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Abstract In Computer Experiments (CE), a careful selection of the design points
is essential for predicting the system response at untried points, based on the values
observed at tried points. In physical experiments, the protocol is based on Design
of Experiments, a methodology whose basic principles are questioned in CE. When
the responses of a CE are modeled as jointly Gaussian random variables with their
covariance depending on the distance between points, the use of the so called space-
filling designs (random designs, stratified designs and Latin Hypercube designs) is
a common choice, because it is expected that the nearer the untried point is to the
design points, the better is the prediction. In this paper we focus on the class of Latin
Hypercube (LH) designs. The behavior of various LH designs is examined according
to the Gaussian assumption with exponential correlation, in order to minimize the to-
tal prediction error at the points of a regular lattice. In such a special case, the problem
is reduced to an algebraic statistical model, which is solved using both symbolic al-
gebraic software and statistical software. We provide closed-form computation of the
variance of the Gaussian linear predictor as a function of the design, in order to make
a comparison between LH designs. In principle, the method applies to any number
of factors and any number of levels, and also to classes of designs other than LHs.
In our current implementation, the applicability is limited by the high computational
complexity of the algorithms involved.
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1 Introduction

The official start of Computer Experiments (CE) is the paper by McKay et al. (1979),
while the contribution by Sacks et al. (1989b) marked a new step by introducing
model-based methods, see the review in this Issue by Levy (2010). A compelling rea-
son for using CE (in a single approach or combined with physical experiments) comes
from the fact that physical experimentation may be, in a number of circumstances,
expensive or even unapproachable. On the contrary, the use of numerical experiments
in product/process development phase is relatively inexpensive and, because of that,
has become straightforward. The general availability of comprehensive computing
facilities and the recent progresses in software development make numerical simu-
lation of complex systems an attractive alternative to the execution of the expensive
and time consuming physical experiments. Standard modern references are Sasena
(2002), Santner et al. (2003), Fang et al. (2006).

In this context, a careful selection of the design points or training points is es-
sential for predicting how the unobserved responses depend on the observed ones.
In physical experimentation, the researcher is asked to comply to a well set protocol
in order to achieve correct inferences. Such a protocol is the Design of Experiments
(DoE) methodology, which is an helpful tool in carrying out the mentioned objec-
tives. The design of a CE, when it is used as a surrogate for the physical one, differs
in several aspects from designing a physical experiment and the applicability of basic
principles of DoE is questioned in CE. The selection of an experimental design in CE
is a crucial part of producing an efficient and informative model and cannot be done
by merely importing the concepts developed for physical experiments. This means
providing efficient strategies for sampling the input space in order to get accurate
predictions for untried inputs.

As suggested by the pioneers of the model-based CE, the output can be predicted
by assuming joint Gaussian distribution of the responses with a covariance depending
on a properly defined distance between the locations, e.g. the Euclidean distance in
the original Kriging model, see Krige (1951) and Cressie (1986). The underlying
principle is that the nearer an untried point is to the design points, the better the
prediction. Based on this view, a good design strategy is to uniformly spread the
points across the experimental region. That invites the use of the so called space-
filling designs. Random designs, Stratified designs and Latin Hypercube designs are
common choices, see e.g. McKay et al. (1979), Fang et al. (2006). The first two
designs are not fully satisfactory because they are not marginally space filling, i.e. in
individual directions, and, moreover, are quite unsatisfactory for global space filling,
especially for a small number of design points. Even if the Latin Hypercube (LH)
designs are not very satisfactory for space filling, they are satisfactory for space filling
in individual directions, and this statement is valid for any number of design points.
For a formal treatment of the subject see Welch et al. (1992), Park (1994), Fang et al.
(2000), Butler (2001).
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The content of the paper is as follows. We focus on the class of LH designs among
the different space-filling ones. We want to investigate which LH designs have the
best prediction features.

In Sect. 2, the Gaussian field is assumed to have distance-dependent covariance
(stationarity) and is defined on a subset of a regular lattice, i.e. the Cartesian product
of uniform one-dimensional lattices. This case corresponds to specific applications,
see e.g. Pistone and Vicario (2009), and it is specially fit for the methodology we use.
The commonly used Euclidean distance is not natural when considering a regular lat-
tice; therefore we switch to the Manhattan distance, as other authors have suggested,
see Santner et al. (2003, p. 138).

In Sect. 3, we assess the behavior of different LH designs by computing in closed
form the Mean Square Prediction Error (MSPE) of the linear predictor. It should be
noticed that the issue of identifiability, which is of the highest importance in standard
DoE, is not relevant here.

Section 4 contains the main results of the paper. Specific study of LH design is
performed through an example. We present a step-by-step discussion of LH designs
with two factors with four levels each, including a full example of the use of the
algebraic software.

In performing the aforementioned comparisons, there are two tricky computational
problems: First, the computation of the variance-covariance matrix of the design
points and, second, the computation of the closed-form expression of the predictors
variance. For the former problem, a solution is presented in a particular case of the
exponential correlation function, which is actually one of the most commonly used
by CE practitioners. For the latter, the main issue is the computation of the covari-
ances which are the rational functions with respect to a parameter of interest. In order
to compute the predictor variances in closed form, we resort to the use of symbolic
algebraic software such as CoCoA (Computations in Commutative Algebra), a freely
available system for symbolic exact multivariate polynomial computation, see Co-
CoATeam. Other computations related with the exponential model for covariances
are done with the software R, (http://www.R-project.org/). The final result is an ex-
ample of general methodology to analyze the MSPE efficiency for special training
sets for regular lattices and covariances which are exponentials of the Manhattan dis-
tance. All LH designs are classified according to the algebraic form of the predictor
variance and the algebraic form of the determinant of the correlation matrix (entropy
criteria). It is remarkable to observe that, at least in the examples we discuss, the two
classifications coincide. This and other conclusions are discussed in Sect. 5.

2 Correlation function on a lattice

Let Y(x) be a zero mean and covariance stationary Gaussian random field over a
design space Xd ⊂ R

d , i.e.

E
(
Y(x)

) = 0,

Cov
(
Y(x), Y (x + h)

) = σ 2
Y R(h;ψ),

http://www.R-project.org/
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where σ 2
Y is the field variance and R is its Stationary Correlation Function (SCF),

depending only on the displacement vector h between any pair of points in Xd and
on a vector parameter ψ . A popular choice for the SCF is the power exponential
family

R(h;ψ) =
d∏

s=1

exp
(−θs |hs |ps

) = exp

(

−
d∑

s=1

θs |hs |ps

)

, 0 < ps ≤ 2, (1)

where h = (h1, . . . , hd), θ = (θ1, . . . , θd) are positive scale parameters, p = (p1, . . . ,

pd) is a vector smoothing parameter, and ψ = (θ ,p). The conditions on θ and p are
necessary and sufficient for (1) to be positive definite and, therefore, for the exis-
tence of a stationary Gaussian field with an SCF of that form, see (Berg et al. 1984).
Krige’s original idea of a positive correlation between the outputs that decreases when∑d

s=1 θs |hs |ps increases is true for the given SCF.
Our algebraic methodology is best described if we assume equal scale parameters

θs = θ , s = 1, . . . , d . Moreover, it requires an integer valued p and the Gaussian field
to be defined on a regular square lattice Xd = {1, . . . , l}d . As the Euclidean distance
would not really be adapted to the lattice case, we restrict ourselves to the case of a
common smoothing parameter p = ps = 1, so that the SCF depends on the Manhattan
distance, ‖x − y‖1 = ∑d

j=1 |xj − yj |. The SCF we use has the form

R(h; θ) =
d∏

s=1

exp
(−θ |hs |

) = exp

(

−θ

d∑

s=1

|hs |
)

= exp
(−θ‖h‖1

)
. (2)

Let us first consider the univariate case d = 1. The distance function is d1(i, j) =
|i − j |, and the covariance function in algebraic form is

R1(h; θ) = exp
(−θd1(i, j)

) = t |i−j |, h = i − j, i, j = 1, . . . , l,

where t = exp(−θ) > 0.
The matrix of the distances is

D1 =

⎡

⎢⎢
⎣

1 2 · · · l

1 0 1 · · · l − 1
2 1 0 · · · l − 2
...

...
...

...
...

l l − 1 l − 2 · · · 0

⎤

⎥⎥
⎦

and the covariance matrix is

Γ1 =

⎡

⎢⎢
⎣

1 2 · · · l

1 1 t · · · t l−1

2 t 1 · · · t l−2

...
...

...
...

...

l t l−1 t l−2 · · · 1

⎤

⎥⎥
⎦ (3)
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Fig. 1 A representation of the
bivariate rectangular lattice
X2 = {1,2, . . . , l}2

If d = 2, the distance function is (see Fig. 1)

d2
(
(i1, i2), (j1, j2)

) = |j1 − i1| + |j2 − i2| = d1(i1, j1) + d1(i2, j2)

and the covariance function for h = i − j = (i1 − j1, i2 − j2) is:

R2(h; θ) = exp
(−θd2

(
(i1, i2), (j1, j2)

)) = t |i1−j1|t |i2−j2|

It follows that the elements of the distance and covariance matrices, ordering rows
and columns in lexicographic order, are given by:

D2
(
(i1, i2), (j1, j2)

) = D1(i1, j1) + D1(i2, j2), (4)

Γ2
(
(i1, i2), (j1, j2)

) = Γ1(i1, j1) × Γ1(i2, j2). (5)

We write the matrix operations defined in (4) and (5) as D2 = D1 ⊕ D1 an Γ2 =
Γ1 ⊗ Γ1, respectively. Note that D2 and Γ2 are l2 × l2 matrices and ⊗ denotes the
Kronecker product of matrices, see e.g. Ortega (1987).

In generic dimension d ≥ 2, we have the induction formulas

Dd = Dd−1 ⊕ D1, Γd = Γd−1 ⊗ Γ1. (6)

The special algebraic structure of Γd allows us an algebraic treatment of the pre-
diction problem. In particular, the computation of variances and covariances in closed
form may be done by a symbolic algebraic software, so that we can compare the per-
formance of each LH design on the basis of closed-form algebraic expressions.

Indeed, the resulting statistical model is special. In fact, one can show by recursion
that detΓ1 = (1 − t2)l−1 and that Γ −1

1 is tri-diagonal, e.g. for l = 4

Γ −1
1 = (

1 − t2)−1

⎡

⎢⎢
⎣

1 −t 0 0
−t 1 + t2 −t 0
0 −t 1 + t2 −t

0 0 −t 1

⎤

⎥⎥
⎦

As Γ −1
1 is tri-diagonal, the 1-dimensional case is a Gaussian Markov Chain, or more

precisely a discrete Ornstein–Uhlembeck process, (Santner et al. 2003, p. 36). The d-
dimensional case is a Kronecker product of Markov chains, therefore it is a Gaussian
graphical model. We do not discuss further this interesting point and refer to Lau-
ritzen (1996).
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It has been observed by one of the anonymous referees that a Gaussian process
with SCF (2) exhibits peculiar symmetries; specifically, the joint distribution over the
sites x ∈ Xd depends only on the distances ‖x − y‖1, x,y ∈ Xd , so that the distrib-
ution is invariant under any transformation of Xd for which the Manhattan distance
between points is an invariant. For example, the classification of subsets with four
points of a 4 × 4 grid we shall obtain in Table 3 is based on the action of the dihedral
group of the square. The method we present here does not require the preliminary
study of such symmetries.

3 Predicting the output on lattice points

Sacks et al. (1989a, 1989b) suggested that the joint use of Kriging model as a meta-
model together with Latin Hypercube designs as a training set is the option of choice
in CE where no specific model is imposed by the application itself. The model con-
siders the response Y(x), for x ∈ Xd ⊂ R

d , to be a realization of a Gaussian random
field of the form

Y(x) = f′(x)β + Z(x),

where f′(x) = [f1(x) · · ·fm(x)] is a set of specified trend functions, β is a vector of
parameters, and Z(x) is a Gaussian random field with zero mean and SCF over Xd .
According to the Krige’s principle, the observed information on the random vector of
the field variables Yn = [Y(x1) · · ·Y(xn)]′ at the training data set x1, . . . ,xn is used
to predict the unobserved output at x0. The underlying hypothesis, see (Santner et al.
2003), which is consistent with the covariance function in (1), assumes that the joint
distribution of Y(x0) and Yn is

[
Y(x0)

Yn

]
∼ N

[[
f′(x0)

Fn

]
β, σ 2

Z

[
1 r′

0
r0 Rn

]]
,

were Fn is the n × m matrix with entries fj (xi ), i = 1, . . . , n, j = 1, . . . ,m, r′
0 =

[R(x0 − x1) · · ·R(x0 − xn) is the correlation vector, and Rn is the n × n correlation
matrix whose (i, j)-element is R(xi − xj ), i, j = 1, . . . , n.

We consider in this paper the ordinary Kriging model, i.e. we assume f′(x)β = β ,
so that Y(x) = β+Z(x), where the trend is constant, and we assume the field variance
to be the unit, σ 2

Z = 1, so that our model reduces to

[
Y(x0)

Yn

]
∼ N

[
β1,

[
1 r′

0
r0 Rn

]]
.

We use the Linear Unbiased Predictor (LUP). When the covariance is known,
the Kriging methodology uses a linear spatial interpolation, i.e. the random variable
Y(x0) is predicted by an affine combination of the observed random variables,

Ŷ (x0) = a0 +
n∑

i=1

aiY (xi ). (7)
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The predictor Ŷ (x0) is unbiased if and only if, for all β , β = E(Ŷ (x0)) =
a0 + ∑n

i=1 aiβ , i.e. a0 = 0 and
∑n

i=1 ai = 1. The predictor Ŷ (x0) = ∑n
i=1 aiYi ,∑n

i=1 ai = 1 is the Best LUP (BLUP) if the Mean Squared Prediction Error
MSPE[Ŷ (x0)] = E((Ŷ (x0) − Y(x0))

2) is minimized. If β is known, the BLUP is
the conditional expectation of Y(x0) given Yn = [Y(x1) · · ·Y(xn)]′,

Ŷ (x0) = β + r′
0

(
Rn

)−1(Yn − β1
)

(8)

and the value of the MSPE is 1 − r′
0(R

n)−1r0.
If β is to be estimated, the BLUP is given by (8) with β replaced by its generalized

least squares estimator

β̂ = (
1′(Rn

)−11
)−11′(Rn

)−1Yn.

In such a case the MSPE, usually called Kriging variance, is larger because of an
additional uncertainty component:

MSPE[Ŷ (x0)] = (
1 − r′

0

(
Rn

)−1r0
)

+ (
1 − 1′(Rn

)−1r0
)′(1′(Rn

)−11
)−1(1 − 1′(Rn

)−1r0
)
.

In the next section we shall compute in closed form the MSPE as an algebraic
function of the parameter t = exp(−θ). Since the computational complexity of the
symbolic algorithms is high, any reduction of the number of operation—however
small—is of interest. To this aim, we derive now a more compact form of the BLUP
(7) and of its MSPE, to be used in the following section.

Consider the linear transformation that maps the vector
[
Y(x0) Y (x1) · · · Y(xn)

]′

to the vector Ỹ whose entries are Ỹ1 = Y(x0) − Y(x1), Ỹi = Y(xi ) − Y(x1), i ≥ 2.
The generic LUP Ŷ (x0) = ∑n

i=1 aiY (xi ),
∑n

i=1 a1 = 1, can be written as

Ŷ (x0) = a1Y(x1) +
n∑

i=2

ai(Ỹi + Y
(
x1

)
)

=
(

n∑

i=1

ai

)

Y(x1) +
n∑

i=2

aiỸi

= Y(x1) +
n∑

i=2

wiỸi ,

with unconstrained weights wi = ai , i = 2, . . . , n. If the wi ’s are such that
E(Ỹ1|Ỹi , i = 2, . . . , n) = ∑n

i=2 wiỸi the variance

Var

(

Ỹ1 −
n∑

i=2

wiỸi

)

= Var
(
Y(x0) − Ŷ (x0)

)



360 G. Pistone, G. Vicario

is minimized. Let

R̃ =
[

R̃11 R̃12

R̃21 R̃22

]

be the covariance matrix of Ỹ partitioned 1|n − 1. We have w = R̃12R̃−1
22 and

MSPE[Ŷ0] = R̃11 − R̃12R̃−1
22 R̃21. (9)

Remark 1 The value of the parameter t = exp(−θ) is usually estimated from the
set of the training points, e.g. by Maximum Likelihood (or the restricted one), cross-
validation or the posterior mode, and plugged in into the formula of the estimator. The
estimated value is plugged into the BLUP formula: the final predictor is no longer
linear, even if it is still named Empirical Best Linear Unbiased Predictor (EBLUP).
For a thoroughgoing reading, see Santner et al. (2003, 64 and pages following). In
this paper, we do not consider this issue, because the LH designs are compared at
each value of the t parameter in [0,1]. Nevertheless, as the likelihood equations are
algebraic, it is possible to use Algebraic Statistics to discuss such a case as done in
Catanese et al. (2006) for a different problem.

4 Latin Hypercube designs

A LH design (LHD) is a subset of the ld lattice with l points that fully projects on
each dimension. LHDs were introduced in CE by McKay et al. (1979). For fixed l

and d there are (l!)d−1 LHDs and their generation reduces to the generation of d − 1
permutations of 1, . . . , l. Other types of fraction are much more difficult to sample
from, which partially explains the popularity of LHDs. See Table 1 for an example
with l = 4 and d = 2. The point (i, j) is denoted by ij ; the LHD # 11 proceeds from
the permutation 1234 → 3412. It has been observed that some of the LHDs are not
attractive because they do not ensure a sufficient covering of the design space, see
e.g. Ye et al. (2000). The covering requirement depends on the closeness between the
training points and prediction ones. The MSPE (9) is

1. large when x0 is away from the training points x1, . . . ,xn;
2. small when it is close to them;
3. zero at the experimental points because of the interpolatory property of Kriging.

Table 1 The 24 LHDs for l = 4 and d = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

11 11 11 14 14 11 11 11 13 13 13 14 14 13 13 13 12 12 12 14 14 12 12 12

22 22 24 21 21 24 23 23 21 21 24 23 23 24 22 22 23 23 24 22 22 24 21 21

33 34 32 32 33 33 34 32 32 34 31 31 32 32 34 31 31 34 33 33 31 31 34 33

44 43 43 43 42 42 42 44 44 42 42 42 41 41 41 44 44 41 41 41 43 43 43 44
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Hence, a good planning should look for a specific choice of an LHD among the
(l!)d−1 that are available. The present paper is aimed to discuss a specific algebraic
methodology to assess the properties of each LHD. See also the discussion by (Jour-
dan and Franco 2010) and (Petelet et al. 2010) in this Issue.

The computation of a BLUP from an LHD requires the inversion of a sub-matrix
of Γd defined in (6). The sub-matrix has a special structure that we illustrate in the
case l = 4, d = 2. The full l × l grid covariance matrix is

Γ2 =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

11 1 t t2 t3 t t2 t3 t4 t2 t3 t4 t5 t3 t4 t5 t6

12 t 1 t t2 t2 t t2 t3 t3 t2 t3 t4 t4 t3 t4 t5

13 t2 t 1 t t3 t2 t t2 t4 t3 t2 t3 t5 t4 t3 t4

14 t3 t2 t 1 t4 t3 t2 t t5 t4 t3 t2 t6 t5 t4 t3

21 t t2 t3 t4 1 t t2 t3 t t2 t3 t4 t2 t3 t4 t5

22 t2 t t2 t3 t 1 t t2 t2 t t2 t3 t3 t2 t3 t4

23 t3 t2 t t2 t2 t 1 t t3 t2 t t2 t4 t3 t2 t3

24 t4 t3 t2 t t3 t2 t 1 t4 t3 t2 t t5 t4 t3 t2

31 t2 t3 t4 t5 t t2 t3 t4 1 t t2 t3 t t2 t3 t4

32 t3 t2 t3 t4 t2 t t2 t3 t 1 t t2 t2 t t2 t3

33 t4 t3 t2 t3 t3 t2 t t2 t2 t 1 t t3 t2 t t2

34 t5 t4 t3 t2 t4 t3 t2 t t3 t2 t 1 t4 t3 t2 t

41 t3 t4 t5 t6 t2 t3 t4 t5 t t2 t3 t4 1 t t2 t3

42 t4 t3 t4 t5 t3 t2 t3 t4 t2 t t2 t3 t 1 t t2

43 t5 t4 t3 t4 t4 t3 t2 t3 t3 t2 t t2 t2 t 1 t

44 t6 t5 t4 t3 t5 t4 t3 t2 t4 t3 t2 t t3 t2 t 1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

.

(10)
A generic 2-dimensional l-elements LHD has the form [1σ(1), . . . , lσ (l)] and
the element of the sub-matrix with row name iσ (i) and column name jσ (j) is
t |j−i|+|σ(j)−σ(i)| = t |j−i| × t |σ(j)−σ(i)| therefore the sub-matrix is Γ1 ◦ σ(Γ1) where
◦ denotes the component-wise (Hadamard) product of matrices and σ(Γ1) is the σ -
permutation of rows and columns. For example, the correlation sub-matrix of the
LHD # 11 is

⎡

⎢⎢
⎣

13 24 31 42

13 1 t2 t4 t4

24 t2 1 t4 t4

31 t4 t4 1 t2

42 t4 t4 t2 1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 2 3 4

1 1 t t2 t3

2 t 1 t t2

3 t2 t 1 t

4 t3 t2 t 1

⎤

⎥⎥
⎦ ◦

⎡

⎢⎢
⎣

3 4 1 2

3 1 t t2 t

4 t 1 t3 t2

1 t2 t3 1 t

2 t t2 t 1

⎤

⎥⎥
⎦.

4.1 The method

We present below a step-by-step description of our algebraic way to perform a com-
parison in the class of LHDs with d variables and/or factors, each one with l levels.
Illustration is given for the case d = 2, l = 4. Computations are organized in a batch
which calls for the statistical software R (for the manipulation of the matrices) and
the algebraic software CoCoA (for symbolic computations).

Global covariance matrix. The covariance matrix Γd = Γ ⊗d
1 , where Γ1 is given in

(3), is computed by Kronecker products, e.g. (10).
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Table 2 The 24 LHDs for l = 4 and d = 2 classified according the TMSPE criterion (bottom line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

11 11 11 14 14 11 11 11 13 13 13 14 14 13 13 13 12 12 12 14 14 12 12 12

22 22 24 21 21 24 23 23 21 21 24 23 23 24 22 22 23 23 24 22 22 24 21 21

33 34 32 32 33 33 34 32 32 34 31 31 32 32 34 31 31 34 33 33 31 31 34 33

44 43 43 43 42 42 42 44 44 42 42 42 41 41 41 44 44 41 41 41 43 43 43 44

1 2 3 4 3 4 3 5 3 6 7 2 1 2 3 4 3 4 3 5 3 6 7 2

Generation of the LHDs. Generation of permutations of the integers 1,2, . . . , l pro-
duces a l × (l!)d−1 table containing all the LHDs, e.g. Table 1.

Sub-setting. For each LHD and each x0 in its complement the joint covariance ma-
trix is computed by sub-setting Γd ; MSPE for each x0 is symbolically computed as
a rational function of t . The Total of the MSPEs over all points to be predicted (TM-
SPE) is obtained for all LHDs as rational functions of t and subsequently TMSPEs
are clustered according to the algebraic form of the rational function. The TMSPE
index replaces the Integrated MSPE in the discrete case. For example, with l = 4 and
d = 2, the following output is obtained from CoCoA. It is a list of rational functions,
each one representing the MSPE of one of the seven classes.
C1:
(2t^8 - 4t^7 - 12t^6 + 4t^5 + 8t^4 + 20t^3 + 12t - 30)/(t^4 - t^2 - 2)
C2:
(t^13 + t^12 + 1/2t^11 - 11/2t^10 - 31/2t^9 - 19/2t^8 - 5/2t^7 + 71/2t^6
+ 43/2t^5 + 71/2t^4 + 13t^3 - 27t^2 - 18t - 30)/
(t^7 + t^6 - 2t^4 - 2t^3 - 4t^2 - 2t - 2)
C3:
(1/2t^15 + 1/2t^14 + t^13 - 4t^12 + 3/2t^11 - 17/2t^10 - 47/2t^9 + 9/2t^8
- 7t^7 + 48t^6 + 59/2t^5 + 49/2t^4 + 16t^3 - 35t^2 - 18t - 30)/
(t^8 + t^7 - 4t^4 - 2t^3 - 5t^2 - 2t - 2)
C4:
(1/2t^14 - 1/2t^12 - 2t^11 + 3t^10 - 4t^9 - 18t^8 + 12t^7 - 27/2t^6
+ 40t^5 + 3/2t^4 + 38t^3 - 39t^2 + 12t - 30)/(t^6 - t^4 - 4t^2 - 2)
C5:
(t^15 + t^14 + t^13 - 7t^12 - 5t^11 - 5t^10 - 23t^9 + 13t^8 + 2t^7
+ 42t^6 + 20t^5 + 20t^4 + 22t^3 - 34t^2 - 18t - 30)/
(t^9 + t^8 + 2t^7 - 2t^6 - 4t^4 - t^3 - 5t^2 - 2t - 2)
C6:
(t^9 - 3t^8 + 2t^7 + 2t^6 - 22t^5 + 8t^4 + 28t^3 + 8t^2 - 9t - 15)/
(t^3 - t^2 - t - 1)
C7:
(3t^8 - 2t^7 + 6t^6 - 9t^5 - 5/2t^4 - 10t^3 + 10t^2 - 3t + 15/2)/
(t^2 + 1/2),

which, in turn, gives rise to the classification shown in the last row of Table 2.
Performance evaluation Each rational function is studied to assess the performance

in each class of LHD. For example, in graphical form as in Fig. 2; the classification
obtained is best appreciated by looking at a graphical representation of the 24 LHDs
in Table 3. Each of the seven classes is an orbit of the action of the dihedral group
of the square on the set of all LHDs.

4.2 Discussion of the example

In this case there is not much difference between the LHDs if the criteria is TMSPE.
Some difference can be seen in the second graph showing a relative difference near
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Fig. 2 Performance of LHDs for l = 4 and d = 2

Table 3 24 LHDs classified according the TMSPE criteria

t = 1, that is, θ = 0 (constant covariance). As the computations are symbolic there is
no risk of numerical errors near the critical point. Other criteria have been suggested,
for example based on entropy, see Shewry and Wynn (1987). Our methodology, when
applied to the entropy instead of TMSPE, produces the same classification of LHDs
as in Table 2, because of the invariance argument, and the same ranking of classes.

Class 6 shows the best performance. It consists of LHDs which are maximin in the
L1 distance, see Morris and Mitchell (1995); it also consists of “tilted” 22 designs; the
designs in this class are called U-design in Tang (1993). Classes 3, 4, 5 are essentially
equivalent and worse than class 6. Designs in class 5 are called cyclic designs in Bates
et al. (1996). Class 2 is the second worst. Classes 1 and 4 consist of regular fractions
42−1. Class 3 is made of regular fractions 24−2 (pseudo factors).
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4.3 Other examples

The methodology we have illustrated in the case l = 4 and d = 2 is, in principle,
of general applicability. Figure 3 shows the results in the case l = 4 and d = 3, and
Fig. 4 the results for l = 6 and d = 2. The choice of these dimensions for levels and
number of factors is merely indicative of the type of comparisons that are available.
The dashed lines represent the TMSPE of the LHDs whose points lie on the diagonals
of the grid. These designs are considered to not be properly space filling, even if they
have nice marginal properties and the largest value of the respective TMSPE confirm
their poor capability of prediction. Other remarkable features shown are the minimum
value of the TMSPE corresponding to maximum correlation t = 1 and the maximum
value of the TMSPE corresponding to the null correlation t = 0 between the training
points (i.e. independence, according to the assumption of normality). This is coherent
with the Kriging prediction methodology: predicting at an untried location, observa-
tions closer to it should have more influence on the prediction because of the existing
correlation. In the right-hand graphs, we resort to a different representation of the
comparison index relating the TMSPEs to the worst case, in order to magnify the

Fig. 3 Performance of LHDs for l = 4 and d = 3

Fig. 4 Performance of LHDs for l = 6 and d = 2
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differences: the ratios between the TMSPE of the diagonal LH designs and the ones
corresponding to each of the other classes are plotted against t = exp(−θ).

5 Discussion

The main result of this paper is the illustration of symbolic computations in a par-
ticular model of Kriging. It shows the potential applicability, in this area, of ideas
from Algebraic Statistics, see. the review in Gibilisco et al. (2009). Interesting ex-
ploratory results are obtained, for example the neat classification and ranking of the
4 × 4 LHDs shown in Table 2, Fig. 2, and Table 3. The same classification and rank-
ing was obtained for other optimality criteria, e.g. entropy. While the classes depend
on the symmetry of the problem under the dihedral group of the square, it is notable
that it is the result of a symbolic computation. The algebraic form is also of use in
evaluating the relative error near the critical point t = 1.

The methodology depends on the algebraic form of the SCF and could be im-
plemented for any class of training set, LHDs being an example. Some of the other
popular performance criteria are based on non-algebraic operations, typically max
MSPE at untried points, and cannot be solved algebraically in a standard way.

This methodology has limitations when the number of levels and/or factors is
large. Indeed, the very high complexity of the symbolic computations limits con-
siderably the dimension of the problems that can be practically solved. In this paper,
we have not tried any optimization of the program we have used, which consists of a
sequence on runs from standard packages, nor we considered writing any ad-hoc soft-
ware. Such an optimization would require the study of efficient ways to generate the
training sets from the class of interest, which is a general problem not depending on
the algebraic methodology, and the study of algorithms for the symbolic computation
of the inverse and the determinant of a correlation matrix with polynomial entries.
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