∑

i0=0

qil−1i qik i0

⎞
⎠. (4.3)

Similarly, three-step ahead forecasting distribution is given by

p3(i) = P(Yn+3 = Ci |Yn = Ci2 , . . . ,Yn−p+1 = Cip+1)

=
k∑

i0=0

k∑
i1=0

P(Yn+3 = Ci |Yn+2 = Ci0 ,Yn+1 = Ci1 , . . . , Yn−p+3 = Cip−1)

×P(Yn+2 = Ci0 |Yn+1 = Ci1, . . . ,Yn−p+2 = Cip )

×P(Yn+1 = Ci1 |Yn = Ci2 , . . . ,Yn−p+1 = Cip+1)

=
p∑

l=1

p∑
k=1

p∑
δ=1

λlλkλδ

⎛
⎝ k∑

i0=0

k∑
i1=0

qil−1i qik i0qiδ+1i1

⎞
⎠.

In a similar fashion, we can extend it for any general h. But it is customary to use this
forecasting distribution for h less than equal to 4, after that it works like the marginal
distribution. Even the forecasting distribution will also become cumbersome.

5 Coherent forecasting for logistic regression model

5.1 Logistic regression model

Some of the inconsistencies associated with standard time series models for
count/binary data can be resolved very elegantly and successfully by logistic time
series regression (as standard time series models consider simple linear regression on
its lag values but logistic regression consider generalized linear regression on its lag
values) though stationarity may not be retained here. In the context of categorical time
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series analysis, Fokianos and Kedem (2003) applied the same idea to build regression
models for categorical time series. Here, we provide a brief description of the multino-
mial logistic regression model with covariates as its lag values, discuss the estimation
of the associated parameters, and then the h-step ahead forecasting distribution and
its theoretical confidence interval.

Let {Yt }, t = 1, 2, . . . , N be a categorical time series with (k + 1) categories. In
otherwords, for each t , the possible values ofYt areC0,C1,C2, . . . ,Ck . Asmentioned
earlier, the assignment of integer values to the categories is a matter of convenience
and hence it is not unique.

To reduce the amount of arbitrariness incurred by the assignment of numbers to cate-
gories, it is helpful to note that the t-th observation of any categorical time series regard-
less of the measurement scale can be expressed by the vector Yt = (Yt0, . . . ,Ytq)
where q = k − 1 with elements

Yt j =
{
1, if the j th category is observed at time t,

0, otherwise,
(5.1)

for t = 1, 2, . . . , N and j = 0, 1, . . . , q. Let us denote by π t = (πt0, πt1, . . . , πtq)),
the vector of conditional probabilities given Ft−1, where

πt j = P(Yt = C j |Ft−1), j = 0, 1, . . . , q

for every t = 1, 2, . . . , N . At times, we refer to the πt j as “transition probabilities”.

Define Ytk = 1 −
∑q

j=0
Yt j and πtk = 1 −

∑q

j=0
πt j .

The multinomial logit model defined by Agresti (2002) is given by

πt j (β) = exp(βT
i zt−1)

1 +
∑k

j=1
exp(βT

j zt−1)

, j = 0, 1, . . . , q,

and

πtk(β) = 1

1 +
∑k

j=1
exp(βT

j zt−1)

.

Here β j , j = 0, 1, . . . , q are d-dimensional regression parameters and zt−1 is corre-
sponding d-dimensional vector of stochastic time-dependent covariates independent
of j , and β = (βT

0 , . . . ,βT
q )T , denotes (q + 1)d-dimensional vector of parameters. A

typical vector of covariates zt−1 = (1,Yt−1)
T = (1,Y(t−1)0,Y(t−1)1, . . . ,Y(t−1)q)

T

has dimension d = q + 2.
To obtain the maximum partial likelihood estimates (MPLE), we maximize the log

partial likelihood function which is given by

log PL(β) =
N∑
t=1

k∑
j=0

yt j logπt j (β), (5.2)
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and hence

β̂mple = argmax
β∈Θ

log PL(β).

5.2 Coherent forecasting

To obtain the h-step ahead forecasting for categorical time series for h > 1, we can
extend the idea given in Fokianos and Kedem (2003). The 1-step ahead predicted
response was obtained by the following rule

Yn+1 = Ci ⇔ max
j

π(n+1) j (β̂) = π(n+1)i (β̂).

In a recursive way, in the second step we update this predicted observation to the
covariates zn+1 and then obtain π̂(n+2) j , j = 0, 1, . . . , k and use the above rule to
obtain two-step ahead forecasting, i.e., Yn+2 and repeat this process for h = 3, 4, . . .,
to obtain the h-step ahead forecasting values. Note that the h-step ahead forecasting
distribution is nothing but ph(i) = π(n+h)i (β), i = 0, 1, . . . , k, which can be used
to obtain the forecasting measures KSD(ph, p̂h), ED(ph, p̂h), and MAD(ph, p̂h)
defined in Sect. 2.

5.3 Confidence interval for the h-step ahead forecasting distribution

The h-step ahead forecasting distribution ph(i;β) is a function of β. Using delta
method, the 95% confidence interval for ph(i;β) is given by ph(i; β̂)∓1.96σh(i; β̂)

where

σ 2
h (i;β) = (ph(i;β))T {G−1(β)}(ph(i;β)) and βT = (βT

1 , · · · ,βT
k ).

Fokianos and Kedem (2003) also suggested a consistent estimator for G(β) given by∑N

t=2
Zt−1�t (β)ZT

t−1, where

Zqd×q
t−1 =

⎛
⎜⎜⎜⎝

zd×1
t−1 0 · · · 0
0 zd×1

t−1 · · · 0
...

...
...

0 0 · · · zd×1
t−1

⎞
⎟⎟⎟⎠.

6 Simulation study

To study the finite sample behaviors of the proposed forecasting measures, such as
PTP, KSD, ED and MAD, and the cardinality of prediction interval defined in Sect. 2,
and to facilitatemodel comparison through theAkaike information criterion (AIC) and
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Table 1 Percentage of times AIC and BIC select the correct model where data are generated from M1,
M2, M3

Sample size AIC BIC

(n) PAR(1) MTD(1) Logistic(1) PAR(1) MTD(1) Logistic(1)

M1

100 85.5 14.5 0 99.5 0.5 0

300 92.7 7.5 0 100.0 0 0

500 100 0 0 100.0 0 0

1,000 100 0 0 100.0 0 0

5,000 100 0 0 100.0 0 0

M2

100 0 100 0 10 90 0

300 0 100 0 0 100 0

500 0 100 0 0 100 0

1,000 0 100 0 0 100 0

5,000 0 100 0 0 100 0

M3

100 0 0 100 0 0 100

300 0 0 100 0 0 100

500 0 0 100 0 0 100

1,000 0 0 100 0 0 100

5,000 0 0 100 0 0 100

Bayesian information criterion (BIC) and the above forecasting measures, we carried
out some simulation studies based on the samples generated from the following three
categorical time series models with 4 categories {C0,C1,C2,C3}.
(M1) PAR(1) model with φ = 0.8 and p = (0.2, 0.2, 0.5, 0.1),
(M2) MTD(1) model with the transition probability matrix

Q =

⎛
⎜⎜⎝
0.85 0.01 0.05 0.09
0.25 0.20 0.35 0.20
0.05 0.10 0.80 0.05
0.05 0.05 0.20 0.70

⎞
⎟⎟⎠, and

(M3) Logistic regression model of order 1 with covariates zt−1 = (1,Yt−1)
T =

(1,Y(t−1)1,Y(t−1)2,Y(t−1)3)
T and β0 = (6.80, 5.00, 3.30, 3.90)T , β1 =

(2.45, 4.80, 4.05, 3.90)T , β2 = (4.05, 5.35, 6.25, 5.50)T .

To begin with, we generated samples of different sizes from the above three cases,
namely M1, M2 and M3 and presented the results in Table 1. Five sample sizes are
explored: samples of sizes 100 and 300 are used to study the small sample properties,
samples of sizes 500 and 1,000 are used to get an idea about the moderate sample
properties, and samples of size 5,000 are used to study the large sample properties.
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For a fixed sample size n, we repeated the process 1,000 times and observed the
percentage of times AIC and BIC select a particular model from the three models
under comparison. Table 1 summarizes the results based on the data generated from
the M1, M2 and M3. As expected, most of the times almost in all the cases AIC and
BIC selected the true data-generating model, except for the second caseM2. In case of
M2, for small sample size (100), BIC selected the PAR(1)model 10% times as the true
model, although the true data-generating mechanism was MTD(1). This is because
the MTD model suffers from the large number of parameters which is considered as
penalty in BIC.

In the second study, samples of size 150 were generated from all the three cases
M1,M2 andM3. Then for each cases, we fitted all the threemodels under comparison,
and obtained the forecasting measures—PTP, KSD, ED and MAD for varying h. The
results based on 5,000 replications are reported inTable 2.Aswe can see from theTable
2, for all the three cases, the measures KSD, ED and MAD increase as h increases. It
means that forecasting accuracy decreases as one goes far ahead from the present as
far as the KSD, ED and MAD are concerned, which is expected. On the other hand,
as expected for all the cases, PTP measure decreases as h increases (see Table 2).
Another important observation reveals that when the data were generated from M1,
PAR(1) outperformed others with respect to all the four forecastingmeasures, whereas
MTD(1) and Logistic(1) outperformed when data were generated from M2 and M3,
respectively, which is also an expected scenario. Therefore,wemay say that in all these
cases the above forecasting measures played a significant role in detecting the true
model.

In an other study, we repeated the previous exercise, where we simulated samples
of size 150 from all the three casesM1,M2 andM3 to study the forecasting accuracy
using the HPP set (Sh). For each data-generating mechanism, we obtained the 100(1−
α)% HPP set (Sh) for h = 1, . . . , 6 using the true data-generating models which are
PAR(1), MTD(1) and Logistic(1) where α = 0.2. The results based on all the three
data-generating models are presented in Table 3. As we can see, for all the three cases
cardinality of Sh increases as h increases, which implies that to capture the same
percentage of true observations as one goes far ahead from the present, one needs a
larger HPP set. Therefore, the HPP set would also be a sensible measure to study the
forecasting accuracy in the discrete time series analysis especially for categorical time
series as far as the interval forecasting is concerned.

7 Real data example: infant sleep status data

Stoffer et al. (1988) reported a collection of 24 categorical time series of infant sleep
status which is divided into two groups of 12 each based on their mothers’ drink-
ing habit during pregnancy (one group of mothers abstained from drinking alcohol
throughout their pregnancy, and the other group used alcohol moderately and consis-
tently throughout their pregnancy), in an EEG study. Each of these 24 time series is
observed for 128 min. In this section, we consider one such single time series from
the first group.
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(a) Infant sleep status data

t

y t

1 21 41 61 81 101 121

C0

C1

C2

C3

Fig. 2 Plot of the infant sleep status data after combining some states

During minute t , the infant’s sleep status was recorded in six categories, namely
“qt” being ‘quiet sleep’ with trace alternate, “qh” being ‘quiet sleep’ with high volt-
age, “tr” being ‘transitional sleep’, “al” being ‘active sleep’ with low voltage, “ah”
being ‘active sleep’ with high voltage, and “aw” being ‘awake’. Note that the num-
ber of parameters to be estimated is 6 for PAR(1) model and is 30 for MTD(1)
model which is quite large against the data size 128. On the other hand, since num-
ber of categories is 6, if we want to fit the logistic regression model, Yt has 5
components, i.e., Yt = (Yt1,Yt2,Yt3,Yt4,Yt5). Therefore, the number of parame-
ters to be estimated to fit the logistic regression model of order 1 with covariates
zt−1 = (1,Yt−1) = (1,Y(t−1)1,Y(t−1)2,Y(t−1)3,Y(t−1)4,Y(t−1)5) will be 30, and it is
done using the partial likelihood method given in Eq. (5.2). Note that partial likeli-
hood estimates of 30 parameters based on the data of size 128 may not be so reliable.
Therefore, to bypass the problem, we reduced the number of categories from 6 to 4
by combining the quite states and active states as suggested in Stoffer et al. (2000).
Hence the numbers of parameters to be estimated for the PAR(1) model becomes 4,
and it is 12 for both the MTD(1) and Logistic(1) models. After combining the quite
states and active states, the new labels of the categories are given by

qt ≡ C0, qh ≡ C0, tr ≡ C1, al ≡ C2, ah ≡ C2, aw ≡ C3. (7.1)

The proportion of times spent by an infant in the combined sleep statusC0,C1,C2 and
C3 given in (7.1) is 0.414, 0.008, 0.539, and 0.039, respectively. This indicates that
the infant spent maximum time in the active sleep. The combined data are plotted in
Fig. 2.

It is important to mention that although the infant sleep status data are of ordinal
in nature, it may not be appropriate to use the ACF and PACF plots to choose the
correct order. This is because the values of ACF and PACF depend on the actual
numerical scaling of the categories and it changes from one scaling to another scaling
of the categories. In practice, there does not exist any unique numerical scaling for
such ordinal categories. We may at most say that the four scale values should be
C0 < C1 < C2 < C3, and cannot specify the values of C0,C1,C2,C3. Hence some
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Table 4 Estimated values of
κ(h), v(h), A(τ )

ν (h) and Cohen’s
κ-based partial autocorrelation
(ρp(h)) for the infant sleep
status data

Lag h κ̂(h) v̂(h)

√
Â(τ )

ν (h) ρ̂p(h)

1 0.7651 0.6489 0.6085 0.7651

2 0.6152 0.5092 0.4019 0.0720

3 0.4779 0.3842 0.2594 −0.0339

4 0.3985 0.3115 0.2082 0.0603

5 0.3633 0.3114 0.2167 0.0891

6 0.3123 0.2924 0.1843 −0.0236

alternative measures of serial association, which do not depend on the numerical
scaling of the categories, should be used to select the order of the process. Weiß and
Göb (2008) established one Theorem for an empirical justification of the adequacy
of the NDARMA(p, q) model to the observed categorical data (see Theorem 5.2 in
Weiß and Göb 2008). The Theorem says that the estimates κ̂(h) for Cohen’s κ , v̂(h)

for Cramer’s v, and the square root of estimate Â(τ )
ν (h) for Goodman and Kruskal’s

τ of different lag values h will be approximately equal if the NDARMA(p, q) is
adequate to the data. The formulae of these measures and their estimates are given in
detail in Weiß and Göb (2008), Weiß (2011, 2013). Then to select the order of the
NDARMA(p, q) model, they proposed to observe the usual PACF, ρp(h) based on the
estimates κ̂(h) for Cohen’s κ in place of the ACF ρ(h).

For the infant sleep status data, we obtained the values of thesemeasures for various
lag values and present the results in Table 4. As we can see, all the three measures,
namely Cohen’s κ , Cramer’s v and square root of Goodman and Kruskal’s τ are close
enough to fit the data by a PAR(p) process. On the other hand, Cohen’s κ estimates
based estimates of PACFs, ρ̂p(h), are about 0 for h > 1. Therefore, a PAR(1) model,
which is same as DAR(1) model, will be an appropriate fit to the data.

In addition, to study the effectiveness of the Cohen’s κ measure, we derived it for
the PAR(1) model which came out to be φh and hence it decreases as the lag value
h increases. Based on this result, we performed one simulation study. We generated
samples of sizes n = 200, 1, 000, 10,000 from the PAR(1) model with number of
categories 4, for mixing parameter φ = 0.4, 0.6, 0.8 and common marginal distri-
bution p = (0.414, 0.008, 0.539, 0.039). Figure 3 displays the values of theoretical
κ(h) (which is colored in black) with the empirical κ(h) (which is colored in gray)
for varying h. We see that as the sample size increases the empirical κ(h) coincides
with the theoretical κ(h). Based on this observation, we fitted the PAR(1) model to the
infant sleep status data and obtained the empirical and theoretical values of κ(h) for
various values of h and presented it in Fig. 4. As we can see from Fig. 4, the empirical
κ(h) obtained from the data coincides with the fitted PAR(1) model.

The transition probabilities for MTD(1) model are obtained through sample pro-
portions, whereas the parameters for PAR(1) and logistic regression models of order
1 are estimated using partial likelihood method. The estimated value of the mix-
ing parameter φ of the PAR(1) model is 0.78, which indicates that a large num-
ber of paired observations (Yt ,Yt−1) with Yt = Yt−1 is present in the data. There-
fore, the PAR(1) model is a competing alternative to the data. The other parameter
associated with the PAR(1) model is the marginal distribution p which is estimated
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Cohen’s κ

lag h

κ(
h)

0.
0

0.
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Theoritical
Empirical

Fig. 4 Plot of Cohen’s κ for varying lag values for the infant sleep data

as (0.414, 0.008, 0.539, 0.0391). Similarly the transition probability matrix (tpm) Q
associated with MTD(1) model is estimated as

⎛
⎜⎜⎝
0.869 0.019 0.115 0
0 0 1 0

0.087 0 0.898 0.014
0.200 0 0 0.800

⎞
⎟⎟⎠.

To fit the logistic regression model, we used the setup discussed in Eq. (5.1) in Sect.
5. Note that, after combining the states the data has four categories and hence Yt has
three components, i.e., Yt = (Yt1,Yt2,Yt3)T . Based on this multivariate representa-
tion, we plotted sample autocorrelation and cross-correlation in Fig. 5. As one can see,
there is a decreasing pattern in the first and last plots in Fig. 5, which indicates that
Yt only depends on its lagged values, and there is no periodical term (e.g., sinusoidal
term) in its covariates. Therefore, we fitted logistic regression model with covariates
zt−1 = (1,Yt−1)

T = (1,Y(t−1)1,Y(t−1)2,Y(t−1)3)
T (we called it Logistic(1) model

with intercept). The parameters associated with the model were estimated as

β0 = (6.80, 5.00, 3.30, 3.90)T , β1 = (2.45, 4.80, 4.05, 3.90)T , and

β2 = (4.05, 5.35, 6.25, 5.50)T .

After fitting the abovemodels, we obtained theAIC andBIC for all the threemodels
and presented it in Table 5. As we can see, PAR(1) model has the lowest AIC and BIC
values. In addition, we obtained the PTP measure by dividing the data into two parts.
First part, the training part consisting first 110 observations, was used to fit the models
under comparison, and we obtained the single PTP measure based on the remaining
18 observations, which is presented in Table 5. As we can see, the PAR(1) outperforms
MTD(1) and Logistic(1) in terms of predicting the true observations. Hence, overall
the PAR(1) model fitted the data best among these three competing models.
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Table 5 Infant sleep status data
analysis

Model AIC BIC PTP

PAR(1) 122.94 134.35 33.33

MTD(1) 126.87 161.10 27.78

Logistic(1) 134.88 180.51 27.78

8 Concluding remarks

The basic objective of the present paper is to study the different methods of coherent
forecasting and their forecasting accuracy based on some forecasting measures, which
has been defined in Sect. 2 including forecasting interval in the context of time series of
discrete data, especially for categorical data. Theoretical results and some simulation
studies with a real data analysis on infant sleep status have illustrated the proposed
methods.

Note that when the time series data are categorical, popular measures for studying
forecasting accuracy like PRMSE and PMAE cannot be used. Therefore, to study
the forecasting accuracy for categorical time series, here we have defined different
measures, namely PTP, KSD, ED and MAD. Through some extensive simulation
studies, efficacy of these measures have been checked. In addition, we have introduced
a different notion of interval forecasting for categorical time series analysis whose
efficacy has also been checked using some simulation results. Hence, we can say that
these measures can be used in practice for the analysis of categorical time series data.

On the other side, a comparison study has been performed using those forecasting
methods. Note that, Pegram’s operator-based AR(p), MA(q) or ARMA(p,q) models
are applicable for both count and categorical data (see, e.g., Biswas and Song 2009;
Biswas and Guha 2009). However, the MTD model due to Raftery (1985) and the
logistic regression model due to Fokianos and Kedem (2003) have a serious drawback
that the number of parameters to be estimated is very large for large number (greater
than 3) of categories which makes it difficult to implement. In addition, as observed
in the simulation study, even though the data are generated from the MTD model, the
BICmay be larger than the Pegram’s ARmodel due to the large number of parameters
in the MTD model. As a result, the BIC may select some other competing model as
the true model even though the data-generating mechanism is MTD model. On the
other hand, the logistic regression models lack stationarity unless the parameters are
appropriately adjusted. The Pegram’s ARMA model is very simple-minded and it is
stationary and involves smaller number of parameters than the MTD and the logistic
models. Also it has many elegant theoretical properties. Hence, it can be a good choice
in many practical situations.

Acknowledgments The authors wish to thank the three anonymous referees and the associate editor for
their careful reading and constructive suggestions which led to this improved version of the paper.

Appendix

Appendix A : Proof of Theorem 2

From the model (3.2), the 1-step ahead conditional distribution is given by
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p1(i |i1, . . . , i p) = P(Yn+1 = Ci |Yn = Ci1 , . . . ,Yn−p+1 = Cip )

= η11 I (i1 = i) + · · · + η1p I (i p = i) + (1 − η11 − · · · − η1p)pi ,

with η1l = φl , l = 1, . . . , p. Then the two-step ahead conditional distribution is given
by

p2(i |i1, . . . , i p) = P(Yn+2 = Ci |Yn = Ci1 , . . . , Yn−p+1 = Cip )

=
k∑
j=0

P(Yn+2 = Ci |Yn+1 = C j , Yn = Ci1 , . . . , Yn−p+2 = Cip−1)

×P(Yn+1 = C j |Yn = Ci1 , . . . , Yn−p+1 = Cip )

=
k∑
j=0

{
η11 I ( j = i) + · · · + η1p I (i p−1 = i) + (1 − η11 − · · · − η1p)pi

}

× {
φ1 I (i1 = j) + · · · + φp I (i p = j) + (1 − φ1 − · · · − φp)p j

}
= η21 I (i1 = i) + · · · + η2p I (i p = i) + (1 − η21 − · · · − η2p)pi

where η2 = �φ. So the result is true for h = 2. Let it be true for (h − 1), that is
ηh−1 = �h−2φ. Then by induction it is straightforward to show that the h-step ahead
conditional distribution is given by (3.5).

Appendix B : Proof of Theorem 3

Toprove theTheorem3, it is enough to show that lim
h→∞ ηhi = 0 for all i . To show thiswe

use the result that for any n×nmatrix Awith its eigenvaluesλ1, λ2, . . . , λs , lim
k→∞ Ak =

0 if the spectral radius of A, ρ(A) < 1 where ρ(A) = max{|λ1| , |λ2| , . . . , |λs |} (See
Atkinson 2008). Outline of the proof is given follows.

From the Jordan normal theorem, for any n×n matrix A, there exist a non-singular
matrix V and a block diagonal matrix J such that

A = V JV−1

for

J =

⎛
⎜⎜⎜⎝
Jm1(λ1) 0 · · · 0

0 Jm2(λ2) · · · 0
...

...
. . .

...

0 0 · · · Jms (λs)

⎞
⎟⎟⎟⎠,

where the mi × mi matrix Jmi (λi ) being

Jmi (λi ) =

⎛
⎜⎜⎜⎜⎜⎝

λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λi 1
0 0 0 · · · 0 λi

⎞
⎟⎟⎟⎟⎟⎠

.
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Now

Ak = V JkV−1

and, since J is block diagonal,

J k =

⎛
⎜⎜⎜⎝

J km1
(λ1) 0 · · · 0
0 J km2

(λ2) · · · 0
...

...
. . .

...

0 0 · · · J kms
(λs)

⎞
⎟⎟⎟⎠.

Now a standard result on the kth power of an m × m Jordan block states that, for
k ≥ m,

J km(λ) =

⎛
⎜⎜⎜⎝

λk
(k
1

)
λk−1

(k
2

)
λk−2 · · · ( k

m−1

)
λk−m+1

0 λk
(k
1

)
λk−1 · · · ( k

m−2

)
λk−m+2

...
...

...
. . .

...

0 0 0 · · · λk

⎞
⎟⎟⎟⎠ .

Since ρ(A) < 1, i.e., |λi | < 1 for all i and lim
k→∞

(
k

i

)
λk−i = 0, and hence

lim
k→∞ J km(λ) = 0, . This implies that lim

k→∞ J k = 0. Therefore,

lim
k→∞ Ak = lim

k→∞ V JkV−1 = V ( lim
k→∞ J k)V−1 = 0.

Note that the eigenvalues of � are φ1, . . . , φp all of which lie between 0 and 1, and
hence lim

h→∞ �h = 0. Consequently lim
h→∞ ηh = lim

h→∞ �h−1φ = ( lim
h→∞ �h−1)φ = 0.

Appendix C: Pegram’s MA(2) model

Here for h = 1,

P(Yn+1 = Ci |Yn = C j ,Yn−1 = Ck)

=
∑2

r=0

∑2

s=0

∑2

t=0
θrθsθt P(εn+1−r = Ci , εn−s = C j , εn−1−t = Ck)∑2

s=0

∑2

t=0
θsθt P(εn−s = C j , εn−1−t = Ck)

,
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where

P(εn+1−r = Ci , εn−s = C j , εn−1−t = Ck) = pi p j pk I (r − 1 �= s �= t + 1)

+ pi p j I ( j = k)I (r − 1 �= s = t + 1)

+ pi p j I (i = k)I (r − 1 = t + 1 �= s)

+ pi pk I (i = j)I (r − 1 = s �= t + 1)

+ pi I (i = j = k)I (r − 1 = s = t+1)

and

P(εn−s = C j , εn−1−t = Ck) = p j pk I (s �= t + 1) + p j I ( j = k)I (s = t + 1).

Similarly for h = 2,

P(Yn+2 = Ci |Yn, . . . ,Y1)
= P(Yn+2 = Ci |Yn = C j ,Yn−1 = Ck)

= P(Yn+2 = Ci ,Yn = C j ,Yn−1 = Ck)

P(Yn = C j ,Yn−1 = Ck)

=
∑2

r=0

∑2

s=0

∑2

t=0
θrθsθt P(εn+2−r = Ci , εn−s = C j , εn−1−t = Ck)∑2

s=0

∑2

t=0
θsθt P(εn−s = C j , εn−1−t = Ck)

where

P(εn+2−r = Ci , εn−s = C j , εn−1−t = Ck) = pi p j pk I (r − 2 �= s �= t + 1)

+ pi p j I ( j = k)I (r − 2 �= s = t + 1)

+ pi p j I (i = k)I (r − 2 = t + 1 �= s)

+ pi pk I (i = j)I (r − 2 = s �= t + 1)

+ pi I (i= j =k)I (r−2 = s = t+1),

and

P(εn−s = C j , εn−1−t = Ck) = p j pk I (s �= t + 1) + p j I ( j = k)I (s = t + 1).

And for h > 2, P(Yn+h = Ci |Yn,Yn−1, . . .) = pi .
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