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Abstract In some studies requiring predictive and CPU-time consuming numerical
models, the sampling design of the model input variables has to be chosen with cau-
tion. For this purpose, Latin hypercube sampling has a long history and has shown
its robustness capabilities. In this paper we propose and discuss a new algorithm
to build a Latin hypercube sample (LHS) taking into account inequality constraints
between the sampled variables. This technique, called constrained Latin hypercube
sampling (cLHS), consists in doing permutations on an initial LHS to honor the de-
sired monotonic constraints. The relevance of this approach is shown on a real ex-
ample concerning the numerical welding simulation, where the inequality constraints
are caused by the physical decreasing of some material properties in function of the
temperature.

Keywords Computer experiment · Latin hypercube sampling · Design of
experiments · Uncertainty analysis · Dependence

1 Introduction

With the advent of computing technology and numerical methods, investigation of
computer code experiments remains an important challenge. Complex computer
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models calculate several output values which can depend on a large number of in-
put parameters and physical variables. These computer models are used to make
simulations as well as predictions, uncertainty and sensitivity analyses or to solve
optimization problems (Fang et al. 2006; Kleijnen 2008; De Rocquigny et al. 2008;
Levy and Steinberg 2010).

However, complex computer codes are often too time expensive to be directly used
to perform such studies. For uncertainty propagation and sensitivity analyses, it has
been shown that the sampling design is one of the key issues (Saltelli et al. 2000;
Fang et al. 2006). Moreover, to avoid the problem of huge calculation time, it is
often useful to replace the computer code by a mathematical approximation, called
a surrogate model or a metamodel (Simpson et al. 2001b; Fang et al. 2006; Volkova
et al. 2008). The optimal exploration of the variation domain of the input variables
is therefore especially important in order to avoid non-informative simulation points
(Sobol 1976; Simpson et al. 2001a; Bursztyn and Steinberg 2006; Iooss et al. 2010;
Levy and Steinberg 2010).

Thirty years ago, McKay et al. (1979) have introduced the concept of Latin hy-
percube sampling (LHS) for numerical experiments. Compared to simple random
sampling (SRS), which ensured independence between samples, LHS ensures the full
coverage of the range of the input variables. More precisely, LHS allows to accurately
reproduce the one-dimensional projections of the input sampling design. In terms
of uncertainty and sensitivity analyses, it has been theoretically and experimentally
proved that LHS is more precise and robust than simple random sample (Stein 1987;
Owen 1992; Saltelli et al. 2000; Helton and Davis 2003). Moreover, in the last 20
years, several improvements have been proposed in order to optimize the space fill-
ing properties of LHS designs (Park 1994; Fang et al. 2006; Pistone and Vicario 2010;
Jourdan and Franco 2010).

Our starting point is that the initial LHS algorithm supposes independence be-
tween input variables, while in some situations this assumption is irrelevant. First,
let us recall the two forms of dependencies between variables: the statistical and the
physical ones.

– The correlation coefficient is the simplest measure of the statistical dependence
between two variables. For the SRS, the so-called joint normal transform method
consists in inducing a correlation structure on the transformed marginals (Kurow-
icka and Cooke 2006). The rank correlation coefficient, based on the rank trans-
formation (which turns each variable value to its rank in the sample), is known as
a more robust measure. Iman and Conover (1982) have introduced an algorithm to
consider rank correlations between variables in LHS. Some limitations of these two
dependence measures have led to the introduction of other statistical dependence
modelling (copulae, vines, etc., see Kurowicka and Cooke 2006).

– Physical dependencies between variables can arise when a variable has a formal
relation in function of other variables. Such input constraints have been studied by
Borgonovo (2008) who has proposed a novel way to solve the sensitivity analysis
problem in presence of equality constraints. Another currently encountered phys-
ical dependence, which is the subject of this paper, concerns the existence of in-
equality relations between the variables. It is the case when one variable is physi-
cally constrained to be larger (respectively, smaller) than another. For example, a



Latin hypercube sampling with inequality constraints 327

geometric parameter (radius, height, etc.) of two physical objects can be subject to
a rigorous increasing order if one object is included inside the other.

When building the sampling design, the inequality constraints have to be honored
in order to avoid some physical incoherence in the input sets that will be run with the
computer model. A first solution could be to sequentially simulate the input variables,
allowing to bound one variable by another in order to enforce an inequality constraint.
However, as we will see, this procedure affects the one-dimensional projections of the
sampling design. We need a procedure which separates the effect of dependence (the
inequality constraints) from the effects of marginal distributions (i.e. the probability
laws defined for each variable). To attain this objective, we propose an algorithm
which builds a LHS satisfying the inequality constraints.

This paper is devoted to the detailed presentation of this algorithm, called the con-
strained LHS (cLHS). In the next section, we introduce this algorithm by giving some
examples. We compare it with a SRS-based algorithm and illustrate the algorithmic
performances. In the third section, we explain in detail the cLHS algorithm. As the
inequality constraints can be too stringent to find a cLHS, we derive a necessary and
sufficient condition proving its existence from an initial LHS. Then, our methodol-
ogy is applied on a real problem involving welding simulation models. A conclusion
gives finally some prospects to improve the cLHS algorithm.

2 The sampling techniques

The goal of the sampling step is to generate a matrix Xn = (x
(i)
j )i=1..n,j=1..p , where

n is the number of experiments and p is the number of variables. The most common
sampling method is indisputably the pure Monte Carlo (i.e. SRS), mainly because of
its simplicity (Gentle 2003). It consists of randomly sampling n independent input
variables. However, it is known to have poor space filling properties: SRS leaves
large unsampled regions and can propose too close points. An example of a SRS is
presented on Fig. 1(a).

2.1 Latin hypercube sampling

McKay et al. (1979) suggested an alternative method of generating Xn that they called
Latin hypercube sampling (LHS), which is an extension of stratified sampling. LHS
ensures that each of the input variables has all of its range represented. Let the range
of each variable Xj , j = 1, . . . , p, be simultaneously partitioned into n equally prob-
able intervals. We note Xn

j the n-sample of the variable Xj . A LHS of size n is
obtained from a random selection of n values—one per stratum—for each Xj . Thus
we obtain p n-tuples that form the p columns of the n × p matrix of experiments
Xn generated by LHS: the ith line of this matrix contains the p input variables and
will correspond to the ith code execution. Once a point is selected in an interval, no
other point could be selected in this interval (see Fig. 1 (b)). Let us remark that the
partition into equally probable intervals allows one to take into account non-uniform
densities of probability like a normal distribution for example. Figure 1 shows 10
samples of two random variables obtained with SRS and LHS schemes. We can see
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Fig. 1 Examples of two ways to generate a sample of size n = 10 from two variables X = [X1,X2] where
X1 has a uniform distribution U [0,1] and X2 has a normal distribution N (0,1)

that the result of LHS is more spread out and does not display the clustering effects
found in SRS.

Mathematically, if X1, . . . ,Xp are mutually independent random variables with
invertible continuous distribution functions Fj , j = 1, . . . , p, respectively, then the
LHS ith sample for the j th variable can be created as

x
(i)
j = F−1

j

(
π

(i)
j − ξ

(i)
j

n

)
, (1)

where the πj are independent uniform random permutations of the integers

{1,2, . . . , n}, and the ξ
(i)
j are independent U [0,1] random numbers independent of

the πj .

2.2 Constrained simple random sampling

To take into account inequality constraints between variables, the simplest approach
is based on SRS and consists on bounding one variable by another in order to enforce
the inequality constraints. This approach is called the constrained Simple Random
Sampling (cSRS).

In Fig. 2, we see the effect of an inequality constraint between two variables in
terms of bivariate plots. Of course, the introduction of the truncation during the sim-
ulation creates statistical dependences between Xn

1 and Xn
2 . This correlation depends

on the distribution functions of X1 (called F1) and X2 (called F2). In our example, the
correlation coefficient ρ(X1,X2) is worth 31%. In Fig. 2, the one-dimensional mar-
ginal projections of the samples are also shown. For the cSRS, the one-dimensional
marginal of Xn

2 does not correspond to F2 anymore but to a transformed distribution
F ′

2 (which depends on F1).
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Fig. 2 Comparison between Monte Carlo samples of size n = 100 from two variables X = [X1,X2]
where X1 ∼ U [0,1] and X2 ∼ U [0,2]. The inequality constraint for cSRS is X1 < X2

Fig. 3 Constrained simple random samples of size n = 10 from p = 10 variables Xi , i = 1, . . . ,10, with
Xi < Xi+1 for i = 1, . . . ,9. The upper and the lower curves represent the bounds of the variation ranges
for these 10 variables. (a) Xi ∼ U [0 + i−1

2 ,2 + i−1
2 ]; (b) Xi ∼ U [0,1 + i−1

2 ]

This problem becomes more dramatic when the input dimension increases and
when several sequential inequality constraints have to be satisfied, as for example if
Xi < Xi+1 for i = 1, . . . , p−1 and p is large. Figure 3(a) shows an example of cSRS
of p = 10 variables with such increasing constraints. In this graph, each observation
is represented as a line. Because of the sequential algorithm starting at X1, all the
curves are concentrated near the upper bound curve of the variables. Figure 3(b)
clearly reveals that the sampling of the first variable X1 is adequate with its uniform
distribution, and that the samples of the following variables (X2 to X10) progressively
take place in the upper region of their variation range.
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In summary, in some practical situations, users would like to simulate samples
which follow all one-dimensional marginals and which take into account some in-
equality constraints. The following section proposes such an algorithm.

2.3 Constrained Latin hypercube sampling

In order to follow all one-dimensional marginals, our sampling procedure uses LHS.
Our method, first proposed in Petelet (2007), consists in doing permutations on an
initial LHS to enforce the desired monotonic constraint. It is based on the fact that
permuting two values of a variable in a LHS does not break the LHS structure of the
sample (Iman and Conover 1982). An appropriate algorithm scans the starting LHS
to find the couples of values that violate the monotonic constraint. Then the algorithm
finds and executes the combinations of permutations which have to be done to satisfy
the inequality constraint between Xi and Xi+1 for the n experiments. Details of the
algorithm are given in Sect. 3.

Figure 4 shows the work done on a couple of parameters on which an increasing
constraint is enforced. The distribution of X1 and X2 are kept uniform (the slight
variation of the height of one class in the histogram of X2 is not significant). In the
bivariate plots, we see that the cLHS constraints (the increasing inequality and the
honoring of all one-dimensional marginals) tend to gather the sample points along
the inequality frontier line X1 = X2. It appears that the severity of the inequality con-
straint effects strongly depend on the one-dimensional marginal distributions F1 and
F2 of the variables. The limit case is illustrated on Fig. 4(b) where X1 and X2 have
the same one-dimensional marginal distributions F1 and F2 (then the same upper and
lower bounds). In such a case where half the area of the bivariate plot is forbidden
all the points are located on this frontier line. This effect results of a too severe con-
straint and reveals the need of a constraint intensity measurement. Petelet (2007) has
defined this constraint intensity measurement as the ratio between the triangular for-
bidden area (ST ) in the bivariate plot and the rectangular area (SR) of the domain
defined by the upper and lower bounds of the variables:

γ = ST

SR

. (2)

The γ measurement can be used if each of the input variable has some upper
and lower bounds, i.e. if the support of their distribution function is defined on a
bounded domain. In the general case of an inequality constraint between Xi and Xj ,
respectively, defined on [bi, hi] and [bj ,hj ], we obtain

γ (Xi,Xj ) = ST (Xi,Xj )

SR(Xi,Xj )
=

⎧⎪⎨
⎪⎩

(hi−bj )2

2(hi−bi )(hj −bj )
for the constraint Xi < Xj ,

(hj −bi )
2

2(hi−bi )(hj −bj )
for the constraint Xi > Xj .

(3)

The intensity constraint measurements for the Fig. 4 cases are worth γ (X1,X2) =
25% for (a) and γ (X1,X2) = 45.5% for (b). With some heuristic arguments, Petelet
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Fig. 4 Comparisons between constrained Latin hypercube samples of size n = 100 from two vari-
ables X = [X1,X2] with X1 ∼ U [0,1] and the inequality constraint X1 < X2: (a) X2 ∼ U [0,2];
(b) X2 ∼ U [0,1.1]

(2007) has found a nearly linear link between γ (Xi,Xj ) and the correlation coeffi-
cient ρ(Xi,Xj ) for γ (Xi,Xj ) ∈ [0,0.3]:

ρ(Xi,Xj ) � 2.778γ (Xi,Xj ). (4)

As γ is positive, the correlation coefficient will be always positive. For example,
this relation shows that if the inequality constraint is kept smaller than 15%, the
correlation between the variables will be smaller than 40%.

For the same cases than in Figs. 3, Fig. 5 shows the cLHS of p = 10 vari-
ables with sequential increasing constraints. As before, in this graph, each obser-
vation is represented as a line. At present, the curves correctly fill the variation
ranges of all the variables. The constraint intensity measurements for Fig. 5(a) are
worth γ (Xi,Xi+1) = 18.75% for i = 1, . . . ,9. This value is rather suitable: corre-
lations between variables are smaller than 52% (value obtained thanks to (4)). For
Fig. 5(a), the constraint intensity measurements increase from γ (X1,X2) = 33.33%
to γ (X9,X10) = 45.45%.

When the upper and lower bounds of the variables are similar, the cLHS tends to
give homothetic translated trajectories, as shown by Fig. 5(b). In the limit case, if all
the Xi ’s have the same one-dimensional marginal distributions (then the same upper
and lower bounds), the obtained curves are parallel and regularly spaced between
the lower bound curve and the upper bound curve. This is one of the drawback of
our algorithm, caused by the imposed LHS structure. Moreover, the feasibility of the
cLHS depends on the bound values of the constrained variables. For example, for the
constraint Xi < Xj , the algorithm does not work if hi > hj or if bi > bj . From (3),
this implies that the constraint intensity measurement γ (Xi,Xj ) is upper bounded by
0.5.
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Fig. 5 Constrained Latin hypercube samples of size n = 10 from p = 10 variables Xi , i = 1, . . . ,10, with
Xi < Xi+1 for i = 1, . . . ,9. The upper and the lower curves represent the bounds of the variation range
for these 10 variables. (a) Xi ∼ U [0 + i−1

2 ,2 + i−1
2 ]; (b) Xi ∼ U [0,1 + i−1

2 ]

3 The constrained Latin hypercube sampling algorithm

In the following, we explain the cLHS algorithm in the case of a strict increasing
constraint between two variables X1 and X2 (with distribution functions F1 and F2,
respectively). The developments for the strict decreasing constraint case are exactly
the same, by inverting the inequalities sense. Moreover, the extension of our algo-
rithm to non-strict inequality constraints is straightforward.

For the increasing constraint case, we assume the following hypotheses.

– X = (X1,X2) is defined on a bounded domain X ∈ R
2. The support of Fj for

j = {1,2} is [bj ,hj ].
– The bounds are subject to the following inequalities:

b1 ≤ b2 and h1 ≤ h2. (5)

These inequalities seem natural: if we impose some increasing constraint between
X1 and X2, we hope that the same increasing constraints exist for their minimal
and maximal bounds.

Let us define the matrix Cn = C(Xn
1 ,Xn

2 ) of size n × n:

Cn = (cij )i=1..n,j=1..n =
⎛
⎜⎝

1
x

(1)
2 >x

(1)
1

· · · 1
x

(1)
2 >x

(n)
1

...
. . .

...

1
x

(n)
2 >x

(1)
1

· · · 1
x

(n)
2 >x

(n)
1

⎞
⎟⎠ , (6)

where 1x>y = 1 if x > y and 1x>y = 0 otherwise. Cn is called the compatibility ma-
trix between Xn

1 and Xn
2 . This matrix allows us to identify which combinations of
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elements of Xn
1 and Xn

2 are incompatible, i.e. those with a decreasing relation. There-
fore, the inequality constraint between the two samples is honored if the diagonal of
Cn contains only 1’s.

For our cLHS algorithm, if we choose to leave Xn
1 unchanged and give the pos-

sibility to permute some elements of Xn
2 , we define our final objective as getting a

sample X′n
2 such that

n∑
i=1

c′
ii = n, (7)

with C′ = (c′
ij )i=1..n,j=1..n the compatibility matrix between Xn

1 and X
′n
2 .

At present, it would be convenient to know if this objective can be achieved for a
specific sample Xn. Let us define the sample vector

Sn = (Si)i=1..n =
(

n∑
j=1

cij

)
i=1..n

. (8)

Si gives the number of elements of Xn
1 which satisfy the constraint with x

(i)
2 . We

also define (S̃i)i=1..n the ordered sample of (Si)i=1..n. To insure that we can obtain a
sample X

′n
2 (by permutations of the Xn

2 elements) satisfying the increasing constraint,
the following assertions have to be true.

– The smallest element of Xn
2 has one or more than one smaller elements in Xn

1 ,
which is equivalent to saying that min(Xn

2 ) ≥ min(Xn
1 ), then again, to saying that

S̃1 ≥ 1.
– . . .
– The ith-smallest element of Xn

2 has i or more than i smaller elements in Xn
1 , which

is equivalent to saying that S̃i ≥ i.
– . . .
– The nth-smallest elements of Xn

2 have n or more than n smaller elements in Xn
1 ,

which is equivalent to saying that S̃n ≥ n.

From these assertions, we obtain the following result:

Proposition If (Xn
1 ,Xn

2 ) is a LHS, the inequality

min
[
(S̃1 · · · S̃n) − (1 · · ·n)

] ≥ 0 (9)

is a necessary and sufficient condition to guarantee the existence of a sample X
′n
2 such

that (Xn
1 ,X

′n
2 ) satisfies the increasing constraint X1 < X2, where X

′n
2 is obtained

from permutations of the elements of Xn
2 .

Therefore, the first step of our methodology will be to test this criterion. If (9)
is not verified for a chosen Xn = (Xn

1 ,Xn
2 ), a new sample for Xn

2 (keeping the LHS
property for Xn) is created and the scan starts again. Our hypotheses on the bounds of
X1 and X2 (see (5)) guarantee that a LHS satisfying the increasing constraint exists.
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We start from an initial LHS Xn = (Xn
1 ,Xn

2 ), with a compatibility matrix C, sat-

isfying the existence criterion (9). We want to obtain the LHS X
′n = (Xn

1 ,X
′n
2 ) (with

a compatibility matrix C′) satisfying the increasing constraint between X1 and X′
2.

Our objective is therefore to obtain the result of (7).
Let us note X̃n

1 the reverse ordered sample of Xn
1 . This vector X̃n

1 contains the

elements x̃
(1)
1 ≥ x̃

(2)
1 ≥ · · · ≥ x̃

(n)
1 . We put in the sample vector An a sequence of

indices: the indices in Xn
1 of the X̃n

1 elements. Mathematically, it follows that

x
(Ai)
1 = x̃

(i)
1 . (10)

Our permutation algorithm is based on the treatment of the Xn
1 elements in a se-

quential manner (because the constraint is more difficult to be satisfied by the first
values of Xn

1 ). We describe the algorithm with the following four steps.

Algorithm cLHS

1. Initialisation: C′n = Cn and B′ = (1, . . . , n).

2. For i = 1, . . . , n:

– we put in the vector B the indices in Xn
2 of the elements compatible with x

(Ai)
1 :

k = 1
For j = 1, . . . , n:

if c′
jAi

= 1 then Bk = k and k = k + 1

– we randomly choose an element in B and put it in B ′
i .

– the index B ′
i corresponds to the one that will be permuted in Xn

2 . We turn to zero
the line B ′

i in the compatibility matrix C′n (in order to block up the index B ′
i ):

For j = 1 . . . n : c′
B ′

i j
= 0

3. The vector B′ contains the indices that will be used to make the permutations in
Xn

2 . We obtain the new sample of the variable X2:

(X′
2)i=1..n = (X2)i=B ′

1..B
′
n
. (11)

4. Finally, the permutation matrix C′n is calculated with Xn
1 and X′n

2 by (6) in order
to test the equality of (7).

End of algorithm

The extension of the CLHS algorithm to the multivariate case X = (X1, . . . ,Xp)

with Xj < Xj+1 for j = 1, . . . , p − 1 is straightforward and is done in a sequential
manner. We first simulate a LHS Xn = (Xn

1 , . . . ,Xn
p). Leaving Xn

1 unchanged, we

sequentially build with the cLHS algorithm X
′n
j from X

′n
j−1 and Xn

j for j = 2, . . . , p.
At each step j , before applying the algorithm, the criterion (9) is tested. If this cri-
terion is not verified, a new LHS for Xn

j is created, and so on until the criterion is
verified.
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4 The cLHS algorithm in an example

We propose a simple example with a sample of size n = 6 and two variables X1 and
X2 subject to a decreasing constraint X1 > X2. Points are uniformly sampled on the
domain X = [20,30] × [16,26] of (X1,X2). We simulate an initial LHS (Fig. 6(a))
and obtain the following design matrices:

Xn
1 =

⎛
⎜⎜⎜⎜⎜⎝

23.98
26.91
26.52
21.99
29.23
21.10

⎞
⎟⎟⎟⎟⎟⎠

, Xn
2 =

⎛
⎜⎜⎜⎜⎜⎝

22.18
20.45
23.77
18.31
16.45
25.49

⎞
⎟⎟⎟⎟⎟⎠

, then Cn =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0
1 1 1 1 1 1
1 1 1 0 1 0
1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

.

As the diagonal of this matrix has a null term, (7) is not fulfilled. Then, the cLHS
algorithm has to be applied in order to obtain a LHS satisfying the constraint.

First, we test the existence criterion. We obtain Sn = (4 6 4 6 6 3) and S̃n =
(3 4 4 6 6 6). The existence criterion (see (9)) is then fulfilled.

Second, we apply the algorithm and obtain the following result:

X′n
2 =

⎛
⎜⎜⎜⎜⎜⎝

20.45
25.49
22.18
18.31
23.77
16.45

⎞
⎟⎟⎟⎟⎟⎠

. (12)

Xn
1 has not been modified while elements of Xn

2 have been permuted to obtain X′n
2 ,

which is a sample satisfying the decreasing constraint. Other X
′n
2 samples could be

found, the choice made during the cLHS algorithm being random. Figure 6(b) shows
our final sampling result.

5 An application case: welding thermomechanical models

The robust increase in computer power has tremendously contributed to a growing
fad for welding simulation. The industrial requirements are more and more numer-
ous: supports to develop new processes, control of mechanical welding effects (in
particular, residual stresses and distortions), argument in a nuclear safety analysis re-
ports, etc. Thus, through the use of high-performance computers and advanced mod-
els, numerical simulation is expected to become an important tool for innovation in
welding engineering.

However, running a welding simulation model requires a large number of inputs—
about 500—including for example meshing inputs, boundary and initial conditions
as well as material properties and process parameters, and generates several out-
puts, including spatial distributions of displacements and residual stresses in the
weldment. In particular, among inputs, the determination of material properties is
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Fig. 6 Illustration of the cLHS algorithm (n = 6) with a decreasing constraint between two uni-
formly-distributed random variables X1 and X2 (γ (X1,X2) = 18%). The diagonal line corresponds to
the frontier line X1 = X2

one of the key problems of welding simulation. The features of material proper-
ties are that they are dependent on temperature and that their full characterization
is very expensive, often difficult or even sometimes impossible. In this context, the
global sensitivity analyses of the numerical welding simulation model allows to de-
termine which material properties are the most sensitive in a numerical welding
simulation and in which range of temperature (Petelet 2007; Petelet et al. 2006;
Asserin et al. 2009).

Let us show the application of our methodology on the range of steel material.
Five input variables are the mechanical properties used by the model: Young’s mod-
ulus, thermal computation coefficient, Poisson’s ratio, yield strength and hardening
modulus. Because of their dependence on temperature, it has been required to sample
each material property at a discrete set of temperatures: seven levels are chosen from
20°C to 1100°C. We obtain 35 = 5 × 7 input variables, each following an uniform
distribution defined by its minimal and maximal bounds (taken from the literature).
Moreover, some material properties used in this model are monotonically decreas-
ing as function of temperature. Therefore, the constrained Latin hypercube sampling
strategy, described in this paper, can be used to generate the input design. This strat-
egy allows our sampled variables to honor their uniform repartition defined by their
minimal and maximal bounds, that is to say, sampling in the physical bounds.

To illustrate this application, we present the sampling of the Young’s modulus.
Figure 7 shows the result on this 7-dimensional variable, which follows a decreas-
ing constraint. These curves present three randomly selected materials among the
800 created and the bounds of the domain. For the sensitivity analysis process, the
Young’s modulus is represented by only seven parameters (Asserin et al. 2009). How-
ever, one should keep in mind that for the mechanical computation, the curve repre-
sents truly the considered dependence of this modulus because the algorithm uses
intermediate values according to a piecewise linear interpolation.

It would be interesting to present the sensitivity analysis results obtained by em-
ploying the classical LHS (unconstrained) and by employing the constrained LHS.
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Fig. 7 Example of n = 3 samples of the Young’s modulus obtained by cLHS (dashed lines). The upper
and the lower curves (solid lines) represent the bounds of the domain for these p = 7 variables

However, some model calculations do not converge when using non-physical evolu-
tion of the material properties (i.e. unconstrained LHS). Moreover, performing model
calculations with non-monotonic evolutions would be an aberration from a physical
point of view.

6 Conclusion

In this paper, we have proposed a new algorithm (called cLHS) allowing to obtain
samples of several variables constrained by some inequality relations. This situation
can frequently arise in application cases, while very few works have been devoted to
this issue. The cLHS algorithm allows to satisfy the inequality constraint while leav-
ing unchanged the one-dimensional marginals that we have defined for each variable.
In order to honor these one-dimensional marginals, the LHS-based technique has
been preferred. To our knowledge, this inequality constraint problem has not been
studied for the LHS building issue.

We have shown the interest of this algorithm in an application case involving weld-
ing simulation model. The cLHS algorithm has proven its efficiency to sample a
multi-dimensional variable taking under consideration its physical nature.

The current cLHS algorithm has one main drawback. When the minimal (respec-
tively, maximal) bounds of the two constrained variables move closer, the space fill-
ing properties of the sample points deteriorate: the sample points are gathered along
the inequality frontier line. The cLHS is therefore efficient if the bounds between
the variables are sufficiently distant. A constraint intensity measurement, noticed γ ,
has been defined in order to quantify this effect. Moreover, a linear relation has been
proposed between γ and the correlation coefficient of the constrained variables. This
allows to a priori know (from the variable bound values), the effects of the inequality
constraint in terms of correlation of the simulated sample.

In a future work, it will be interesting to quantify this phenomenon by linking a
space filling measure (as the discrepancy) with the bound values. More generally,
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if we want to suppress this undesired effect, the LHS framework has to be left out.
A first idea would be to work with entropy-based designs by optimizing the entropy
on one-dimensional marginals. Developing design optimization algorithms under in-
equality constraints would be an interesting research way.

If more than two variables are under study, the cLHS algorithm is limited to in-
equality constraints defined in a sequential order. A complex inequality constraint
could involve more than two variables (e.g. X1 < X2 + X3) or could be non-
sequential (e.g. X1 < X2 and X1 < X3). If such situations are identified in specific
application cases, there is no doubt that some extensions of the cLHS algorithm are
possible.
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