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Abstract In the context of modern portfolio theory, we compare the out-of-sample
performance of eight investment strategies which are based on statistical methods
with the out-of-sample performance of a family of trivial strategies. A wide range
of approaches is considered in this work, including the traditional sample-based ap-
proach, several minimum-variance techniques, a shrinkage, and a minimax approach.
In contrast to similar studies in the literature, we also consider short-selling con-
straints and a risk-free asset. We provide a way to extend the concept of minimum-
variance strategies in the context of short-selling constraints. A main drawback of
most empirical studies on that topic is the use of simple testing procedures which
do not account for the effects of multiple testing. For that reason we conduct sev-
eral hypothesis tests which are proposed in the multiple-testing literature. We test
whether it is possible to beat a trivial strategy by at least one of the non-trivial strate-
gies, whether the trivial strategy is better than every non-trivial strategy, and which of
the non-trivial strategies is significantly outperformed by naive diversification. The
empirical part of our study is conducted using US stock returns from the last four
decades, obtained via the CRSP database.
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1 Introduction

According to Markowitz (1952), portfolio optimization consists of two stages. The
first stage is about forming beliefs about future performances of asset returns. In
the second stage the investor calculates an optimal portfolio based on his specific
information and tailored to his own risk preferences. In terms of statistical theory, this
means that the investor has to estimate some unknown parameters @ and X', i.e., the
vector of expected asset returns, as well as the variances and covariances of the asset
returns. In the last decades people have begun to think about the question of which
parameter is more susceptible to estimation errors and which kind of estimation error
has a dominant impact on portfolio optimization. Chopra and Ziemba (1993), among
many others, clarified that it is the vector of expected asset returns that causes most
of the loss due to parameter uncertainty.

Consequently, most of the suggested portfolio strategies involve an improved es-
timator for u . To smooth extreme entries, it was proposed to shrink the sample mean
toward a certain target. Jorion (1986) built up such a shrinkage estimator based on
a quadratic loss function proposed by Stein (1956). This well-known Bayes—Stein
estimator can also be viewed from a Bayesian perspective. In general, that means
to treat ;o and X themselves as random variables and to derive the predictive return
distributions. First introduced by Mao and Sérndal (1966) and further contributed to
by Kalymon (1971), Brown (1976) and Klein and Bawa (1976), an expanding part of
the literature especially attended to the combination of data with prior knowledge.

Another interesting class of investment strategies is the family of minimum-
variance portfolios. It focuses on minimizing the portfolio variance under some con-
straints on the portfolio weights and is completely independent of the expected re-
turns. For instance, the global minimum-variance portfolio (GMVP) is the optimal
portfolio of risky assets if the expected asset returns are equal. While traditionally
using the sample covariance matrix as an estimator for the true covariance matrix X,
Frahm and Memmel (2010) as well as Ledoit and Wolf (2004) propose shrinkage es-
timators for ¥ ! and X, respectively. By contrast, DeMiguel et al. (2009a) impose a
further constraint on the norm of the portfolio vector to improve the performance of
minimum-variance portfolios.

Halldérsson and Tiitlincii (2003) deal with the problem of estimation errors by im-
posing uncertainty regions for i and X during the optimization process itself. Their
approach is often denoted as robust portfolio optimization as the investor maximizes
the mean-variance objective function under a worst case scenario. Technically speak-
ing, the investor chooses that (u, X')-constellation from the uncertainty sets for which
the objective function is minimal. In a second step, the optimization process for the
portfolio weights is conducted. Garlappi et al. (2007) show that such a minimax ap-
proach corresponds to a convex combination of the sample-based tangential portfolio
and the estimated GMVP. Hence, DeMiguel et al. (2009b) argue in Footnote 14 that
the Sharpe ratio of a robust portfolio lies between the Sharpe ratios of the sample-
based tangential portfolio and the estimated GMVP. Although this is true, it cannot
be concluded that the expected Sharpe ratio of a robust portfolio lies between the ex-
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pected marginal Sharpe ratios.' Thus, it is worth taking the robust investment strategy
explicitly into consideration.

Despite the various approaches to incorporating estimation risk into the optimiza-
tion process, it is questionable whether the proposed strategies lead to an improve-
ment of out-of-sample performance. For example, Kritzman et al. (2010) argue that a
minimum-variance portfolio outperforms the market portfolio as well as the equally-
weighted portfolio if large periods of observations are taken into consideration. Nev-
ertheless, in a recent study DeMiguel et al. (2009b) raise the question of whether
optimizing a portfolio using time series information is worthwhile to begin with.
Their results show that the considered investment strategies do not significantly out-
perform the naive portfolio, where each asset is equally weighted. Their contribution
has aroused a heated discussion about the validity of contemporary methods of port-
folio optimization. By contrast, almost the same authors (DeMiguel et al. 2009a)
claim that they have found an investment strategy which is able to outperform the
naive portfolio.

The problem of finding superior investment strategies is highly important for prac-
tical issues, because most participants in the mutual funds industry claim that expert
knowledge outperforms naive diversification. Hence, it is not surprising that portfolio
optimization is still a matter of debate. We want to clarify the question whether the
study conducted by DeMiguel et al. (2009b) justifies the conclusion that the naive
strategy is preferable. We enter this debate by constructing a realistic setting. This
includes the opportunity to invest in a risk-free asset and to constrain short selling
both of risk-free and risky assets which meets the options and requirements of the
mutual funds industry.

Jagannathan and Ma (2003) treat the short-selling constraint as a means of increas-
ing the out-of-sample performance of the minimum-variance strategy. They show that
short-selling constraints have the effect of shrinking the largest eigenvalues of the
sample covariance matrix and thus reduce estimation risk. However, in our context
the short-selling constraint is not a means to an end but an inevitable requirement
of the mutual funds industry. Besides, in our setting it is not sufficient to concen-
trate on the covariance matrix, because due to the risk-free investment opportunity
the investor’s optimal asset allocation depends on his individual risk preferences and
thus on the expected returns. This means the impact of estimation errors can be ex-
pected to be substantially larger compared to the minimum-variance strategy in the
traditional case.

We will use both the certainty equivalent (CEQ) and the widely accepted Sharpe
ratio as a performance measure though only the CEQ is applicable to the investment
decision problem if borrowing is constrained. Applying a rolling-window procedure,
for each strategy we generate a series of out-of-sample portfolio returns and calculate
the corresponding out-of-sample performances. Pairwise differences of the estimated

et Shyy and Shr be the Sharpe ratios of the estimated GMVP and the estimated tangential portfolio.
Further, consider the Sharpe ratio Shy,, = @Shypy + (1 — w)Shr of the robust portfolio, where w is such
that 0 < w < 1. Note that @, Shyyy, and Sh are random quantities. The problem is that generally E(Sh;qp)
does not correspond to the convex combination E(w)E(Shyy) 4+ E(1 — w)E(Sht). This means the mean
value theorem is not applicable and so it cannot be guaranteed that E(Shypy) < E(Shyop) < E(Sht).
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performance between the trivial strategy and the respective non-trivial strategy are
taken in order to evaluate the investment strategies. It is tested whether these esti-
mated differences are significant in the sense of detecting an outperforming strategy.

When testing for the strategy with the best out-of-sample performance, one is
typically faced with a multiple-testing problem, i.e., conducting several hypothesis
tests simultaneously. Instead of controlling for the significance level in each single
hypothesis test separately, we consider the so-called familywise error rate (FWER).
This concept accounts for the probability of rejecting at least one of the true null
hypotheses. To the best of our knowledge, this is the first time that state-of-the-art
testing procedures have been applied in this context. On the contrary, DeMiguel et al.
(2009a, 2009b) simultaneously carry out several pairwise tests on the performance
of investment strategies without an explicit adjustment of the significance level. By
doing so, they do not consider the principal nature of multiple testing. Hence, their
results suffer from the fact that the probability of rejecting a true null hypothesis can
be substantially larger than the nominal error rate.

To sum up, this work aims at providing several contributions to the existing liter-
ature:

1. We compare the out-of-sample performance of different investment strategies by
applying contemporary methods of statistical analysis. More precisely, we take
into consideration that comparing different investment strategies is a multiple-
testing problem. Empirical studies which are based on simple test procedures
(DeMiguel et al. 2009a, 2009b) might lead to wrong conclusions since the proba-
bility of rejecting a true null hypothesis can be substantially larger than the nomi-
nal error rate of the simple test.

2. In contrast to DeMiguel et al. (2009b) we are not only interested whether there ex-
ists an investment strategy which outperforms the trivial strategy but also whether
the trivial strategy performs best among all investment strategies which have been
taken into consideration in this work. It is worth emphasizing that, despite the fact
that these two questions represent two sides of the same coin, they require very dif-
ferent testing procedures.” This is because if the trivial strategy is not significantly
outperformed by a non-trivial strategy it cannot be concluded that it performs best
among all available strategies. Additionally, we would like to know not only if
there exists an outperforming investment strategy but rather to identify all outper-
forming strategies. The last question is a typical application of multiple-testing
procedures (Romano et al. 2008).

3. We aim at constructing a realistic setting with short-selling constraints both to the
risk-free and risky assets. Especially, in contrast to other studies (DeMiguel et al.
2009a, 2009b) we take the risk-free asset into consideration. This is extremely
important since Tobin’s two-fund separation theorem breaks down in the presence
of estimation risk (Kan and Zhou 2007).

4. In contrast to DeMiguel et al. (2009b) we also investigate the performance of
robust investment strategies (Halldérsson and Tiitiincii 2003). We clarify that in

2This is due to the typical asymmetry of frequentistic testing procedures, i.e., if Hy is not rejected nothing
can be said about Hj.
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the presence of estimation risk the mean value theorem is not applicable and so
the argument which has been used by the aforementioned authors is not valid.
Additionally, we investigate a method for estimating the covariance matrix of asset
returns which has recently been proposed by Frahm and Memmel (2010).

5. We discuss the inadequacy of the portfolio turnover as a performance measure if a
static portfolio selection problem is to be investigated. We motivate the use of the
certainty equivalent in the presence of estimation risk and short-selling constraints
while we do not pass on the Sharpe ratio as a state-of-the-art performance measure
abstaining from the investor’s individual risk preferences.

6. In contrast to DeMiguel et al. (2009b) our statistical methodology for comparing
the different out-of-sample performances does not require that the data are nor-
mally distributed and serially independent. Any testing procedure which is based
on the normal distribution hypothesis and the assumption of serial independence
might lead to wrong conclusions (Frahm 2007; Lo 2002; Ledoit and Wolf 2008).
By contrast, we apply a stationary block bootstrap procedure to account for the
serial dependence structure of the out-of-sample portfolio returns. As this is a
non-parametric method, the normality assumption is not required either.

In Sect. 2 we present the different investment strategies which are taken into
consideration. Section 3 contains a detailed explanation of the chosen performance
measures and a discussion of the inappropriateness of the portfolio turnover. The
multiple-testing procedures are described in Sect. 4. The empirical study can be found
in Sect. 5 and Sect. 6 concludes our work.

2 Strategies for asset allocation

In this section, we present the strategies tested in our study. As we explicitly incorpo-
rate the money market, the asset universe consists of d risky assets and one risk-free
asset. Let i be the d-dimensional vector of expected excess returns of the risky as-
sets,> while X is the corresponding d x d positive-definite covariance matrix. The
investor aims to allocate his wealth among the assets according to the well-known
mean-variance objective function, introduced by Markowitz (1952). In general, the
investor’s problem is

max w'p — &w/Ew
w 2 (H

subject to  w >0, wl<1,

where X > 0 denotes the investor-specific parameter of risk aversion. Note that
1 — w1 denotes the proportion of wealth which is invested into the risk-free as-
set. The constraint w'l < 1 represents the fact that borrowing is not allowed. The
restrictions w'l < 1 and w > 0 meet the situation of a mutual-fund manager with no
possibility of issuing bonds or selling risky assets short. Our primary goal is to cre-
ate a realistic setting even though the optimization problem in (1) does not exhibit a

3We will always refer to excess returns, i.e., asset returns minus the corresponding risk-free interest rate.
Nevertheless, in the following we will drop the prefix ‘excess’ for convenience.
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closed-form solution. However, this is a standard problem of quadratic optimization
and readily tractable with some more computational effort.

If 1 and X were known to the investor with full precision, the optimal solution w*
of (1) would be unique since X' is positive definite, and would lead to the maximal
CEQ of w*u — (A/2)w* X w*. The problem is that the true moments of the return
distribution are not known to the investor and thus have to be estimated. In this paper,
the estimation procedure will be purely data-driven, meaning that the only source of
information available to an investor is a sample 71, ..., rr of historical realizations of
the d-dimensional random vector r of excess returns. The way p and X are estimated
will be referred to as the respective ‘philosophy’ of the investor.

2.1 Trivial strategies

An investor might be reluctant to place any confidence in historical data. Furthermore,
he might not believe in strengths or weaknesses of single assets, but rather in the
market of risky assets as a whole. Thus, he completely ignores ¢ and X' and allocates
his wealth equally into all risky assets. In a world without risk-free assets, this means
he simply chooses the allocation 1/d, the so-called ‘equally-weighted’ or ‘naive’
portfolio.

Since our market is assumed to be endowed with a risk-free asset, we have to
extend this trivial rule. In our setting, y - 1/d serves as the allocation rule for naive
investors. The proportion of wealth y with 0 <y <1 is invested in the risky assets.
The question remains of how to determine the parameter y. At this point it is im-
portant to recognize that a naive investor is characterized by a non-optimizing, i.e.,
trivial, strategy. Hence, y is not due to an optimization calculus. In our study, we
consider five types of naive investor by setting y € {0, 0.25,0.5,0.75, 1}. Each type
characterizes a specific amount of risk aversion. Note that the trivial strategy with
y = 0 implies that the investor is extremely pessimistic regarding the equity market,
whereas the trivial strategy with y = 1 is chosen by an optimistic investor who fully
believes in the strengths of the equity market.

2.2 The traditional approach

The traditional sample-based approach to estimate the unknown parameters © and X
is to use their sample counterparts

T T
.1 A 1 . .
n= T ;_1 rp and X = T E (re — W) — ). 2

t=1

This strategy was initially proposed by Markowitz (1952). Note that /i and X are the
maximum-likelihood (ML) estimators of the parameters © and ¥ when rq, ..., rr
are assumed to be independent realizations of a normally distributed random vector
r. The traditional strategy is characterized by

Ao A
T s 5
wTt argmu?;lx w u ZU) w (3)

subjectto  w >0, wl<1.
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2.3 Minimum-variance strategies

The pursuit of a minimum-variance strategy can be seen in the light of estimation
problems. It is widely accepted that even small estimation errors in the vector of
expected returns heavily distort the solution of the optimization problem (1). The
portfolio which is suggested by the traditional approach can differ substantially from
the true, optimal portfolio. Put another way, its realized (but not the suggested) Sharpe
ratio can be very small since the expected asset returns are unknown. Hence, it might
be better to search for a minimum-variance portfolio. In the following we would like
to clarify this issue.

The GMVP has been advocated by many authors (Jagannathan and Ma 2003;
Kempf and Memmel 2006; Ledoit and Wolf 2003). On the one hand choosing the
GMVP is closely related to the basic idea of Markowitz (1952), i.e., searching for
an efficient portfolio by diversification. On the other hand there are no expected as-
set returns which have to be estimated and so the impact of estimation errors can be
substantially reduced. However, one might ask why it should be appropriate to search
for a minimum-variance portfolio if the investor is interested in maximizing a mean-
variance utility function or the Sharpe ratio according to Tobin’s two-fund separation
theorem (Tobin 1958). Our hypothesis is that the estimated GMVP in general is sub-
stantially closer to w* than most portfolios which are suggested as a solution of (1)
where ¢ and X' are substituted by some estimates.

In the simple framework without risk-free asset and without short-selling con-
straint the optimization problem of the global minimum-variance strategy is

min w'Xw st wl=1 @)
w

which leads to the (true) global minimum-variance portfolio wf\fl)\, =y 11 /
1'>~'1 and its (true) variance 1/1'$~11 > 0. Note that the superscript ‘s’ in w\\,
refers to the simple framework without risk-free asset and without short-selling con-
straint whereas the subscript ‘MV’ refers to the minimum-variance strategy. If a
risk-free asset were added a trivial solution to the minimum-variance problem would
be to invest solely in the risk-free asset resulting in a variance of 0. A more sophisti-
cated way to expand minimum-variance strategies can be conducted when realizing
that the problem in (4) is equivalent to

max w61 — &w'Z‘w st. wl=1, 5)
w 2
for any 6 > 0. We adapt the minimum-variance strategy to our framework by chang-
ing the constraint in (5) to w’l < 1 (possible investment in the risk-free asset) and
adding the short-selling constraint w > 0. It remains to estimate 6. To this end we
assume that returns follow a joint normal distribution with mean 61 and covariance
matrix X'. Estimating the mean on behalf of the ML method complies with

6:=

| 55iiy)
TE ©
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where ¥ is an estimator for ¥ . Interestingly, 6 is nothing else than the expected re-
turn of the minimum-variance strategy in the conventional setting. In our framework,
the hereinafter presented minimum-variance strategies will mainly differ in the way
X is estimated.

Traditionally, an investor substitutes X~ with the sample covariance matrix 3. This
again implies

. ) (>} ) .
Omv = —=—— and jmv:=0Ouvl, @)
1y-11

Thus, in our setting the traditional variance-minimizing investor obtains his optimal
portfolio wyry by solving

A ~
/A _ - /2
max w'fivy — Sw' Zw ®)
subjectto  w >0, wl<1.

Frahm and Memmel (2010) derive a shrinkage estimator for the global minimum-
variance portfolio in the conventional setting without risk-free asset and without
short-selling constraint. More precisely, they suppose to approximate the solution
of the optimization problem in (4) by the shrinkage estimator

o = demwr + (1 — GraD i, ©)

where wpg is an arbitrary reference portfolio satisfying wj,1 = 1 and ﬁ)l(\jl)\, =

>~11/(’£-"1) is the traditional estimator for the GMVP in the setting of (4).
According to the proposal of Frahm and Memmel (2010) we set wg := 1/d. The
shrinkage intensity is defined by

. d—3 62
P :=min{ — ,1}, (10)
T—d +20R — Opy

where 51% and 61\2,“, are the estimated variances of the return of the portfolios wg and

wl(vl)\,, respectively, viz.

A 1, 1
~2 . A2 A(S) A (s)
6 = w}?Eszﬁl’El, and 6y = Dy Sy = CFT (11)
In Theorem 8 of Frahm and Memmel (2010), it is shown that w(s) may also be
obtained by calculating
o . ET1 ~ el
LM = 9EM ILi+ (1 —¢pm) X, (12)

and using Zry as a shrinkage estimator for X in the formula for wl(v[)v, ie., ﬁ)](fl\),[ =

ﬁ‘gl\}ll /a’ 2};1\}11)' However, we use fJFM in our setting to calculate
. | 3] . .
QFM = LN{ and MFM = QFMI. (13)
131
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The overall optimization framework for the ‘Frahm—Memmel-type’ investor is
max w ipm — &w’fi w

12 M~ 5 FM (14)
subjectto  w >0, wl<1.

The maximizer of (14) will be referred to as wgy. Frahm and Memmel (2010) showed
that the shrinkage estimator wg\} dominates the traditional estimator 12)1(\;1)\/ for the
global minimum-variance portfolio with respect to the out-of-sample variance of the
portfolio return. More precisely, we have

B{ (@ — wi) = (@i — win) b < B{ (i — i) 2 (3 — i)} (19)

The dominance result remain valid when estimating local minimum-variance port-
folios, i.e., minimum-variance portfolios where the portfolio weights are subject to
other linear equality constraints besides the budget constraint. In our setting, we are
concerned with the linear inequality constraints w > 0 and w’l < 1 so that we can-
not expect the ‘Frahm—Memmel-type’ strategy to dominate the traditional minimum-
variance strategy in general. Nevertheless, it may be assumed that the ‘Frahm-
Memmel-type’ strategy also works well in our setting since the shrinkage approach
in (12) is expected to reduce the estimation error substantially.

Another way to handle the distortion when estimating X' is to presume a special
structure in the variances and covariances of the returns. In particular, assume that all
returns are equicorrelated and have the same variance, i.e.,

2 =5*p1l' + (1 - p)la}. (16)

Since the risky assets do not differ from each other in mean and variance, by con-
struction, it ends up in equal portfolio weights. But the amount of wealth invested in
the risk-free asset depends on the parameters 62 and p. We again conduct an ML
estimation under the assumption of multivariate normally distributed returns and the
special structure in (16). First, it can be shown that the ML estimator for 6 coincides
in this case with the grand mean i = 1'2/d . Following Frahm (2009b), consider the
quantities

1 T
5,-2 = ? Z(”it - 11)27 a7

t=1

1 T
Gij==2 ) =Wy =), i j=1...d, i), (18)

=1

so that we obtain the ML estimates for the equicorrelation structure, i.e.,

d
1
52 = i Z&l?, (19)
i=1
d—1 d ~
eI 20
dd—1) izl j=it1 ¢
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An investor believing in the assumption of equicorrelation obtains his optimal port-
folio wgc as the solution of

A
req D20 7211/ _
max w1l 20 w {,011 + (1 p)Id}w 21
subject to  w >0, w'l<1.

Ledoit and Wolf (2004) derive a shrinkage estimator for X' rather than > 1asin
Frahm and Memmel (2010). Their estimator reads
Siw i=dwG + (1 — dw) 2, (22)

with ¢A5Lw being the shrinkage intensity and G = [ij]ad x d matrix which is spec-
ified below. An equicorrelation structure similar to the assumption in (16) underlies
the shrinkage target. More precisely,

Prw = d(d—l ; :Z a,aj 3)

where ¥ = [0 ;1 with o; ; being the ijth component of the sample covariance matrix
and 6; =+/6;; (i =1,...,d). Now the components of the matrix G are given by

gi=67 and &j=pLw6id;. (24)
The (theoretically) optimal shrinkage intensity ¢pw is chosen to be the minimal dis-
tance between the matrix Y w = quwé + (1 —drw) ¥ and X in terms of the Frobe-
nius norm. The problem is that ¢ w is unknown and thus X7 is not feasible. Hence,
Ledoit and Wolf (2004) derive a consistent estimator ¢3Lw which is used as a substi-
tute for ¢rw in (22). The resulting estimator for X' is denoted by ijW .

It is worth emphasizing that Ledoit and Wolf (2004) only seek to improve the
estimation of covariance matrices without taking into account a particular portfolio
optimization problem. However, they conclude: “All types of portfolio optimization
procedures [...] would benefit from shrinking the sample covariance matrix.” Thus,
we are convinced that it is meaningful to apply the Ledoit—Wolf estimator for the co-
variance matrix to our specific setting though the estimation of the vector of expected
asset returns is an independent problem which has not been considered neither by
Frahm and Memmel (2010) nor by Ledoit and Wolf (2004). The corresponding in-
vestment strategy will be referred to as the ‘Ledoit—Wolf-type’ strategy and its opti-
mization problem is

A .
max w//LLW - Ew/Ewa
w

(25)
subject to  w >0, wl<l,
with
. 1S
ULw = % -1 (26)
e

The optimal solution is referred to as wyw.
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Another strategy belonging to the family of minimal variance strategies is the
2-norm-constrained approach. Originally, and extending the results of Jagannathan
and Ma (2003), DeMiguel et al. (2009a) bring this strategy into discussion when
introducing a whole new family of so-called norm-constrained strategies. Following
their study, and because the 2-norm-constrained strategy has been found to be among
the best of a whole range of strategies (see DeMiguel et al. 2009a, Table 4), we have
decided to include this strategy.

The basic idea is to improve the performance of the traditional minimum-variance
strategy by constraining the Euclidean norm of the portfolio weights. Applying this
idea to our setting, the optimization problem of the 2-norm-constrained investor is

max w' imy — Ew/ﬁ‘w @7
subjectto  ||wl2 <4, w >0, w'l<1.

As DeMiguel et al. (2009a) remark (see their Proposition 2), there is a connection
between an additional constraint on the norm of the portfolio weight vector and re-
placing the sample covariance matrix b3 by a shrunk version, where the shrinkage
target and intensity is determined by the type of the norm and the bound on the norm
of the portfolio weights, 8.4

2.4 A Bayesian strategy

A Bayesian approach to counter estimation error is to view p and X' as random vari-
ables rather than deterministic quantities. The posterior distribution of the unknown
parameters reflects both information from the historical data and some prior knowl-
edge. The predictive return distribution accounts for the estimation risk by incorpo-
rating the posterior distribution of the asset returns (Bade et al. 2008).

Jorion (1986) introduces an informative conjugate prior for y . The resulting esti-
mator is a linear combination of the sample mean /1 and the mean of the traditional
minimum-variance strategy fmy, Viz.

R T . dBs .
iBS = — iU+ — UMV (28)
T + ¢Bs T + ¢ms

with

T (d+2)
T—d=2(— i) 20— amy)
The relation in (28) may also be viewed as a ‘Stein-type’ shrinkage approach with
My as the shrinkage target (Stein 1956).

Note that the sample covariance matrix in (29) is adjusted according to the original
suggestion of Jorion (1986). Even though this approach focuses on the estimation of

dps = (29)

4In our empirical section, the parameter § is calculated according to a cross-validation procedure described
by DeMiguel et al. (2009a).
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expected returns, it also affects the estimation of the covariance matrix. The covari-
ance structure is now assessed by

. T+dps+1 T £ PBs T 11
TH+¢ps T—d—2"  T(T+¢ps+1)T—d-215-11

(30)

Consequently, the Jorion optimal strategy wgg is the solution to the investment prob-
lem
A A / v
mua}x w' s — Ew YBSW 31)
subjectto  w >0, wl<1.

The shrinkage of the vector of expected returns can also be interpreted economically.
Assets with a relatively high historical mean will be adjusted downwards, while assets
with a low historical return are adjusted upwards. Numerically, the shrunk vector (igs
leads to less extreme portfolio weights than the traditional approach (3), which then
are less vulnerable to unexpected realized returns.

2.5 A minimax strategy

A relatively new set of strategies, first introduced by Halldérsson and Tiitiincii (2003)
and in a more general framework by Goldfarb and Iyengar (2003), deals with the
problem of estimation error during the optimization process itself. The parameters i
and X' are not substituted by point estimates and not considered as random variables.
By contrast, certain confidence regions ®, C R4 and © » C R4 are established,
in which the true values of these parameters are assumed to be. Then, unlike the
Bayesian procedure, the optimal value of the investor’s problem for any of the pa-
rameter constellations (u, X') € ®, x Oy is found. As in this paper only uncertainty
regions for p are under consideration, so the optimization problem reads

A
max (min u/u) ——w'Xw
W \pued, 2 (32)

subjectto  w >0, wl<1.

Thus, the input for the expected excess returns is taken as uncertain, but for the co-
variance structure, the sample covariance matrix > will be employed. This can be
justified by the findings of Chopra and Ziemba (1993) and others, stating that errors
in the estimated means are much more disturbing than errors in the covariance struc-
ture. A main advantage of this approach—as well as of the Bayesian approach—is
that investors can incorporate expert knowledge, such as analysts’ forecasts, into their
estimates of future returns.

One way to construct confidence regions is based on the observation that the quan-
tity (T —d)/d - (u — ) 2w — f) is F-distributed with d and T — d degrees of
freedom if the underlying returns are multivariate normally distributed (Press 1972,
p- 132). That gives rise to a theoretical choice for the uncertainty set

Ou :={ueR":<u—ﬂ)’2l(u—ﬂ>s T—dKz}’ (33)
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where k2 is chosen as a (1 — ) quantile of the Fy4 1—q-distribution. This guarantees
that the uncertainty region ®, will contain the true parameter p with a probability of
at least (1 — o).

The minimax approach suffers from over-conservatism in the estimation of the
means. The implicit adjustment of the means used for calculating the optimal weights
will always be downwards. But as Ceria and Stubbs (2006) observed, this does not
meet with reality, as the realized returns will sometimes be smaller than the sample
mean, but sometimes they may be greater. Thus, they proposed the use of what they
call ‘zero-net-alpha adjustment’, that is, to add the constraint

I'D(u—p)=0 (34)

with a prespecified, symmetric matrix D to the set of constraints in problem (32).
For D = I, this additional constraint will ensure that in absolute terms, the sum of
negative deviations of the mean return of assets will be offset by the same amount of
positive deviations. In our study, D is chosen to equal /T (r : )~ with ¥ = k9543

Solving the inner minimization problem in (32) first, we can rewrite the optimiza-
tion problem subject to the additional constraint (34) in a computationally tractable
form:

d
T—-d

. SIS
K 2_7 w

/A
max w —
W WK d

, 2 (35)

subjectto  w >0, w'l<1,

which—even though not a quadratic program anymore—can be solved numerically
by applying second order cone programming methods. The penalizing term in (35)
can be interpreted as a correction for estimation error. Even though such a penalizing
term is already in place in the Bayes—Stein-framework, it is of a different type. This is
because in (35), the size of the particular weights plays a role in the penalizing term,
while this is not the case in (31).

3 Performance measurement

In the following we want to consider the requirements of a performance measure
that is suitable in our setting. At this point, one should be distinctly aware that we
are considering a static portfolio selection problem. This means it is assumed that
the investor searches for a buy-and-hold portfolio which is liquidated after one pe-
riod. In Sect. 5 we will focus on out-of-sample portfolio returns which arise from a
rolling-window procedure and include different vectors of portfolio weights. This is
by no means real portfolio rebalancing but rather an overlapping repetition of a static
optimization process. The investor’s problem remains in allocating wealth only once
though he is free to regard the potential outcome of his decision rule in the past.

In comparable empirical studies, the portfolio turnover is often used as a perfor-
mance measure (see, e.g., DeMiguel et al. 2009a, 2009b; Behr et al. 2010). It consists
basically of differences in the portfolio weights of a given asset over time. It aims
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to quantify the amount of trading required by an investment strategy and results in a
comparison of portfolio return and transaction costs. As mentioned above, static port-
folio selection does not require any intermediate trading. Consequently, we must not
take the portfolio turnover into consideration as a performance measure. In our case,
performance is only influenced by the expected portfolio return and its variance. To
this end, two alternatives appear in the literature: the first and predominant measure
is the Sharpe ratio. For a portfolio strategy m, it is defined as the expected portfolio
return up 5, divided by its standard deviation op ., viz.

Sh,, := X2 (36)

OP.m

It can be interpreted as a ‘reward-to-liability’ ratio, and was initially introduced by
Sharpe (1966). Its main advantage is that it is a simple and intuitive measure for the
performance of an investment strategy. So the Sharpe ratio has become one of the
most prominently used performance measures regarding the comparison and ranking
of mutual funds.

By contrast, the CEQ appears to be a valuable alternative. For portfolio strategy m,
it is defined by

52 37)

2
The CEQ can be thought of as the maximum risk-free rate of excess return an investor
would be willing to give up in order to invest according to strategy m. Thus it depends
on the individual risk preference of the investor, which might be seen as a drawback
compared to the Sharpe ratio. However, we are essentially interested in quantifying
the specific impact of the investor’s risk aversion on the performance of the different
strategies.

We now explain why the CEQ is a reasonable performance measure in our setting.
Assume for a moment the idealized situation in which the parameters p and X' are
known to the investor with full precision. It is clear that this is an unrealistic assump-
tion but our goal is to demonstrate that even in this idealized setting it is inappropriate
to make an investment decision based on the Sharpe ratio.> Consider portfolios 1 and
2 which are both composed of risky assets only. Due to the known parameters of the
joint return distribution, we are able to display the corresponding points of the two
portfolios in a u—o coordinate system, as in Fig. 1.

Our setting contains a risk-free asset and prevents any asset from being sold short.
Thus, the investor is free to combine portfolio 1 and 2 with the risk-free asset as long
as the weight of the risk-free investment takes values between 0 and 1. Mathemat-
ically speaking, our setting admits any convex combination of a portfolio of risky
assets with the risk-free asset. In Fig. 1, those convex combinations are depicted by
the solid lines which connect zero with portfolios 1 and 2, respectively. Note that
the risk-free asset is located at zero in the u—o space whenever one considers ex-
cess returns. By contrast, the dashed lines represent linear combinations of the two

CEQ :=upm —

sm:

51t is even more inappropriate if the estimation risk is taken into account. The reason is that under param-
eter uncertainty the two-fund separation theorem breaks down (Kan and Zhou 2007).

@ Springer



Multiple tests for the performance of different investment strategies 357

0.1

0.05F .

0.04 L, PF 2

expected portfolio return

PF 1

0 \ \ \ \ \ \ \ \ \ )
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
standard deviation of portfolio return

Fig.1 Depicted are portfolios 1 and 2, respectively, in the u—o space. The solid lines represent admissible
combinations of the portfolios with the risk-free asset. Inaccessible combinations are displayed by dashed
lines

portfolios with the risk-free asset which are not attainable. This is because the weight
of the risk-free asset would have to take a negative value, or—in other words—the
investor would have to sell the risk-free asset short in order to reach these yu—o com-
binations.

The slopes of the straight lines which pass through zero and portfolios 1 and 2, re-
spectively, correspond to the Sharpe ratios of the two portfolios. It is easy to see that
portfolio 1 exhibits a higher Sharpe ratio than portfolio 2. The investor’s risk prefer-
ences are reflected by the curvature of the indifference curves. The intersection point
of these curves with the ordinate represents the CEQ of the two portfolios. Portfolio 1
exhibits a CEQ of 0.03, whereas portfolio 2 has a greater CEQ of 0.04, but the Sharpe
ratio of portfolio 1 is greater than the Sharpe ratio of portfolio 2. Thus, the valuation
of the two portfolios varies depending on whether the investor relies on the Sharpe
ratio or on the CEQ as a performance measure. The CEQ incorporates the whole op-
timization process, i.e., choosing a portfolio of risky assets and combining it with the
risk-free asset according to the investor’s specific risk preferences. As one can see in
Fig. 1, relying on the Sharpe ratio as a decision criterion can lead to false portfolio
choices when the weight of the risk-free asset is restricted. Nevertheless, we will take
both the Sharpe ratio and the certainty equivalent into consideration when it comes
to performance measurement. This makes our empirical results comparable to other
studies and enables us to evaluate the performance of the strategies independently of
the investor’s risk preferences.

We are interested in the mean and the standard deviation of the out-of-sample
portfolio returns.® In the following we denote the out-of-sample return of the mth in-

6A series of out-of-sample portfolio returns can be generated by means of a rolling-windows procedure.
The sample of asset returns is divided into an in-sample part and an out-of-sample part. The parameters w
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vestment strategy in the nth month by R, , (n =1, ..., N). We estimate the certainty
equivalent of the mth investment strategy as

— R A
CEsz,up,m—EU%’m, m=1,...,M, (38)
where fip, =N~! Zflvzl Ry n and c?f, "= N1 Ziv:l(Rm,n — fip.m)? are the sam-
ple versions of wp , and 0}23 . and N is the sample size of the portfolio returns. The
corresponding Sharpe ratio-estimate of the mth strategy is

Shy, = 22m =1, M. (39)

4 Some multiple hypothesis tests

In this section, we present the theoretical foundations of the hypothesis tests which
are carried out later on. We go into details because the test procedures of comparable
empirical analyses have led to some irritations. In particular, we refer to the studies of
DeMiguel et al. (2009a, 2009b). Their analyses involve testing several hypotheses si-
multaneously. Thus, it is necessary to control the probability of rejecting one or more
correct null hypotheses. Otherwise, test decisions do not remain valid. Those inaccu-
racies occur despite the fact that a broad literature is concerned with the derivation
of appropriate multiple-testing procedures. For a nice overview of existing methods,
see Romano et al. (2008).

At the present time it is widely discussed in the literature whether portfolio opti-
mization should be passed over in favor of spreading wealth uniformly over all assets
(see, e.g., DeMiguel et al. 2009a, 2009b). We face this discussion by asking whether
the trivial strategy can significantly outperform some or all of the other investment
strategies in terms of the CEQ or the Sharpe ratio. In addition, and as a matter of
consequence, we want to test for the superiority of the non-trivial strategies. First,
consider the hypotheses

M—1
Hon : /\ Aw>0 vs. Hin: —=Hon, (40)

m=1

where A,, is the true performance difference between the trivial strategy and the mth
non-trivial strategy, i.e., A, = CEQ,; — CEQ,, in case of the certainty equivalent
and A,, = Shys — Shy, in case of the Sharpe ratio. Note that we are not interested in
the significance of the underlying single hypotheses in (40) but rather in the signifi-
cance of the hypothesis Hy,. Strictly speaking, this is not a multiple-testing problem

and X are estimated in-sample and lead to the vectors of portfolio weights characterizing the investment
strategies. Each of these vectors is multiplied by the vector of asset returns in the first month of the out-of-
sample part forming an out-of-sample portfolio return. Then, the in-sample part of asset returns is shifted
forward in steps of one month leading to a series of out-of-sample portfolio returns.
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because we do not test several hypotheses simultaneously. Instead, this is a joint hy-
pothesis test which will be referred to as the intersection test.

If it is possible to reject Hy, we know that there is at least one non-trivial strategy
performing significantly better than the trivial one. However, we are not able to iden-
tify any particular outperforming strategy by means of this test. Remember that we
are not able to deduce any statistical decisions if Hy, cannot be rejected. In particu-
lar, we must not treat naive diversification as an outperforming strategy in this case.
For this purpose, we have to conduct another test, viz.

M—-1
v \/ An <0 vs. Hyy:—Hoy. (41)

m=1

If we can reject Hyy, the trivial strategy turns out to be significantly the best among
all non-trivial strategies. Note that this is again a joint hypothesis test which will be
referred to as the union test. Although this test is formed only by interchanging the
null and the alternative in (40) and turning the inequalities, the possible test decisions
as well as the test procedures are completely different.

With regard to the findings of DeMiguel et al. (2009b) and others, there might be
little chance that the trivial strategy turns out to be the best among all the other strate-
gies. Consequently, our third test strives for detecting as many strategies as possible
which are outperformed by the trivial strategy. Consider the single hypotheses

Hom:4m <0 vs. Hip:4,>0, m=1,....M—1. 42)

This is a typical multiple-testing problem because we test M — 1 hypotheses simul-
taneously. The test procedure differs notably from that of a joint test. The concept of
controlling the error of the first kind is widened to the control of the familywise error
rate (FWER). A multiple-testing procedure can be used in principle for testing (40).
This is simply done by rejecting Ho, if the multiple test rejects at least one Ho , -
However, the goal of a multiple test is to find every false single null hypotheses. By
contrast, a joint test is only designed to find any false single null hypothesis. So it
is possible that Hy. is rejected by a joint test whereas no Hy , can be rejected by a
multiple test.
In the following, we describe the test procedures of the three test problems in (40),
(41), and (42). The ¢-statistic
Ap
Iy = —, m=1,....M—1 (43)
se(Ap)

is fundamental for the hereinafter presented test statistics. Here, Ay, is the estimated
performance difference between the trivial strategy and the mth competing strategy
and se(Am) denotes the (estlmated) standard error of A . Note that Am = CEQ M —
CEQm or A, = Sh M= Sh depending on the context. We begin with the description
of the test procedure for the intersection test based on the hypotheses defined in (40).
Hansen (2005) proposes a test for comparing the performance of several models in
terms of expected loss and calls it a ‘test for superior predictive ability’ (SPA). While

@ Springer



360 G. Frahm et al.

originally constructed to employ sample means, Theorem 1 in Hansen (2005, p. 369)
offers a straightforward extension to functionals of sample means when using an
appropriate test statistic. In our case,

min [tm> O} (44)

Tspa = min{

m=1,...,
complies with the required properties. The decision criterion improves upon the
suggestion of White (2000) concerning the ability to detect false hypotheses while
asymptotically satisfying a significance level of «. In concrete terms, the distribution
of the test statistic Tspa is not estimated under the worst case scenario A,, = 0 for all
M — 1 differences of certainty equivalents. On the contrary, it is assumed A, = A,
if t,, > /2loglog N. As a result, the influence of poorly performing strategies is re-
duced and the power of the test increases. The null distribution of the test statistic
Tspa is approximated via bootstrapping. In particular, let

(Ri i), m=1,....M, n=1,... N, k=1,...K (45)
be the kth bootstrap sample created from the series of out-of-sample portfolio returns
(R n). From (R ) itis possible to compute the bootstrap sample estimators A*

and se(A; ) as well as the bootstrap approximation for the null distribution of the
test statistic Tspa, Viz.

AA:1,k_Am1(lm§ 2loglog N)

1 K .
= 1 (min, ~
K Zk:] ( m Se(A:kn_k)

1, x>0.

<x), x<0

I:“(*l)’K(x) = (46)

The p-value inferred by F (*1) x 1s a consistent estimate of the correct p-value (see
Hansen 2005). We reject Hy. on a significance level of « if

a1
Tspa < FJ}) g (@). (47)

Next, we describe the procedure of the union test from (41). Remember that this test
investigates the superiority of the trivial strategy over all non-trivial strategies under
consideration. Assume that Hp v is rejected whenever each single hypothesis Hy
is rejected and let A,, denote the event where Hy ,, is rejected (m =1,..., M — 1).
Note that P(ﬂm Ap) <min,, P(A,,) and under Hy, \ at least for one single hypothe-
sis we have P(A,,) < «,, where the significance level o, is assigned to the mth single
hypothesis Hy . That means the union test works on the significance level o« when-
ever max,, o, < «. The least conservative choice for the single significance levels is
given by a1, ...,apy—1 =« and so Hy v can be rejected if and only if max,, p, < «a.
Here, p,, is the p-value of the mth underlying single hypothesis test. Consequently,
our test statistic is

TirT = max[ min X tin s O}. (48)

m=1,....M—
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Now let z; be the strategy with the smallest #-value. The null distribution of 71 rr is
again approximated via bootstrapping, viz.

0, x <0;
F* o (x):= A* A, (49)
z,K 1 v K T
X k=1 1(786(321*) <x), x=>0.
Then, Hy. is rejected if
A1
TLRT > F;l,K(l —O[). (50)

At a first glance the presented union test might seem to suffer from a lack of power
as would be the case with the Bonferroni correction if applied to the intersection
test in (40). The question is whether the test can be improved by taking the corre-
lations between single tests properly into consideration. Frahm (2009a) shows that
the proposed test for Hy,., in fact represents a likelihood-ratio test.” In particular, it
is shown that this likelihood-ratio test is neither determined by the number of single
null hypotheses nor by the correlations between the single hypothesis tests.

Finally, we explain the procedure of the multiple-testing problem in (42). Now,
we are faced with several hypotheses which are simultaneously tested. Let Iy C
{1,..., M — 1} be the indices of the set of true null hypotheses. Then, the FWER
is the probability that any null hypothesis Hy ,, with m € I is rejected. We seek to
asymptotically control the FWER at level «. The stepwise multiple (StepM) test pro-
posed by Romano and Wolf (2005) yields this property and exhibits a good average
power. As it starts by examining only the most significant hypothesis, the StepM pro-
cedure is of a stepdown nature. If a hypothesis has been rejected in a previous step,
it is not considered any more in subsequent steps. If no (further) null hypotheses are
rejected in a step, the procedure stops.

The following description of the stepwise procedure corresponds to Algorithms
4.1 and 4.2 in Romano and Wolf (2005). Let z; (s =1, ..., M — 1) be the strategy
with the sth smallest 7-value, i.e.

ty Sty <o Sty oSty (@28

Let By denote the number of rejections in the first y steps (with By = 0). Further,
consider the empirical bootstrap distribution of the maximum of the M — s smallest
t-values,

1 K A* P — Am
EF* ) == IL( max m’%fx), s=1,....M—1. (52)
(M—s),K K ]; s Se(A:Lk)
In the first step, our test statistics are simply #1, ..., #y—1 and we reject Hp,, on a

significance level of « if t,,, > I:*(’j‘:ll_l) x (1 —a). If By =0, then the procedure stops.

TThis explains the subscript of the test statistic 7] rT.-
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Otherwise, we move on to the next step. In step y, we consider the M — By — 1
smallest ¢-statistics

{t: 1<s<M—B, | —1} (53)

We reject the null hypothesis Hp ., in step y if
A1
tr;, > F(7473),,171),K(1 — ). (54)

We want to add a few remarks on the robust estimation of the standard errors se(AAm)
and se(AAj‘n’ «)- The simplest case occurs when the underlying portfolio returns of the
strategies are assumed to be multivariate normally distributed and serially indepen-
dent. Jobson and Korkie (1981) derived an analytical expression for the standard error
of the estimated difference of two Sharpe ratios under this assumption. Their formula
has frequently been used in the literature, see, e.g., the test procedure of DeMiguel et
al. (2009b). Lo (2002) as well as Ledoit and Wolf (2008) point out that the Jobson—
Korkie-test is inappropriate in the case of serially correlated returns or a heavy-tailed
return distribution. According to the stylized facts of financial time series, asset re-
turns are heavy-tailed and squared returns are serially correlated (see, e.g., McNeil
et al. 2005, pp. 117ff). Any testing procedure which is based on the normal distri-
bution hypothesis and the assumption of serial independence might lead to wrong
conclusions.

Frahm (2007) extends the concept of Jobson and Korkie (1981) by assuming only
that the underlying return process is strongly stationary and ergodic. Then, the stan-
dard error of the difference in Sharpe ratios involves not only the covariance structure,
but also the autocovariance structure of the underlying returns. However, it was not
the primary concern of Frahm (2007) to derive a particular estimator for the standard
error. For this purpose, we will rely on a procedure of Ledoit and Wolf (2008), based
on the assumption

VNG = vm) 5 N(O, %), (55)

where vy, = [ipm p,m veom Ye,m | and Oy = [p.m fip,m VPm VP.m 1. Here,
YPom = E(R,zn’”) and pwp m (yp,m) is the mean of the (squared) return of the triv-
ial strategy. ¥,,/N is the unknown asymptotic covariance matrix of the vector Dy,.

Assume the vector R, , = [ Riu.n Ry n R,%M R12v1 " 1. Then we have

o0

W=D Tu(@, (56)
q:

—00

where I3, (q) = Cov(Ru,ntq> Rim,n) is the autocovariance function of (R,,,,). By
contrast, we only have the empirical autocovariance matrices

N—q
A 1 R R
Fon@) =5 3 Fmntg = o) R =), q=0,1,....N—=1,  (57)

n=1
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at hand. Note that A, can be viewed as a function f(v,,), regardless whether we use
the certainty equivalent or the Sharpe ratio as our performance measure. Applying
the Delta method leads to

A d
VN(Ay = Aw) == N(0, V' f )V f W) (58)
Note that the gradient of the function f(v,,) equals

[~ +rppm) L+appm 5 =51 (CEQ),

Y f (o) = _ YP.m YP.M UP.m . YP.M ,
" [ (em—1% )% (ve =13 )32 2(vpm—1t% )32 Z(VP,M*M%{M)S/Z]

(Sharpe ratio).
(59)
The standard error for the difference A,, can be estimated as
. V' F G V f (D
se(Ap) :\/ f(Vm)]\;n f(Vm) (60)

We are in need of a consistent estimator for ¥, to obtain a robust estimate of se(ﬁm).
For this purpose we use a HAC estimation procedure developed by Andrews and
Monahan (1992) which accounts for the time series characteristics of the portfolio
return sample like heteroscedasticity and autocorrelation. In particular, the following
steps are conducted:

1. Center the data (R, ,) and prewhiten them by use of a VAR(1) model.

2. Calculate the empirical autocovariance function of the residuals of the VAR(1)
model.

3. Compute the bandwidth parameter for use with the quadratic spectral kernel func-
tion (cf. Andrews 1991 for more details).

4. Combine kernel and autocovariance function to estimate the asymptotic covari-
ance matrix of the VAR(1) residuals.

5. Recolor the estimated covariance matrix with the aid of the estimated VAR(1)
parameters to obtain G

Now, we concentrate on the bootstrap sample. To face the time series character of
our sample (R, ,) we run a stationary block bootstrap with an average block length
b =15 and K = 10000 bootstrap iterations. Politis and Romano (1994) introduce this
procedure and demonstrate its robustness regarding the choice of a block length. In
contrast to the circular block bootstrap (cf. Politis and Romano 1992), blocks with
random lengths are generated according to the geometric distribution with parameter
p = 1/b. This leads to a less variable estimate of variance since the stationary boot-
strap estimate can be viewed as a weighted average over b of the variance estimate
based on the circular block bootstrap. Here,

\/ V@ D8 VO )
N 9

se(47, ) = (61)

and lf/m* x is the (estimated) asymptotic covariance matrix of D ;.
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Assume the vector R%, | =[R% Ry (R OF (Ryy, )71 Then, &% | is

the sum of the bootstrap sample autocovariance matrices fn’:’ +(@) up to a lag length
of b —1:

gt =1 (0) +Z @)+ I (@), (62)
where
1
A A A /
Las@ = > Rhigk = O ) R =) =012, N1
n=1
(63)

5 Empirical study
5.1 Data

In this section we apply the presented investment strategies to real data. For this
purpose we use a sample of stock returns arising from the CRSP data set which covers
price information of common stocks traded on the NYSE, AMEX and NASDAQ. Our
sample incorporates monthly returns between January 1969 and December 2008.

Besides the stock market with its risky assets it is possible to invest at a risk-free
interest rate. This is reflected by use of excess returns. To adjust the CRSP return
sample appropriately we use 3-month treasury bills provided online by the Federal
Reserve System (2009).

The following procedure is based on Jagannathan and Ma (2003). For each year,
beginning in 1979, we consider a set of assets consisting of all stocks which exhibit
return data for the last 10 years as well as the subsequent year. The amount of stocks
in each set of assets ranges from 1239 assets in the time period 1969-1979 to 2992
assets in the period 1998-2008.°

From each set of assets we constitute an asset universe by drawing 100 stocks
randomly and without replacement. In each month the investors make use of the last
120 monthly excess returns to estimate the parameters of the joint return distribution.
In our study we calculate M vectors of portfolio weights corresponding to M invest-
ment strategies. Then the estimation window is switched to the next month in order to
keep up an estimation window of 120 observations. This is done from January to De-
cember for the given asset universe. For the following estimation window a new asset
universe is considered. This procedure is repeated until the end of 2008 is reached. In

8We also analyzed weekly return data. However, the findings of our monthly study were endorsed, confer
also Sect. 5.2.

9For the weekly analysis, the set of assets rises from 1399 stocks in the period 1969-1979 to 2977 assets
in the period 1998-2008.
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Table 1 Monthly out-of-sample certainty equivalents of the investment strategies for various risk-aversion
constellations. In the first part of the Table, we report the results for the five trivial strategies under consid-
eration. Remember that the trivial strategies differ in the proportion of wealth y invested in risky assets. For
example, the Trivial-75-Strategy allocates three quarters of the wealth equally to the risky assets whereas
only one quarter is given to the risk-free asset

Strategy A=1 A=3 A=5 A=17 r=10

Naive strategies

Trivial-O0 0.000000 0.000000 0.000000 0.000000 0.000000
Trivial-25 0.001823 0.001677 0.001530 0.001384 0.001165
Trivial-50 0.003499 0.002914 0.002329 0.001744 0.000866
Trivial-75 0.005030 0.003713 0.002396 0.001080 —0.000895
Trivial-100 0.006413 0.004073 0.001732 —0.000609 —0.004120

Optimizing strategies

Traditional 0.000747 —0.001129 —0.002936 —0.003759 —0.005575
Jorion 0.003242 0.001486 0.000974 0.000695 0.000486
GMVP (trad.) 0.005085 0.003904 0.002784 0.001876 0.000740
Frahm—Memmel 0.005413 0.004439 0.003356 0.002397 0.001024
Ledoit-Wolf 0.005214 0.004335 0.003558 0.002769 0.001885
Equicorrelation 0.006121 0.003122 0.000934 —0.000258 —0.000364
2-Norm 0.004800 0.003695 0.002576 0.002091 0.001318
Minimax 0.000646 0.000412 0.000280 0.000210 0.000147

that way we try to avoid any kind of survival bias in our data. Altogether, we obtain
a series of N = 360 out-of-sample portfolio returns for each investment strategy.'?

5.2 Results

The estimated certainty equivalents for the different investment strategies are reported
in Table 1.!' Our study distinguishes five risk-aversion constellations. As we ex-
pected, the performance of all naive strategies—except for the Trivial-O strategy—
diminishes for increasing risk aversion. This is easy to explain as the respective port-
folio weights are constant across all A-constellations implying the same estimators for
the expected portfolio return and the return’s variance. A higher risk aversion leads
to a stronger penalization of variance in the CEQ. Thus, the performance necessarily
decreases. Note that the corresponding estimator for the Sharpe ratio is constant over
all naive strategies and all risk-aversion parameters, confer also Table 2.

10The procedure remains the same for weekly data. Here, the estimation window covers the last 574
weekly excess returns and is weekly moved forward. Consequently, 52 out-of-sample portfolio returns are
computed per asset universe, resulting in a total number of 1560 out-of-sample portfolio returns for each
of the M strategies.

11Throughout this section, we present the results of our study based on monthly return data. For weekly
returns, our findings generally correspond to what we discuss hereafter and can be made available upon
request.
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Table 2 Monthly out-of-sample Sharpe ratios of the investment strategies for various risk-aversion con-
stellations. Note that all trivial strategies exhibit the same Sharpe ratio value independent of the risk-
aversion parameter A. Hence, we list the results for the various naive allocation rules in aggregated form

Strategy r=1 A=3 rA=5 rA=T7 A=10
Trivial 0.1568 0.1568 0.1568 0.1568 0.1568
Traditional 0.0553 0.0910 0.1034 0.1167 0.1127
Jorion 0.1056 0.1040 0.1068 0.1066 0.1066
GMVP (trad.) 0.1945 0.1890 0.1762 0.1621 0.1406
Frahm-Memmel 0.1851 0.1871 0.1853 0.1856 0.1833
Ledoit-Wolf 0.2008 0.2075 0.2060 0.2015 0.1942
Equicorrelation 0.1517 0.1370 0.1228 0.1074 0.1028
2-Norm 0.1638 0.1754 0.1661 0.1719 0.1637
Minimax 0.0996 0.0861 0.0848 0.0871 0.0871

Interestingly, the ranking of the naive strategies varies. Less risk-averse investors
(A =1 and A = 3) prefer to invest purely in risky assets. For A =5, the investor is
willing to give a quarter of his wealth to the risk-free asset, for A = 7 he likes to
allocate equal proportions of his wealth to risky and risk-free positions and finally,
a very risk-averse investor (A = 10) wants to save three quarters of wealth in the risk-
free asset. These results are rather intuitive and place once again special emphasis on
the use of the CEQ as a suitable performance measure.

The results for the group of non-trivial strategies stress the point that acting ac-
cording to the traditional sample-based approach is a poor decision rule. The consid-
eration of uncertainty sets for the parameters of interest leads to a slight improvement
of performance over the sample-based strategy (cf. the results of the minimax strat-
egy). The celebrated Jorion strategy performs better but cannot compete with the
minimum-variance strategies.

In fact, the extended minimum-variance concept leads to better results. The
Frahm-Memmel-type strategy performs best when the investor is less risk averse,
whereas the Ledoit—Wolf-type strategy is amazingly robust against higher risk aver-
sion. Comparing the results for the 2-norm constrained strategy and the traditional
minimum-variance strategy shows how additional constraints can smooth the perfor-
mance across different A-constellations.

We now come back to the question of whether portfolio optimization should be
passed over in favor of following naive allocation rules. A first understanding is that in
almost all constellations we are able to identify an optimizing strategy which exhibits
a higher out-of-sample CEQ than every single one of the five naive strategies. An
exception is the Trivial-100 strategy which performs best for A = 1. In the more
realistic case of A = 3, the Frahm—Memmel-type strategy turns out to be the best in
terms of the estimated CEQ. For higher risk aversion, every single one of the trivial
strategies is beaten by the Ledoit—Wolf-type strategy. The absolute value of the CEQ
is also of interest. For example, an investor with a risk aversion of A = 3 values the
risky portfolio returns of the Frahm—Memmel-type strategy as a risk-free monthly
extra premium of 0.44%.
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In Table 2 we report the estimated Sharpe ratios of the investment strategies. Note
that the Sharpe ratio is constant per definition for all naive allocation rules with y # 0
regardless of how risk-averse the investor is. This is because the proportionality of
the portfolio weights leads to proportional (sample) means and standard deviations
of the portfolio returns. When calculating the Sharpe ratio, the proportionality factor
is simply canceled out. Thus, we report the various trivial strategies in aggregated
form. Furthermore, we have to exclude the Trivial-0O-Strategy from our analysis since
a Sharpe ratio value is not defined.

Comparing the performance of the non-trivial strategies confirms the impression
that the group of minimum-variance strategies make themselves stand out from the re-
maining strategies, even in terms of the Sharpe ratio. Among these, the Ledoit—Wolf-
type strategy ranks best for all investigated risk-aversion parameters. The Frahm—
Memmel-type as well as the 2-norm constrained strategy show a remarkable ro-
bustness against increasing risk aversion while the performance of the traditional
minimum-variance strategy is competitive only for a weaker risk aversion.

In contrast to the strategies which follow the extended minimum-variance concept,
the traditional sample-based approach as well as the Jorion strategy, the equicorrela-
tion and the minimax strategy are outperformed by the trivial strategy. On top of
that, the Sharpe ratios of the sample-based and the equicorrelation strategy vary con-
siderably with increasing risk aversion. Note that in general, the Sharpe ratio of an
investment strategy is not constant for different values of the risk-aversion parameter
though A is not explicitly included in the calculation of the Sharpe ratio. However,
the optimization problems of all non-trivial strategies include A as a parameter (con-
fer Sect. 2), leading to different portfolio return samples for different risk-aversion
parameters.

We proceed with testing the null that the CEQ of the trivial strategy is at least
as high as the CEQ of all competing strategies. As we proposed five versions of
naive investments in our setting and considered five values of risk aversion, each
test is carried out 25 times separately. Table 3 reports the results of the intersection
test. Remember that we seek rejection of the superiority of the naive allocation rule.
Taking on a significance level of & = 5%, three of the 25 tests can be rejected.

Interestingly, rejection involves the extreme constellations of being very risk-
averse and investing all wealth in risky assets (lower right of Table 3) or being pre-
pared to take more risks and giving the money only to the risk-free asset (upper left
of Table 3). Considering both the out-of-sample values of the CEQ in Table 1 and the
values of the minimum test statistic in Table 3 we may derive optimal trivial strate-
gies in agreement to the investor’s risk behavior. Higher risk aversion clearly prefers
the Trivial-25 strategy, whereas a medium risk aversion corresponds to the Trivial-
50 strategy (A = 7) and the Trivial-75 strategy (A = 5). A less risk-averse investor
(A =1 and A = 3) will make use of the Trivial-100 strategy. Thus, the traditionally
used naive strategy is optimal only for a relatively high risk taker. To be more realistic,
an investor prefers to mix risky and risk-free positions.

In Table 4, we present the results of the intersection test if the performance is
measured by the (monthly) Sharpe ratio. The null hypothesis that the trivial strategy
performs best is far away from being rejected. Note that the test statistic Tsps exhibits
in all cases a negative value indicating that there is always at least one non-trivial
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Table 3 Results of the intersection test for the difference in monthly certainty equivalents. Listed are
the values of the test statistic Tgpa . The p-values (in brackets) are obtained from the empirical bootstrap

sotribnti frx
distribution F(l),K

Benchmark r=1 r=3 r=5 r=17 r=10
Trivial-0 —2.9975 —2.6659 —2.2428 —1.8633 —1.4592
(0.0167) (0.0377) (0.0835) (0.1414) (0.2693)
Trivial-25 —2.5024 —1.9876 —1.5415 —1.1209 —0.6517
(0.0590) (0.1555) (0.3168) (0.5169) (0.7228)
Trivial-50 —1.7130 —1.3433 —0.8895 —0.6709 —0.6606
(0.2652) (0.4159) (0.6407) (0.6786) (0.6296)
Trivial-75 —1.3350 —0.5699 —0.7433 —1.0229 —1.4459
(0.3968) (0.7948) (0.5675) (0.3721) (0.1663)
Trivial-100 0.0000 —0.1940 —0.8291 —1.5117 —2.3909
(1.0000) (0.7116) (0.3959) (0.1911) (0.0293)

Table 4 Results of the intersection test for the difference in monthly Sharpe ratios. Listed are the values
of the test statistic Tgpa . Note that we only perform one test per A-constellation since the Sharpe ratio-
differences and their standard errors are constant, no matter which of the trivial strategies is considered as
benchmark. The p-values (in brackets) are obtained from the empirical bootstrap distribution F (*1), K

Benchmark r=1 r=3 r=5 r=7 r=10
Trivial —0.7967 —0.8749 —0.8107 —0.7715 —0.6853
(0.6861) (0.6182) (0.6111) (0.5553) (0.5861)

strategy with a higher Sharpe ratio than the trivial strategy, confer also Table 2. Thus,
we should not think about treating these test results as a proof for the superiority of
the naive diversification rule. Note that it suffices to perform only one intersection
test per A-constellation. This is because the differences of the Sharpe ratio as well
as the standard errors of these differences are constant irrespective of which trivial
strategy is the benchmark.

To sum up, we find in all but one constellation a non-trivial strategy that beats
the trivial strategy in terms of the out-of-sample CEQ. Moreover, the naive diver-
sification rule is outperformed by all of the minimum-variance strategies in terms
of the estimated Sharpe ratio. Despite that, it is difficult to reject the null hypothe-
sis of the intersection test except for extreme constellations. It is straightforward to
conclude that in most cases the standard error of the minimum test statistic Tspa is
too large to deduce significant test decisions. A possible way out would be to en-
large the sample size N. DeMiguel et al. (2009b) calculate some critical values for
N vyielding a rejection of the null that the trivial strategy performs better than the
traditional sample-based approach. Their analysis is based on some particular Sharpe
ratio-constellations. The insight of these theoretical calculations coincides with our
finding that financial data usually do not provide a sample size from which one can
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Table 5 Results of the union test for the difference in monthly certainty equivalents. Listed are the values
of the test statistic 7] rT. The p-values (in brackets) are obtained from the empirical bootstrap distribution
F* . where z is the index of the minimum value of all 7-statistics

21.K
Benchmark A=1 A=3 A=5 A=T A=10
Trivial-0 0 0 0 0 0

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)
Trivial-25 0 0 0 0 0
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)
Trivial-50 0 0 0 0 0
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)
Trivial-75 0 0 0 0 0
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000)
Trivial-100 0.4721 0 0 0 0
(0.3248) (1.0000) (1.0000) (1.0000) (1.0000)

deduce significant decisions. This result holds true even if we consider weekly return
data by which the sample size N is more than quadrupled.

Nevertheless, we should be wary of promoting naive decision rules as a conse-
quence. In Table 5, the results of the union test are given. This test tries to detect
some significance in the fact that the trivial strategy is better than every single one
of the optimizing strategies. In only one of the 25 cases does the test statistic show
a positive value. It would have been possible to deduce the results either from the
comparison of certainty equivalents in Table 1 or from the results of the intersection
test in Table 3. We report Table 5 anyway as we want to give a notion of how far
naive allocation rules are from being significantly the best. Note that the test results
based on the Sharpe ratio coincide with the ones of Table 5 except for the case A = 1.
Here, test statistic 71 rt takes a value of zero, too, if the Sharpe ratio is considered as
a performance measure.

A weaker claim might be that the trivial strategy performs better than at least one
of the optimizing strategies. Having a look back at Table 1 we notice that the es-
timated CEQ of the traditional sample-based approach is almost always below the
estimated CEQ of the naive strategies. There is even more to say: The traditional
sample-based approach exhibits a negative expected CEQ for A > 3 indicating that
the investor should put his wealth completely into the risk-free asset rather than to buy
stocks. On the other hand, the certainty equivalents of the naive decision rules mixing
risk-free and risky assets are obviously positive. Despite that it is almost never pos-
sible to find a trivial strategy which is significantly better than any of the optimizing
strategies. Table 9 in the appendix reports the results of the StepM test if the certainty
equivalent is used as performance measure.

Recall that this test is a stepdown procedure. If on the first step a strategy was
found to be significantly outperformed by the benchmark, a further test step is con-
ducted for the remaining strategies. The p-value belonging to a particular strategy
typically decreases on subsequent steps. Thus, it is more likely to reject a particular
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hypothesis on a subsequent step due to a reduced total number of hypotheses under
consideration. In our case, the test merely consists of one step. In other words, we
cannot reject any of the null hypotheses in 24 of the 25 cases for the differences
in certainty equivalents. The p-values are in most cases far away from the critical
threshold of 5%. Only one time, when examining the Trivial-50 strategy for a risk
aversion of A = 10, it is possible to reject the superiority of the traditional sample-
based approach.!?

The StepM test is also conducted for the difference in Sharpe ratios, see Table 10
in the appendix for the results. As has already been the case with the intersection and
the union test, we do not distinguish between single trivial strategies since the value
of the ¢-statistic does not vary for different y-constellations. Hence, we perform the
test only five times for five risk-aversion constellations. We cannot reject the null
hypothesis that the respective non-trivial strategy is better than the benchmark in any
case such that the StepM test consists in all cases of only one step.

5.3 Analyzing the dependence structure of the certainty equivalents

In Sect. 5.2 we have seen that it is difficult to reject any of the test hypotheses due
to large standard errors. This is even though we find some empirical evidence against
the family of trivial strategies. Closely related to the computation of standard errors
is the analysis of the dependence structure of the performance measure for different
investment strategies. In the following, we concentrate on the certainty equivalent
but the Sharpe ratio might be analyzed in the same way. Table 6 reports the av-
erage correlations between the certainty equivalents of different strategies induced
by the stationary block bootstrap procedure for A = 5.!3 It is obvious that most of
the certainty equivalents are highly positive correlated except for the CEQ of the
minimax strategy which exhibits rather moderate correlations to the CEQ of the other
strategies.

It is questionable whether the stationary block bootstrap—or bootstrap procedures
in general—can successfully detect the dependence structure on such short sam-
ples, if it is strong. To this end, we want to test this ability by means of a sim-
ulation study. In order to create samples as close as possible to the real sample
of portfolio returns, we proceed as follows. Extending the notation of Sect. 4, as-
sume the vector R, = [Ry, ... Ry (R1.2)% ... (Ru.n)?] and the vector R} =
[R’f’n RL’” (Rik’n)2 (R,"[,I’n)z]’. Here, (R;kn)n) is a random bootstrap sample
created from the original sample of portfolio returns (R, ,) using the stationary boot-
strap procedure. Furthermore, let

Fq) = ! Ni[(m DR, — D) =0,1 N—1 (64)
q—N n+q —V n—V), q=U,1,...,

n=1

1211 the case of weekly data, the traditional sample-based strategy is more often found to be significantly
outperformed by the trivial strategy. However, it is not a new fact that simply treating the sample estimators
as the true parameters © and X' is a poor decision rule in the light of estimation error.

13The estimated correlation matrices for the other four risk-aversion constellations are very similar to the
one in Table 6.
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be the empirical autocovariance function of (R,), where b = [ip1 ... flp.m
vp.1 ... yp.u]’. In the following, we synonymously refer to (R*) as the stochas-
tic process and the corresponding time series. Let the true (asymptotic) covariance
matrix of (!R}) be denoted by ¥* and remember that ¥* is also the true covari-
ance matrix of ~/ND* where b* = [/l’f,,’1 /l*;,’M )?;1 )7;",’M]/ is the vector of
the sample means of (R). According to Proposition 3.2 in Lahiri (2003) we are able
to calculate

N—1
~ N — ~ ~
vr=T0)+ E (Tq(l —p)q+%(1 —p)N_q>(F(q)+F(q)’)- (65)
q=1

Note that the estimated certainty equivalents C/E\Q = [C/Ii) L. CE/\Q M ]/ can be seen
as an M-variate function g(D) of the sample means of (fR,,)—just the way we have
handled the differences in certainty equivalents in Sect. 4. Applying once again the
Delta method leads to

Cov(CEQ") = V/g(D)w*Vg(D), (66)

where CEQ" = [CEQ] ... CEQ}, | is the vector of the certainty equivalents of the
M investment strategies, estimated on a random bootstrap sample, and

Vg(®)
L+ Afip 0 0 22 0 ... 07
0 1+Afps ... 0 0 —A/2 ... 0
0 0 . l4+rppy O 0 ... —A)2
(67)

is the gradient of the function g(¥). Now, we apply the stationary bootstrap procedure
with average block length » = 1/p =5 to create a time series (J3)) and use the
original sample (R,) in combination with (66) to compute the theoretical covariance
matrix of the vector C/E\Q* see Table 7.

We consider (R,,) as our underlying population and the time series (R);) as our
sample. Thus, by resampling from ($R) we generate a bootstrap sample (R}*). For
this purpose, we apply once again the stationary block bootstrap procedure with av-
erage block length b = 5. We estimate the covariance matrix of (i)‘i:ijkk) on the kth
bootstrap sample by

b—1
'j/k** — ﬁk**(o) + Z(ﬁk**(q) + ﬁk**(q)/)’ (68)
q=1

where fk**(q) is the empirical autocovariance function of (R%) for a lag length
0 < g < N — 1. Finally, we get an estimate of the covariance matrix of C/E\QZ* (which
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is nothing else than the vector of certainty equivalents estimated on the kth bootstrap
sample) by applying the Delta method, viz.

CoV(CER;") = Vs (5) 9V (1) (69)

where D;* is the vector of the sample means of ()", ). A bootstrap estimate for the

covariance matrix of C/E\Q* follows by averaging over all K bootstrap replications,
see Table 8 for the results:

P 1 &
Cov(CEQ") = e > Cov(CEQ;"). (70)
k=1

The comparison of the Tables 7 and 8 shows that the entries of the theoretical
covariance matrix exceed their estimated counterparts in almost all cases. Thus, the
stationary block bootstrap procedure leads to a slight underestimation of the depen-
dence structure of the certainty equivalents. However, the specific outcome in Table 8
depends heavily on the realized path of (93*). We repeatedly carried out the ran-
dom experiment and find for some of the simulated time series that Cov(C/E\Q*) is
partly overestimated. By averaging over the estimates C/(;/(C/E\Q*) of 100 simulated
time series (9R*), the theoretical covariance matrix in Table 7 is well approximated.
Apart from that, the theoretical correlation matrix of C/E\Q* is well reproduced by the
bootstrap estimate, confer Tables 11 and 12 in the Appendix. This is despite the fact
that the corresponding covariance matrix is underestimated. Hence, we are concerned
with more or less even-underestimated variances and covariances.

6 Conclusion

We compare the performance of eight non-trivial investment strategies with that of
the trivial strategies. We include a wide range of approaches to find the optimal as-
set allocation, considering the traditional sample-based approach, several minimum-
variance techniques, a shrinkage approach and a minimax procedure. We focus on
establishing a realistic setting including short-selling constraints and a risk-free asset.
We propose a possible way to widen the concept of minimum-variance strategies to
this setting. In general, we are convinced that the comparison of performance should
always be based on a consistent setting. Thus, we suggest a family of naive strategies
to compete with the optimizing strategies.

The use of a suitable performance measure is essential for our study. We demon-
strate the advantages of the CEQ over the Sharpe ratio in our setting. The CEQ incor-
porates both the relative portfolio weights of the risky assets and the fraction invested
in the risk-free asset. On the other hand, the Sharpe ratio allows a comparison in-
dependently of the individual risk preferences of the investor. We base our study on
out-of-sample portfolio returns of the strategies. Our empirical study indicates that
both the average CEQ and the average Sharpe ratio of the Frahm—Memmel-type and
Ledoit—Wolf-type strategy are higher than those of all naive strategies in almost all
constellations. Especially for a medium-sized risk aversion, these minimum-variance
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strategies seem to outperform the benchmark. However, these results are not signifi-
cant.

To be more precise, the null hypothesis that trivial strategies perform at least as
well as all non-trivial strategies cannot be rejected except for extreme constellations.
This finding coincides with that of DeMiguel et al. (2009b) but it cannot be rejected
either that at least one of the non-trivial strategies performs better than the trivial
ones. The multiple tests reveal only that for a very high risk aversion of A = 10 the
superiority of the traditional sample-based strategy can be rejected in the case of the
CEQ. The tests with which the performance is examined based on the Sharpe ratio
show even less significant results.

All in all, our results show by considering historical data and applying contem-
porary methods of multiple testing it is hardly possible to promote any specific in-
vestment strategy. These statistical results indicate that it is hard to find any strategy
which is significantly the best because the sample size is too small. We carry out an
additional analysis based on weekly return data in order to investigate the impact of
an increased sample size. Our finding is that a quadruplication of the sample size
still does not lead to significant results while the ranking of the investment strategies
principally persists favoring the extended minimum-variance concept.
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their very important comments on the manuscript. Wickern and Wiechers gratefully acknowledge financial
support provided by the German Research Foundation (DFG).

Appendix

Table 9 Results of the StepM test for the difference in monthly certainty equivalents. Listed are the values
of the ¢-statistic The p-values are given in brackets

r=1 A=3 A=5 rA=17 A=10
Step 1 Step 1 Step 1 Step 1 Step 1 Step 2

Benchmark: Trivial-0 strategy

Traditional —0.1476 0.2528 0.6853 0.9337 1.4134
(0.9167) (0.7811) (0.6053) (0.4921) (0.2945)
Jorion —1.2525 —1.0440 —1.0544 —1.0522 —1.0522
(0.9986) (0.9926) (0.9929) (0.9914) (0.9926)
GMVP —2.9399 —2.3335 —1.7302 —1.1792 —0.4589
(1.0000) (1.0000) (0.9999) (0.9956) (0.9446)
Frahm-Memmel ~ —2.6013 ~2.0529 —1.4945 ~1.0354 —0.4236
(1.0000) (1.0000) (0.9992) (0.9907) (0.9393)
Ledoit-Wolf —2.9975 —2.6659 —2.2428 —1.8633 —1.4592
(1.0000) (1.0000) (1.0000) (0.9999) (0.9993)
Equicorrelation —1.7953 —0.9433 —0.2951 0.0959 0.1878
(1.0000) (0.9896) (0.9228) (0.8273) (0.7885)
2-Norm —2.1350 —1.8756 —1.3935 —1.3398 —1.0492
(1.0000) (1.0000) (0.9984) (0.9976) (0.9925)
Minimax —1.6511 —1.3542 —1.2684 —1.2935 —1.2940

(0.9998) (0.9987) (0.9974) (0.9974) (0.9975)
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Table 9 (Continued)

r=1 r=3 r=5 A=T7 A=10
Step 1 Step 1 Step 1 Step 1 Step 1 Step 2
Benchmark: Trivial-25 strategy

Traditional 0.2347 0.7691 1.2680 1.6121 2.1864

(0.9408) (0.6833) (0.3924) (0.2160) (0.0612)
Jorion —0.7600 0.2010 0.8508 1.2241 1.2001

(1.0000) (0.9302) (0.6238) (0.3936) (0.3950)
GMVP —2.4116 —1.7223 —1.0069 —0.4011 0.3429

(1.0000) (1.0000) (1.0000) (0.9968) (0.8540)
Frahm—-Memmel — —2.5024 —1.8600 —1.1882 —0.6380 0.0830

(1.0000) (1.0000) (1.0000) (0.9995) (0.9332)
Ledoit—Wolf —2.4270 —1.9876 —1.5415 —1.1209 —0.6517

(1.0000) (1.0000) (1.0000) (0.9999) (0.9977)
Equicorrelation —1.8868 —0.6519 0.2796 0.9521 1.4231

(1.0000) (0.9998) (0.8991) (0.5515) (0.2811)
2-Norm —1.8956 —1.4152 —0.7722 —0.6113 —0.1617

(1.0000) (1.0000) (0.9995) (0.9994) (0.9727)
Minimax 1.3664 1.4723 1.4523 1.3448 1.1416

(0.3897) (0.2968) (0.3005) (0.3303) (0.4249)

Benchmark: Trivial-50 strategy

Traditional 0.6749 1.2582 1.7854 2.0909 2.5626

(0.7881) (0.4260) (0.1881) (0.1000) (0.0387)
Jorion 0.1637 1.2363 1.1644 0.8398 0.2712

(0.9730) (0.4381) (0.4684) (0.6212) (0.8482) (0.7957)
GMVP —1.1645 —0.7414 —0.3396 —0.0963 0.0880

(1.0000) (0.9999) (0.9917) (0.9600) (0.9024) (0.8569)
Frahm-Memmel  —1.7130 —1.3433 —0.8895 —0.5604 —0.1302

(1.0000) (1.0000) (0.9994) (0.9946) (0.9479) (0.9125)
Ledoit-Wolf —1.1895 —0.9914 —0.8324 —0.6709 —0.6606

(1.0000) (1.0000) (0.9990) (0.9971) (0.9931) (0.9822)
Equicorrelation —1.6861 —0.1359 0.9359 1.7699 1.7696

(1.0000) (0.9888) (0.5969) (0.1814) (0.1799) (0.1624)
2-norm —1.0341 —0.6175 —0.1920 —0.2701 —0.3236

(1.0000) (0.9999) (0.9830) (0.9788) (0.9738) (0.9480)
Minimax 1.7855 1.4879 1.1506 0.8421 0.3850

(0.2170) (0.3090) (0.4760) (0.6202) (0.8053) (0.7516)
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Table 9 (Continued)

r=1 A=3 A=5 rA=17 A=10
Step 1 Step 1 Step 1 Step 1 Step 1 Step 2
Benchmark: Trivial-75 strategy
Traditional 1.1714 1.7410 2.1807 2.2136 2.2153
(0.4912) (0.1855) (0.0755) (0.0734) (0.0742)
Jorion 1.1019 1.2226 0.7361 0.1797 —0.5712
(0.5326) (0.4225) (0.6573) (0.8456) (0.9593)
GMVP —0.0308 —0.1040 —0.2008 —0.3833 —0.7295
(0.9902) (0.9740) (0.9611) (0.9577) (0.9731)
Frahm—-Memmel —0.3021 —0.5699 —0.7433 —1.0229 —1.4459
(0.9997) (0.9982) (0.9946) (0.9945) (0.9984)
Ledoit—Wolf —0.0976 —0.3132 —0.5569 —0.7426 —1.1782
(0.9949) (0.9906) (0.9904) (0.9861) (0.9943)
Equicorrelation —1.3350 0.6842 1.5051 1.4157 —0.4213
(1.0000) (0.7130) (0.2642) (0.2930) (0.9410)
2-norm 0.1615 0.0114 —0.1068 —0.5392 —0.9459
(0.9629) (0.9563) (0.9496) (0.9735) (0.9868)
Minimax 1.8897 1.3284 0.7740 0.3090 —0.3576
(0.1630) (0.3664) (0.6377) (0.8011) (0.9295)
Benchmark: Trivial-100 strategy
Traditional 1.6979 2.1318 2.1188 1.4854 0.6440
(0.1640) (0.0669) (0.0721) (0.2156) (0.4967)
Jorion 1.5750 0.9720 0.2685 —0.4133 —1.2781
(0.2068) (0.4656) (0.7592) (0.9043) (0.9827)
GMVP 0.5320 0.0661 —0.3842 —0.8109 —1.4355
(0.7377) (0.8650) (0.9365) (0.9613) (0.9887)
Frahm-Memmel 0.5490 —0.1940 —0.8291 —1.5117 —2.3909
(0.7299) (0.9237) (0.9823) (0.9957) (0.9998)
Ledoit—-Wolf 0.4721 —0.0954 —0.6271 —1.0434 —1.7524
(0.7646) (0.9038) (0.9682) (0.9794) (0.9962)
Equicorrelation 1.3177 1.4233 0.7340 —0.2273 —1.6151
(0.3148) (0.2563) (0.5505) (0.8613) (0.9943)
2-norm 0.8175 0.1772 —0.3551 —0.9926 —1.5420
(0.5862) (0.8302) (0.9321) (0.9762) (0.9927)
Minimax 1.8837 1.1128 0.3901 —0.2120 —1.0519
(0.1128) (0.3933) (0.7057) (0.8575) (0.9683)
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Table 10 Results of the StepM test for the difference in monthly Sharpe ratios. Listed are the values of
the ¢-statistic. The p-values are given in brackets

r=1 A=3 A=5 r=17 A=10
Step 1 Step 1 Step 1 Step 1 Step 1

Benchmark: Trivial strategy

Traditional 2.2072 1.6105 1.3820 1.0129 1.0803
(0.0872) (0.2532) (0.3403) (0.4988) (0.4437)
Jorion 1.1535 1.0253 0.9555 0.9658 0.9558
(0.4609) (0.5084) (0.5348) (0.5198) (0.5013)
GMVP —0.7301 —0.6002 —0.3454 —0.0918 0.2700
(0.9939) (0.9844) (0.9566) 0.9111) (0.8014)
Frahm-Memmel —0.7900 ~0.8270 —0.7678 —0.7715 —0.6853
(0.9950) (0.9937) (0.9859) (0.9857) (0.9773)
Ledoit-Wolf —0.7967 —0.8749 —0.8107 —0.6930 —0.5575
(0.9952) (0.9944) (0.9880) (0.9827) (0.9672)
Equicorrelation 1.0064 1.3686 1.4839 1.9149 2.0145
(0.5382) (0.3496) (0.2949) (0.1505) (0.1246)
2-Norm —0.1741 —0.3824 —0.1756 —0.2736 —0.1192
(0.9615) (0.9679) (0.9326) (0.9398) (0.9057)
Minimax 0.6939 0.7850 0.7569 0.6870 0.6141
(0.7036) (0.6300) (0.6317) (0.6475) (0.6591)
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