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Abstract In this paper, we further study the Conway–Maxwell Poisson distribution
having one more parameter than the Poisson distribution and compare it with the
Poisson distribution with respect to some stochastic orderings used in reliability theory.
Likelihood ratio test and the score test are developed to test the importance of this
additional parameter. Simulation studies are carried out to examine the performance
of the two tests. Two examples are presented, one showing overdispersion and the other
showing underdispersion, to illustrate the procedure. It is shown that the COM-Poisson
model fits better than the generalized Poisson distribution.

Keywords Overdispersion ·Underdispersion ·Failure rate ·Stochastic comparisons ·
Score test

1 Introduction

It is well known that the count data show overdispersion (underdispersion) relative to
the Poisson distribution for which variance equals the mean, although the phenomenon
of underdispersion is uncommon. The overdispersion means that the variance is greater
than the mean of a Poisson random variable having the same mean. The overdispersion
can be caused due to various situations, for instance, due to having the heterogeneity

R. C. Gupta (B)
Department of Mathematics and Statistics, University of Maine, Orono, ME 04469-5752, USA
e-mail: rcgupta@maine.edu

S. Z. Sim · S. H. Ong
Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
e-mail: shinzhusim@gmail.com

S. H. Ong
e-mail: ongsh@um.edu.my

123



328 R. C. Gupta et al.

in the data or due to having extra zeros than produced by the model. Mullahay (1997)
has demonstrated that the unobserved heterogeneity commonly assumed to be the
source of overdispersion in the count data models, have predictable implications for
the probability structures of such models. One way to take care of the heterogeneity,
is by way of mixture models. In the case of the Poisson distribution, the mean θ of the
Poisson distribution is considered as a random variable with an appropriate probability
structure. The simplest choice of the distribution of θ is the gamma density resulting
in a negative binomial (NBD) distribution. Some generalizations of this concept have
been studied by applying a generalized gamma distribution resulting in a generalized
form of NBD, see Gupta and Ong (2004). Another choice of the distribution of θ is
taken as the inverse Gaussian or the generalized inverse Gaussian giving rise to Sichel
distribution, see Ord and Whitmore (1986) and Atkinson and Yeh (1982). It is a long-
tailed distribution that is suitable for highly skewed data. In addition to the choices
mentioned above, various other mixing distributions have been used in the literature;
see Gupta and Ong (2005) for more examples and illustrations.

Another way to analyze such data sets is to model with more general models hav-
ing more than one parameter. For example, Consul (1989) had proposed a generalized
Poisson distribution having two parameters and Gupta et al. (2004) have considered the
zero-inflated generalized Poisson distribution with three parameters, one of which per-
tains to the extra zeros in the data than predicted by the generalized Poisson distribution.

More recently, the Conway–Maxwell Poisson (CMP) distribution is revived by
Shmueli et al. (2005). This distribution is a two parameter extension of the Poisson
distribution that generalizes some well- known discrete distributions (i.e., the bino-
mial and the negative binomial distributions). The CMP distribution was originally
proposed to handle queueing systems with state-dependent service rates.

The CMP distribution generalizes the Poisson distribution, allowing for overdis-
persion or underdispersion. Its probability function is given by

P(X = x) = θ x

(x !)ν · 1

Z(θ, ν)
, x = 0, 1, 2, . . . , (1)

where

Z(θ, ν) =
∞∑

j=0

θ j

( j !)ν , θ > 0, ν > 0.

1. When ν = 1, Z(θ, ν) = exp(θ), an ordinary Poisson distribution.
2. As ν → ∞, Z(θ, ν) → 1 + θ , and the CMP distribution approaches a Bernoulli

distribution with P(X = 1) = θ/(1 + θ).

3. When ν = 0 and 0 < θ < 1, Z(θ, ν) is a geometric sum given by

Z(θ, ν) =
∞∑

j=0

θ j = 1

1 − θ
,

and the distribution is geometric with
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Analysis of discrete data by CMP distribution 329

P(X = x) = θ x (1 − θ), x = 0, 1, 2, . . . .

4. When ν = 0, and θ ≥ 1, Z(θ, ν) does not converge and the distribution is
undefined.

Shmueli et al. (2005) note that this distribution is appealing from a theoretical
point of view as well because it belongs to the class of two parameter power series
distribution. As a result, it allows for sufficient statistics and other elegant properties.
Usually, many count tables correspond to the same sufficient statistics. Kadane et al.
(2006a) investigated the number of solutions which give rise to the same sufficient
statistics. Rodrigues et al. (2009) develop a flexible cure rate model assuming the
number of competing causes of events of interest to follow CMP distribution. The
Markov Chain Monte Carlo (MCMC) methods are used by Cancho et al. (2010)
to develop Bayesian procedure for the CMP model. Bayesian analysis of the CMP
distribution was also studied by Kadane et al. (2006b).

Although the CMP distribution is quite well researched, there are other aspects
which have not been studied. Therefore, we shall develop some structural properties
of (1) and study the monotonicity of its failure rate together with stochastic com-
parisons with the Poisson distribution in this paper. Since the additional parameter ν
controls the overdispersion or underdispersion, we develop the likelihood ratio test
and the score test to test the importance of this additional parameter. The model (1)
has overdispersion if ν < 1 and underdispersion if ν > 1. This fact can be checked
using Theorem 3 of Kokonendji et al. (2008). The organization of this paper is as
follows: In Sect. 2, we present some structural properties including the moments and
the probability generating function. Section 3 deals with the reliability properties and
some stochastic comparisons. In Sect. 4, we present the computation of moments and
score equations to test the hypothesis that ν = 1. Test for equidispersion and simula-
tion study of power for the score and likelihood ratio tests are developed in Sect. 5.
Two examples are presented in Sect. 6, one having overdispersion (ν < 1) and the
other having underdispersion (ν > 1), to illustrate the procedure. In both the exam-
ples, it is shown that the CMP model fits slightly better than the generalized Poisson
distribution. Finally, some conclusions and comments are presented in Sect. 7. Thus,
the purpose of this paper is to present another versatile model which takes care of the
overdispersion or underdispersion compared to the Poisson distribution, in analyzing
discrete data.

2 Structural properties of the CMP model

2.1 Moments

To study the moments of our model, we notice that CMP distribution is a special
case of the modified power series distribution introduced by Gupta (1974, 1975), as
follows:

P(X = x) = A(x))(g(θ))x

f (θ)
, x ∈ B,
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where B is a subset of the set of non-negative integers, A(x) > 0; f (θ) and g(θ) are
positive, finite and differentiable functions of θ.

In our case, g(θ) = θ, f (θ) = Z(θ, ν) and A(x) = [(x !)ν]−1. It can be verified
that

E(X) = g(θ) f ′(θ)
f (θ)g′(θ)

= θ · ∂
∂θ

[ln Z(θ, ν)].

2.2 Recurrence relations between the moments

Let μ′
r = E(Xr ), μr = E(X − μ)r and E(X [r ]) = μ[r ], where μ[1] = μ′

1 = μ and
μ[r ] = E(X (X − 1)(X − 2) . . . (X − r + 1)). Gupta (1974) has shown that

μ′
r+1 = g(θ)

g′(θ)
dμ′

r

dθ
+ μ′

rμ1, r = 1, 2, 3, . . . , (2)

μr+1 = g(θ)

g′(θ)
dμr

dθ
+ rμ2μr−1, r = 1, 2, 3, . . . , (3)

μ[r+1] = g(θ)

g′(θ)
dμ[r ]

dθ
+ μ[r ]μ[1] − rμ[r ], r = 1, 2, 3, . . . . (4)

As a special case, for our model

variance = μ2 = θ
dμ

dθ

= θ · ∂
2

∂θ2 [ln Z(θ, ν)].

The recurrence relations given above can be used to obtain higher moments of the
model.

2.3 Mode

To find the mode, we notice that for k ≥ 2,

P(X = k)

P(X = k − 1)
= θ

kν
.

This means that as k → ∞, the above ratio → 0. It has only one mode at the point
k = 1.
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2.4 Probability generating function

ψ(t) = E(t X ) = Z(θ t, ν)

Z(θ, ν)
, 0 < t ≤ 1.

The other generating functions viz. the characteristic function, the moment generat-
ing function, the factorial moment generating function and the cumulate generating
function can be obtained using the probability generating function. Apart from the
usefulness of the pgf in summarizing the probabilities or moments of the distribution,
and in convergence results, the pgf has been applied in statistical inference; see, for
instance, Rueda and O’Reilly (1999), Sim and Ong (2010) and Ng et al. (2013) and
references therein.

3 Stochastic comparisons and reliability functions

3.1 Reliability functions

Let X be a discrete random variable whose mass is concentrated on the non-negative
integers. Let p(t) = P(X = t). Then, the failure rate r(t), the survival function S(t)
and the mean residual life function (MRLF) μ(t) are given by

r(t) = P(X = t)

P(X ≥ t)
= p(t)∑

i≥t p(i)
, t = 0, 1, 2, . . . ,

S(t) = P(X ≥ t) =
∑

i≥t

p(i), t = 0, 1, 2, . . . ,

and

μ(t) = E(X − t |X ≥ t)

=
∑

i≥t i p(i)
∑

i≥t p(i)
− t =

∑
i>t S(i)

S(t)
, t = 0, 1, 2, . . . .

The above functions p(t), r(t), S(t) andμ(t) are equivalent in the sense that know-
ing one, others can be determined. This can be seen by the following relations.

r(t) = p(t)∑
i≥t p(i)

= S(t)− S(t + 1)

S(t)
= 1 − μ(t)

1 + μ(t + 1)
,

S(t) =
∑

i≥t

p(i) = �t−1
i=0(1 − r(i)) = �t−1

i=0

[
μ(i)

1 + μ(i + 1)

]
,

and

μ(t) =
∑

i≥t i p(i)
∑

i≥t p(i)
− t =

∑

i>t

S(i)

S(t)
=

∑

i>t

�i−1
j=t (1 − r( j)).
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We now present the following definitions

Definition 1 A discrete life distribution has log-concave/log-convex probability mass
function (pmf) if

p(t + 2)p(t)

[p(t + 1)]2 ≤ (≥)1, t ≥ 0.

Definition 2 A discrete life distribution has increasing failure rate/decreasing failure
rate (IFR/DFR) if the failure rate is non-decreasing/non-increasing.

The following result, due to Gupta et al. (1997), establishes a relation between
log-concavity (log-convexity) of the pmf and IFR (DFR) distributions.

Theorem 1 Let η(t) = 1− P(X = t +1)/P(X = t) and�η(t) = η(t +1)−η(t) =
[p(t + 1)/p(t)− p(t + 2)/p(t + 1)]. Then,

(i) If �η(t) > 0 (log-concavity), then r(t) is non-decreasing (I F R).
(ii) If �η(t) < 0 (log-convex), then r(t) is non-increasing (DF R).

(iii) If �η(t) = 0 for all t, then constant hazard rate.

In addition to the above, the following implications hold (for proofs, see Kemp
(2004) and Gupta et al (2008)).

IFR (DFR) ⇒ DMRL (IMRL) where DMRL means decreasing mean residual life
and IMRL means increasing mean residual life.

We now show that CMP distribution is log-concave.

Theorem 2 The CMP distribution has a log-concave pmf.

Proof In this case

�η(k) = θ

(k + 1)ν
− θ

(k + 2)ν

= θ

[
(k + 2)ν − (k + 1)ν

(k + 1)ν(k + 2)ν

]
> 0.

Thus, CMP distribution has a log-concave pmf and hence strongly unimodal, see
Steutel (1985). 	


Using the relationships established above, we can say that CMP distribution is IFR
and DMRL.

Remark 1 Kokonendji et al. (2008) showed the log-concavity of the CMP distribution
for ν ≥ 1 as a consequence of it being a weighted Poisson distribution where the
weight function is log-concave only for ν ≥ 1 (refer to Theorem 5 in their paper).
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3.2 Stochastic comparisons

We present some definitions for stochastic orderings in the case of discrete distribu-
tions.

Definition 3 Let Xand Y be two discrete random variables with probability mass
functions f (x) and g(x). Then,

1. X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y )
if g(x)/ f (x) increases in x over the union of the supports of X and Y.

2. X is smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if rX (n) ≥ rY (n)
for all n.

3. X is smaller than Y in the mean residual life order (denoted by X ≤M RL Y ) if
μX (n) ≤ μY (n) for all n.

See Shaked and Shanthikumar (2007) for more details and explanations.

The following theorem establishes the relationships between the above orderings.

Theorem 3 Suppose X and Y are two discrete random variables. Then, X ≤lr Y ⇒
X ≤hr Y ⇒ X ≤M RL Y

To compare the CMP distribution with the Poisson distribution, we let Y denote
the Poisson variable and X denote the CMP variable. Then,

P(Y = n)

P(X = n)
= (n!)ν−1 Z(θ, ν)

eθ
,

which is increasing in n. Thus, X ≤lr Y. Using the above Theorem, we conclude that
X ≤hr Y and X ≤MRL Y

4 Computation of moments and score equations

4.1 Computation of moments

The infinite sum Z(θ, ν) is the normalization constant in the CMP probability mass
function given by (1). The computation of Z(θ, ν) for small ν can be difficult. To
overcome this difficulty, Minka et al. (2003) suggested a numerical approximation by
truncating the series, that is,

Z(θ, ν) ≈
k∑

j=0

θ j

( j !)ν .

Minka et al. (2003) also derived an asymptotic approximation of Z(θ, ν) given as

Z(θ, ν) = exp(νθ1/ν)

θ
ν−1
2ν (2π)

ν−1
2

√
ν
(1 + O(θ− 1

ν )). (5)
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The approximation expression for the moments, obtained from the asymptotic
approximation of (5), is given by

E[X ] = θ
∂ log Z(θ, ν)

∂θ
≈ θ

1
ν − ν − 1

2ν
, (6)

E[log(X !)] = −∂ log Z(θ, ν)

∂ν
≈ 1

2ν2 log θ + θ
1
ν

(
log θ

ν
− 1

)
. (7)

According to Minka et al. (2003), these approximations are good for ν ≤ 1 or
θ > 10ν , and they suggested a truncation approach to get more precise values. The
accuracy of (7) can be improved by adding extra terms to get

E[log(X !)] ≈ 1

2ν2 log θ + θ
1
ν

(
log θ

ν
− 1

)
+ 1

2ν
+ log 2π

2
. (8)

As no comparison of accuracy has been done, we examine the accuracy in the
computation of (5), (7) and (8), with and without using the asymptotic approximation
of Z(θ, ν). This is presented in Table 1. The differences between the two quantities
are given in italics. The partial derivatives of the infinite series Z(θ, ν) are as follows:

θ
∂ log Z(θ, ν)

∂θ
= θ

∑∞
j=1

jθ j−1

( j !)ν
∑∞

j=0

θ j

( j !)ν
, (9)

−∂ log Z(θ, ν)

∂ν
= −

∑∞
j=2

−θ j

( j !)ν ln( j !)
∑∞

j=0

θ j

( j !)ν
. (10)

Table 1 illustrates the discrepancy between the asymptotic approximation and infi-
nite series for Z(θ, ν). For E[X ], the difference decreases when ν increases for any
θ . When ν = 1, Eqs. (5) and (8) achieve the same value. On the other hand, for
E[log(X !)] Eq. (8) showed great improvement in accuracy over Eq. (7). Since the
extra two terms in (8) are easily computed, the use of (8) over (7) is recommended.

4.2 Score equations

The log-likelihood function is given by

L =
∞∑

x=0

πx ln P(X = x),

whereπx = observed frequency and ln P(X = x) = x ln θ−ν ln(x !)−ln
∑∞

j=0

θ j

( j !)ν .
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Table 1 Comparison between moments obtained from asymptotic approximation (Asym) and infinite
series (InfS) of Z(θ, ν)

ν 0.7 0.8 0.9 1.0
10ν 5.0119 6.3096 7.9433 10.0000
θ = 5

E(X)

Asym = Eq. (6) 10.1805 7.6017 6.0346 5.0000

InfS = Eq. (9) 10.1858 7.6058 6.0368 5.0000

(Asym-InfS) −0.0054 −0.0041 −0.0022 0.0000

E[log(X !)]
Asym = Eq. (7) 14.5903 8.8223 5.7066 3.8519

Asym∗ = Eq. (8) 16.2235 10.3663 7.1811 5.2708

InfS = Eq. (10) 16.2213 10.3579 7.1669 5.2516

(Asym-InfS) −1.6310 −1.5356 −1.4603 −1.3997

(Asym∗-InfS) 0.0022 0.0084 0.0142 0.0192

θ = 10
E[X ]

Asym 27.0412 17.9078 12.9711 10.0000

InfS 27.0430 17.9092 12.9719 10.0000

(Asym-InfS) −0.0018 −0.0014 −0.0008 0.0000

E[log(X !)]
Asym 63.7674 35.1991 21.5492 14.1771

Asym∗ 65.4006 36.7430 23.0237 15.5961

InfS 65.4014 36.7408 23.0182 15.5873

(Asym-InfS) −1.6340 −1.5417 −1.4690 −1.4102

(Asym∗-InfS) −0.0008 0.0022 0.0055 0.0088

θ = 20
E[X ]

Asym 72.4271 42.4199 27.9546 20.0000

InfS 72.4277 42.4204 27.9549 20.0000

(Asym-InfS) −0.0006 −0.0005 −0.0003 0.0000

E[log(X !)]
Asym 239.8873 118.4256 66.8146 41.4125

Asym∗ 241.5205 119.9696 68.2891 42.8315

InfS 241.5214 119.9691 68.2869 42.8272

(Asym-InfS) −1.6341 −1.5435 −1.4723 −1.4147

(Asym∗-InfS) −0.0009 0.0005 0.0022 0.0043

The likelihood score equations of θ and ν are found to be

∂ ln P(X = x)

∂θ
= x

θ
−

∑∞
j=1

jθ j−1

( j !)ν
∑∞

j=0

θ j

( j !)ν
, (11)
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∂ ln P(X = x)

∂ν
= − ln(x !)−

∑∞
j=2

−θ j

( j !)ν ln( j !)
∑∞

j=0

θ j

( j !)ν
. (12)

The infinite sum under the CMP distribution, Z(θ, ν) is calculated recursively with
double precision and truncation of the series, that is, Z(θ, ν) ≤ 1×1050. The recursive
computation adopts the approach given in Lee et al. (2001). The simulated annealing
(SA) algorithm (Metropolis et al. 1953) is used in the numerical optimization to obtain
the maximum likelihood estimates required in the log-likelihood ratio test.

5 Test for dispersion

The CMP distribution reduces to the ordinary Poisson distribution with parameter θ
when ν = 1. Since the parameter controls the under, equi and overdispersion of the
distribution, we derive the Rao’s score test and the likelihood ratio test (LRT) to test
the null hypothesis H0: ν = 1 against the alternative hypothesis H1 : ν �= 1. The study
of the statistical power of these two tests is developed and presented in this section.
The brief introduction to Rao’s score test and LRT is given in Appendix.

In the simulation study of the power of the score and likelihood ratio tests, we
consider the significance level α at 5 and 10 % and samples of N = 100 (small), 500
(moderate) and 1,000 (large). The effect size (|ν − 1|) which serves as the index of
departure from the null hypothesis, is set at 0.2, 0.5, 1.0, 3.0 and 4.0. It is found that
1,000 simulation runs give results of sufficient accuracy.

The results of the simulation study are presented in Tables 3, 4, 5 for θ = 5 (short-
tailed data), 10 (moderate-tailed data) and 20 (long-tailed data). Furthermore, the
estimated empirical level for θ = 1, 5, 7, 10 and 20 is studied and the results are
presented in Table 6. In the tables, the power is number of rejection divided by number
of repetitions.

The results in Tables 2, 3 and 4 are similar. The powers of the Rao’s score test and
LRT are very close to each other when the sample size N is large enough (N ≥ 500), for
overdispersion (ν < 1) and underdispersion (ν > 1). For the case of equidispersion
(Table 5, ν = 1), both tests have estimated empirical levels close to the specified
significance levels of 5 and 10 %.

The statistical power as shown in Tables 2, 3, 4 and 5 greatly depends upon the
sample size and the effect size. As expected, the larger the sample size, the higher
is the statistical power and the power increases with the deviation from ν = 1. For
overdispersion data, when the effect size is 0.5, a 100 % detection is achieved even for
a small sample size of 100. When the sample size increases (N ≥ 500), an effect size
of 0.2 can be easily detected with a power close to 1. However, for underdispersion,
a higher value of effect size and sample sizes is needed to achieve 100% detection.
When N = 100, an effect size larger than 1.0 is required to detect the deviation from
ν = 1.
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Table 2 Simulated power of Rao’s score and LR tests (θ = 5)

θ 5 5 5 5 5 5 5
ν 0.5 0.8 1.2 1.5 2 4 5
Effect size 0.5 0.2 0.2 0.5 1.0 3.0 4.0

N α Method Power

100 0.05 Score 1.00 0.35 0.17 0.64 0.98 1.00 1.00

LR 1.00 0.30 0.21 0.70 0.99 1.00 1.00

0.10 Score 1.00 0.45 0.28 0.76 1.00 1.00 1.00

LR 1.00 0.42 0.33 0.79 1.00 1.00 1.00

500 0.05 Score 1.00 0.92 0.69 1.00 1.00 1.00 1.00

LR 1.00 0.91 0.71 1.00 1.00 1.00 1.00

0.10 Score 1.00 0.94 0.81 1.00 1.00 1.00 1.00

LR 1.00 0.94 0.83 1.00 1.00 1.00 1.00

1000 0.05 Score 1.00 1.00 0.95 1.00 1.00 1.00 1.00

LR 1.00 1.00 0.95 1.00 1.00 1.00 1.00

0.10 Score 1.00 1.00 0.97 1.00 1.00 1.00 1.00

LR 1.00 1.00 0.97 1.00 1.00 1.00 1.00

Table 3 Simulated power of Rao’s score and LR tests (θ = 10)

θ 10 10 10 10 10 10 10
ν 0.5 0.8 1.2 1.5 2 4 5
Effect size 0.5 0.2 0.2 0.5 1.0 3.0 4.0

N α Method Power

100 0.05 Score 1.00 0.38 0.18 0.72 0.99 1.00 1.00

LR 1.00 0.33 0.24 0.77 1.00 1.00 1.00

0.10 Score 1.00 0.48 0.31 0.83 1.00 1.00 1.00

LR 1.00 0.44 0.35 0.86 1.00 1.00 1.00

500 0.05 Score 1.00 0.93 0.76 1.00 1.00 1.00 1.00

LR 1.00 0.92 0.77 1.00 1.00 1.00 1.00

0.10 Score 1.00 0.96 0.86 1.00 1.00 1.00 1.00

LR 1.00 0.95 0.86 1.00 1.00 1.00 1.00

1000 0.05 Score 1.00 1.00 0.97 1.00 1.00 1.00 1.00

LR 1.00 1.00 0.97 1.00 1.00 1.00 1.00

0.10 Score 1.00 1.00 0.99 1.00 1.00 1.00 1.00

LR 1.00 1.00 0.99 1.00 1.00 1.00 1.00

6 Application

To illustrate the application of the CMP distribution to data modeling, we consider the
goodness-of-fit to data sets exhibiting under and overdispersion.
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Table 4 Simulated power of Rao’s score and LR tests (θ=20)

θ 20 20 20 20 20 20 20
ν 0.5 0.8 1.2 1.5 2 4 5
Effect size 0.5 0.2 0.2 0.5 1.0 3.0 4.0

N α Method Power

100 0.05 Score 1.00 0.39 0.19 0.73 1.00 1.00 1.00

LR 1.00 0.71 0.25 0.79 1.00 1.00 1.00

0.10 Score 1.00 0.48 0.32 0.85 1.00 1.00 1.00

LR 1.00 0.75 0.36 0.88 1.00 1.00 1.00

500 0.05 Score 1.00 0.94 0.77 1.00 1.00 1.00 1.00

LR 1.00 1.00 0.79 1.00 1.00 1.00 1.00

0.10 Score 1.00 0.96 0.87 1.00 1.00 1.00 1.00

LR 1.00 1.00 0.88 1.00 1.00 1.00 1.00

1000 0.05 Score 1.00 1.00 0.97 1.00 1.00 1.00 1.00

LR 1.00 0.99 0.97 1.00 1.00 1.00 1.00

0.10 Score 1.00 1.00 0.99 1.00 1.00 1.00 1.00

LR 1.00 0.99 0.99 1.00 1.00 1.00 1.00

Table 5 Estimated Empirical level of Rao’s score and LR tests (effect size = 0)

θ 1 5 7 10 20 30
ν 1 1 1 1 1 1
Number of repetition 1000 1000 1000 1000 1000 1000

N α Method Power

100 0.05 Score 0.04 0.06 0.05 0.06 0.06 0.06

LR 0.05 0.07 0.06 0.06 0.05 0.04

0.10 Score 0.10 0.11 0.11 0.11 0.12 0.12

LR 0.10 0.11 0.11 0.12 0.10 0.10

500 0.05 Score 0.05 0.05 0.05 0.05 0.05 0.06

LR 0.04 0.06 0.05 0.06 0.05 0.04

0.10 Score 0.10 0.11 0.10 0.11 0.12 0.13

LR 0.09 0.11 0.10 0.11 0.12 0.11

1000 0.05 Score 0.04 0.05 0.06 0.06 0.06 0.06

LR 0.04 0.05 0.05 0.05 0.06 0.06

0.10 Score 0.09 0.09 0.10 0.10 0.10 0.10

LR 0.09 0.09 0.10 0.10 0.10 0.97

Example 1 (death notice data of London times)

The data consist of the number of death notices of women 80 years of age and older,
appearing in the London Times on each day for three consecutive years. Hasselblad
(1969) analyzed this data by mixture of two Poisson distributions. The counts are
given below
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Observed 0 1 2 3 4 5 6 7 8 9
Frequency 162 267 271 185 111 61 27 8 3 1

The above data set was also analyzed by Gupta et al. (1996) by adjusting Poisson
distribution for extra zeros. We have analyzed this data by CMP distribution and
compared with the generalized Poisson distribution of Consul and Jain (1973). The
results are given in the following Table 6. As can be seen, the index of dispersion is 1.21
and the estimated value of ν using CMP distribution is 0.75 showing overdispersion
relative to the Poisson distribution. The fit by the CMP distribution is much better than
the generalized Poisson distribution in terms of Chi-square values. Using the CMP
model, the hypothesis is rejected both by the LR test and the score test.

Example 2

(Consul 1989, p. 131, Table 5.13) considers the number of discentrics per cell for 8
different doses and fitted GPD. We consider the following data (Dose 1200).

Observed 0 1 2 3 4 5 6 7 8 9
Frequency 0 4 5 23 24 38 21 10 1 4

Table 6 Frequency distribution
of death notice data of London
times.

Observed
death count

Observed
frequency

Expected frequency

GPD CMP

0 162 155.03 161.62

1 267 276.21 268.33

2 271 269.53 264.93

3 185 190.93 192.99

4 111 109.89 113.31

5 61 54.55 56.28

6 27 24.23 24.38

7 8 9.87 9.41

8 3 3.75 3.28

9 1 2.02 1.47

Total 1096

χ2 2.92 1.59

θ̂ = 1.96 λ̂ = 1.66

λ̂ = 0.09 ν̂ = 0.75

ID 1.21

df 7 7

p value 0.89 0.98

LR test Reject H0 with 22.51

Score test Reject H0 with 24.90
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Table 7 Frequency distribution
of dicentrics for dose 1200

Number of
dicentrics per cell

Observed
frequency

Expected frequency

Dose 1200 GPD CMP

0 0 0.27 0.09

1 4 2.3 1.69

2 5 8.75 8.61

3 23 19.71 21.09

4 24 29.26 30.65

5 38 30.15 29.71

6 21 22.1 20.7

7 10 11.64 10.9

8 1 4.39 4.51

9 4 1.42 2.04

Total 130

χ2 14.29 13.40

θ̂ =6.17 λ̂ = 17.95

λ̂ = −0.32 ν̂ = 1.81

ID 0.57

df 7 7

p value 0.05 0.06

LR test Reject H0 with 17.05

Score test Reject H0 with 16.06

We have analyzed this data by the CMP and GPD distributions. The results are given
in Table 7. As can be seen, the index of dispersion is 0.57 showing the underdispersion
and the estimated value of for the CMP distribution is 1.813. Based upon the Chi-square
values, the fit by the CMP distribution is better than the GPD distribution. Using the
CMP model, the hypothesis is rejected both by the LR test and the score test.

7 Conclusion and comments

This paper deals with the problem of overdispersion (underdispersion) relative to Pois-
son distribution in analyzing discrete data. There are various ways of modeling such
data sets including models having more than one parameter (for example, general-
ized Poisson distribution) or mixture models (negative binomial and their generalized
forms). In this paper, we have presented another alternative, a CMP distribution which
has one additional parameter ν, allowing for overdispersion (ν < 1) and underdisper-
sion (ν > 1). Likelihood ratio test and score test are developed for testing H : ν = 1.
Simulation studies are carried out to examine the performance of these tests. Two
examples are presented, one showing overdispersion and the other showing under-
dispersion. We hope that our investigation will be helpful to researchers modeling
discrete data.
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Appendix

The Rao’s score test statistic is given by

T = V I −1V T ,

where V is the score vector and I is the information matrix. The score vector and
the information matrix, obtained by evaluating the derivative of the log-likelihood
function, ln L under the null hypothesis, are given by

V =
(
∂ ln L

∂ν
,
∂ ln L

∂θ

)
,

I = −
⎡

⎣ E
[
∂2 ln L
∂ν2

]
E

[
∂2 ln L
∂θ∂ν

]

E
[
∂2 ln L
∂θ∂ν

]
E

[
∂2 ln L
∂θ2

]

⎤

⎦ .

The likelihood score functions, ∂ ln L
∂θ

and ∂ ln L
∂ν

are given by (11) and (12). The
second-order partial derivatives of the probability mass function are

∂2 ln P(X = x)

∂θ2 = − x

θ2 +

(∑∞
j=1

jθ j−1

( j !)ν
)2

(∑∞
j=0

θ j

( j !)ν
)2 −

(∑∞
j=2

( j − 1) jθ j−2

( j !)ν
)

∑∞
j=0

θ j

( j !)ν
,

∂2 ln P(X = x)

∂ν2 =

(∑∞
j=2

−θ j

( j !)ν ln( j !)
)2

−
(∑∞

j=0

θ j

( j !)ν
) ∑∞

j=2

θ j

( j !)ν ln( j !)2
(

∑∞
j=0

θ j

( j !)ν
2
) ,

∂2 ln P(X = x)

∂ν∂θ
= 1

(∑∞
j=0

θ j

( j !)ν
)2

⎧
⎨

⎩

∞∑

j=0

θ j

( j !)ν

⎛

⎝
∞∑

j=2

jθ j−1

( j !)ν ln( j !)
⎞

⎠

−
(∑∞

j=1

jθ j−1

( j !)ν
) (∑∞

j=2

θ j

( j !)ν ln( j !)
)⎫

⎬

⎭ .

The LRT requires estimation of the models under the null and alternative hypothe-
ses. By comparing the log-likelihood scores under the null and alternative hypotheses,
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the LRT gives evidence whether the deviation of one model from the other is statisti-
cally significant. The LR test statistic is

LR = −2 ln

(
L(β̂∗; x)

L(β̂; x)

)
,

where β̂∗ is the restricted ML estimator (null) and β̂ is the unrestricted ML estimator
(alternative).
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