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Abstract Predictive mean matching is an imputation method that combines paramet-
ric and nonparametric techniques. It imputes missing values by means of the Nearest
Neighbor Donor with distance based on the expected values of the missing variables
conditional on the observed covariates, instead of computing the distance directly on
the values of the covariates. In ordinary predictive mean matching the expected val-
ues are computed through a linear regression model. In this paper a generalization of
the original predictive mean matching is studied. Here the expected values used for
computing the distance are estimated through an approach based on Gaussian mixture
models. This approach includes as a special case the original predictive mean match-
ing but allows one to deal also with nonlinear relationships among the variables. In
order to assess its performance, an empirical evaluation based on simulations is car-
ried out.

Keywords Incomplete data · Imputation · Nearest neighbor donor · Gaussian
mixture models

1 Introduction

The presence of partially incomplete data is one of the main issues to deal with in
the context of Official Statistics. The most common way to manage missing val-
ues consists in compensating for nonresponse by imputing artificial data. A variety
of imputation techniques have been introduced in literature and used by practitioners.
They can be roughly divided into parametric and nonparametric techniques. Paramet-
ric methods are generally parsimonious, but, being based on explicit models, they fail
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when the model assumptions are not suitable for the data to be analyzed. On the con-
trary, nonparametric techniques do not rely on explicit model assumptions but require
high amount of observations in order to be satisfactorily applied. One of the most
popular nonparametric imputation methods is the Nearest Neighbor Donor (NND)
that consists in matching completely observed units (donors) with incomplete units
(recipients), based on some distance function, and transferring values from donors to
recipients.

In order to overcome the difficulties of parametric and nonparametric methods,
some techniques have been developed that could be considered in the middle of the
two previous approaches. Among them, Predictive Mean Matching (PMM) (Little
1988) is one of the most commonly used (see, for instance, Durrant and Skinner
2006). PMM makes use of an explicit parametric model only to define a suitable
criterion for matching complete and incomplete units. In a quite broad sense, PMM
could be considered as a particular NND method with a suitable distance function. On
the other hand, the function used in PMM is not a real distance function in the covari-
ate space since the distance between distinct points can be zero. Thus, the asymptotic
properties of the NND are no longer guaranteed, and the results of imputation via
PMM still depend on the model. Nevertheless, the method is probably more robust
than a fully model based approach, with respect to departures from the model as-
sumptions. PMM is also appealing because it imputes “live” values, i.e., values that
are really observed.

In a multivariate context, when the variables are continuous and in presence of
arbitrary patterns of missing items, a typical application of the PMM is the following.

1. The parameters of a multivariate Gaussian distribution are estimated through the
EM algorithm (Dempster et al. 1977) using all the available data (complete and
incomplete).

2. Based on the estimates from EM, for each incomplete unit (recipient), predictions
of the missing items conditional on the observed ones are computed. The same
predictive means (i.e., corresponding to the same missing pattern) are computed
for all the complete observations (donors).

3. Each recipient is matched to the donor having the closest predictive mean with
respect to the Mahalanobis distance defined through the residual covariance matrix
from the regression of the missing items on the observed ones.

4. Missing items are imputed in each recipient by transferring the corresponding
values from its closest donor.

Although the previous procedure should be more robust than imputation based on
standard linear regression, some degree of linearity is still assumed in the relations
among variables. Thus, if this assumption is not appropriate, poor performances are
expected. In this paper, this difficulty is overcome through a more flexible version of
PMM that includes as a particular case the ordinary PMM. In the proposed method,
data are modeled by means of a Gaussian mixture instead of a simple normal model.
The idea is to exploit the flexibility of Gaussian mixture models for approximating
more general data distributions (Marron and Wand 1992; Fraley and Raftery 2002).
As in the ordinary PMM, the role of the model is only to provide a suitable distance
function to be used for nearest neighbor imputation. This approach, which could be
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defined “semiparametric,” allows handling data that are far from normality, keeping
the advantage of imputing “live” values. The last characteristic ensures univariate
plausibility. For instance, missing items for nonnegative variables are guaranteed to
be imputed with nonnegative values. As it will be clarified in the following, this
semiparametric predictive mean matching (SPMM) is a generalized version of the
standard predictive mean matching.

The semiparametric predictive mean matching is compared to the nearest neighbor
donor method and to model based imputations obtained via Gaussian mixture models
as described in Di Zio et al. (2007). The experiments are performed on both simulated
and real data.

The paper is organized as follows. In Sect. 2, general concepts and basic defini-
tions on finite mixtures of Gaussian distributions are given. Section 3 illustrates the
use of mixture models for imputation via PMM. Finally, simulations and results are
described in Sect. 4.

2 Estimation of Gaussian mixtures models in presence of incomplete data

Let Y be a p-dimensional random vector (r.v.) with probability distribution (density)
f (y). Let us suppose that f can be represented in the form

f (y;�) =
K∑

k=1

πkfk(y; θk), (1)

where the densities fk with parameters θk belong to the same parametric family, and
the parameters πk are positive and subject to the constraint

∑K
k=1 πk = 1. Model

(1) is said to be a mixture of the distributions f1, . . . , fK with mixing proportions
π = (π1, . . . , πK). The functions f1, . . . , fK are generally named mixture compo-
nents (McLachlan and Peel 2000). In formula (1), � denotes the full set of parame-
ters (π1, . . . , πK, θ1, . . . , θK). The distribution f (y;�) is a Gaussian mixture if the
functions fk are Gaussian densities: fk = N(μk,�k), where N(μ,�) denotes the
normal density function with mean vector μ and covariance matrix �.

The log-likelihood of a Gaussian mixture based on n observations y1, . . . ,yn is

L(�) =
n∑

i=1

log

(
K∑

k=1

πkfk(yi; θk)

)
(2)

and cannot be analytically maximized. The maximum likelihood estimates (MLE) are
usually determined by recasting the problem as an incomplete data problem and by
using the EM algorithm (Dempster et al. 1977). To this aim, each unit i (i = 1, . . . , n)

is supposed to belong to one of the K groups corresponding to the K mixture com-
ponents, and each group k (k = 1, . . . ,K) is given an unobserved indicator variable
Zik , where Zik is 1 or 0 depending on whether unit i belongs or not to group k.

The random vector Zi = (Zi1, . . . ,ZiK) is multinomially distributed: MultK(1,π)

so that Prob{Zik = 1} = πk . The mixing proportion πk (k = 1, . . . ,K) can be inter-
preted as the a priori probability of belonging to the group k. Furthermore, by the
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Bayes formula, the probability

τik = E(Zik|yi ,�) = πkfk(yi; θk)∑
t πtft (yi; θ t )

, i = 1, . . . , n, k = 1, . . . ,K,

is the corresponding posterior probability given the observation yi , and its estimate
can be expressed in terms of the estimates of parameters π and θ . Following this
setting, the complete data log-likelihood can be written as

Lc(�) =
K∑

k=1

n∑

i=1

zik

[
log(πk) + logfk(yi; θk)

]
, (3)

where zik is the realized value of the r.v. Zik . Actually, the values zik are not observed,
and if we replace them by the corresponding r.v. Zik in formula (3), we obtain the
r.v. which we still call Lc(�). The E-step of the EM algorithm consists in calculat-
ing, at each iteration, the expected value of Lc(�) conditional on yi and the current
estimates of the parameters. This reduces to compute the expectation of Zik given yi ,
i.e., τik , for i = 1, . . . , n and k = 1, . . . ,K . In the normal case, the M-step can also be
performed in closed form, providing recursive equations for the parameters π and θ .

In case of partially incomplete data the algorithm so far described has to be slightly
modified in order to take into account the missing items. Now, the quantity to be
maximized is not anymore the log-likelihood (2) but the observed-data log-likelihood

Lobs(�) =
n∑

i=1

log

(
K∑

k=1

πkfk(yobs,i; θk)

)
,

where, according to the usual notation, yobs,i is the observed part of the vector yi

in the decomposition yi = (yobs,i ,ymis,i ). The modified EM algorithm is described
by Hunt and Jorgensen (2003) and basically combines the standard EM algorithm
for Gaussian mixtures, with the EM algorithm for incomplete normal data (Schafer
1997).

In our proposal, in order to initialize the EM, first a k-means algorithm is used to
cluster data into as many groups as the number of the mixture components. Then, the
proportions of units belonging to different clusters is taken as starting values of the
parameters π , while the parameters (μk,�k) are initialized with the sample mean
and the sample covariance matrix of each cluster.

3 PMM via Gaussian mixtures models

The algorithm described in the previous section refers to the MLEs of a Gaussian
mixture with a fixed number K of components. The problem then arises of how to
choose the optimum value of K . The approach followed in this paper is based on the
use of the Bayesian Information Criterion (BIC). In many problems of model selec-
tion, the BIC score can well approximate the Bayesian posterior model probability
(Schwarz 1978). Moreover, as Roeder and Wasserman (1997) have shown, when a
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normal mixture model is used to estimate a density “nonparametrically,” the density
estimate that uses BIC to select the number of mixture components is consistent.

For a given number K of mixture components, BIC is defined as 2Lobs(�̂K) −
νK log(n), where �̂K are the MLEs, νK is the number of independent parameters
to be estimated, and n is the number of available observations. The proposed strat-
egy consists in estimating different models with different number of components and
choosing the model with the highest BIC.

Once the model that best fits data is selected and its parameters are estimated,
for each incomplete observation yi = (yobs,i ,ymis,i ), the conditional distribution
f (ymis,i |yobs,i;�) can be estimated as

f
(
ymis,i |yobs,i; �̂

) =
K∑

k=1

τ̂ikN
(
ymis,i |yobs,i; θ̂k

)
,

and this probability distribution can be used for imputing missing values via its ex-
pected value (hereafter MCM) or through a random draw (MRD), as described in Di
Zio et al. (2007).

In the SPMM, analogously to the ordinary predictive mean matching, the condi-
tional mean from the distribution is only used to find a nearest neighbor for the ith
unit. More in detail, for each incomplete unit i, the donor j is the closest unit to i in
terms of predictive mean. An important issue to deal with is the choice of the distance
function to be used. As already mentioned in Sect. 1, in the ordinary PMM, a natural
choice is the Mahalanobis distance based on the residual covariance matrix of the
regression of Ymis on Yobs. In fact, this choice gives a sort of standardization, where,
roughly speaking, the contribution of the different variables to the global distance
function is “weighted” with the inverse of the corresponding prediction error (Little
1988). Unlike standard PMM, in SPMM the residual covariance matrix depends also
on the observations through the posterior probabilities τik , hence a generalization
must take into account the residual covariance matrices for both the recipient and the
donor. In order to simplify the notation, let xr = yobs,r be the observed part of the
incomplete record (recipient) r , and ym,r the missing part. Correspondingly, for each
complete record (possible donor) d , let xd and ym,d correspond to the missing and
the observed subvectors, respectively, in the (recipient) record r .

A natural metric for the Mahalanobis distance is the estimate ŜY|X of the covari-
ance matrix SY|X = Cov[(Ym,r |xr ) − (Ym,d |xd)]. In fact, since the variables Ym,r |xr

and Ym,d |xd are independent one of each other, SY|X is the sum of their covari-
ance matrices Cov(Y|xr ) and Cov(Y|xd), respectively. In order to provide an explicit
formula for SY|X, we note that the covariance matrix Cov(Y|x) of the distribution
of the random vector Y conditional on X = x can be decomposed as Cov(Y|x) =
Cov(1)(Y|x)+Cov(2)(Y|x) = Ek[Cov(Y|x, k)]+Covk[E(Y|x, k)], where the covari-
ance matrix Cov(Y|x, k) and the expected value E(Y|x, k) refer to the distribution of
Y conditional on X = x and a specific mixture component k, while Ek and Covk refer
to the distribution of the indicator variable Z for the group labels k = 1, . . . ,K .

The first term Cov(1)(Y|x) on the r.h.s. of the above decomposition is
∑K

k=1 τk(x)×
�

(k)
Y|X, where τk(x) denotes the posterior probability of belonging to the group k for a
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unit where x is observed, and �
(k)
Y|X is the residual covariance matrix of the regression

of Y on X referring to the kth Gaussian distribution of the mixture.
As far as the second term Cov(2)(Y|x) is concerned, it can be shown that

Cov(2)(Y|x) = ∑K
k=1 τk(x)D(k)(x), where

D(k)(x) = [
E(Y|x, k) − E(Y|x)

][
E(Y|x, k) − E(Y|x)

]T
.

The total covariance matrix is

Cov(Y|x) = Cov(1)(Y|x) + Cov(2)(Y|x) =
K∑

k=1

τk(x)
(
�

(k)
Y|X + D(k)(x)

)
.

The final estimate of the metric of the Mahalanobis distance is given by ŜY|X =
Ĉov(Y|xr ) + Ĉov(Y|xd), where Ĉov(Y|x) is obtained by using the MLE of the rele-
vant parameters.

It is worthwhile to note that when the number of components of the mixture model
is K = 1, the proposed method coincides with the original PMM; in fact, it reduces
to a simple Gaussian model, and the distance is proportional, up to a constant, to the
Mahalanobis metric.

4 Empirical evaluation

In this section we describe the simulation study carried out to evaluate the perfor-
mance of the proposed semiparametric predictive mean matching. The experiments
rely on data artificially generated from different probability distributions and on a
subset of data obtained from a real survey. The assessment is made in terms of preser-
vation of means and of covariance structure of the data. To this aim a comparison
between SPMM, NND, MCM, and MRD is performed. The conditional distribution
used for MCM, MRD, and SPMM is estimated through a finite mixture of Gaussian
distributions as described in Sect. 2. The considered imputation methods are evalu-
ated in different simulation frameworks.

For each experimental setting, 100 simulations have been performed consisting of
the following steps:

1. artificial generation of a sample from a given multivariate probability distribution;
2. introduction of missing values in the sample;
3. estimation of the mixture model used for SPMM, MCM, MRD, and imputation;
4. comparison of the imputed dataset with the original one through appropriate in-

dices.

All the experiments are developed using SAS/IML software, Version 9.1 of the SAS
System for Windows.

The previous 4 steps are detailed in the following subsection.

4.1 Sample data generation

In this section, the probability distributions and the set of real data used for the em-
pirical evaluation are described.
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4.1.1 Lognornal distribution, LN

A first experiment has been performed by drawing data from a multivariate lognormal
distribution. In practice, this is accomplished by drawing a sample of a 5-dimensional
random vector (X1, . . . ,X5) from a 5-variate Gaussian distribution and then defining
new variables (Y1, . . . , Y5) through the transformation: Yi = exp(Xi) for i = 1, . . . ,5.
The normal random vector (X1, . . . ,X5) is obtained by merging two independent ran-
dom vectors (X1,X2) and (X3,X4,X5) having normal distributions characterized by
parameters (μ(2),�(2)) and (μ(3),�(3)), respectively. The values of the parameters
for the normal distributions are:

μ(2) = (−2.5,−2.6)′, μ(3) = (−2.5,−2.6,−2.6)′,

�(2) =
(

3.1 2.7
2.7 2.8

)
, �(3) =

⎛

⎝
3.1 2.4 2.4
2.4 3.0 2.1
2.4 2.1 3.0

⎞

⎠ .

The parameters are obtained by a real survey.

4.1.2 Multivariate Gamma distribution, MG

Data are drawn from the Cheriyan and Ramabhadran’s multivariate Gamma distrib-
ution described in Kotz et al. (2000, pp. 454–456). In order to draw a sample of a
5-variate random vector (Y1, . . . , Y5) from this distribution, the following procedure
is adopted. First, samples are drawn from 6 independent random variables X1, . . . ,X6
distributed according to Gamma distributions with parameters θi (i = 1, . . . ,6).
Then, samples from (Y1, . . . , Y5) are obtained through the transformations

Y1 = X1 + X2; Y2 = X1 + X3;
Y3 = X1 + X4; Y4 = X1 + X5; Y5 = X1 + X6.

The values of the parameters are

θ = (1.0,0.2,0.3,0.4,0.5)′.

Following Kotz et al. (2000), it is easy to compute the expected value and the cor-
relation matrix of the random variables Yi . The values of θ are chosen so that the
variables Yi are characterized by high correlations. This experiment will be denoted
as MGH.

Another experimental setting (hereafter MGL) is obtained through the following
slight modification of the Cheriyan and Ramabhadran’s procedure. First, 7 indepen-
dent r.v.s. Xi for i = 1, . . . ,7 are considered distributed according to Gamma distrib-
utions characterised by different parameters θi . Then, the 5-variate random vector is
obtained combining the Xi in the following way:

Y1 = X1 + X3; Y2 = X1 + X4;
Y3 = X1 + X2 + X5; Y4 = X2 + X6; Y5 = X2 + X7.
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Fig. 1 Scatter-plot matrix of a
sample drawn from the
distribution used in MGL

The parameters θi are chosen to obtain a correlation structure characterized by two
weakly correlated blocks of variables with high correlation within the blocks. The
values of the parameters are

θ = (1,2,0.2,0.2,0.4,0.2,0.1)′.

A plot of a sample of 1,000 observations from this distribution is shown in Fig. 1.
For all the probability distributions (LN, MCH, MGL), samples of 500 and 1,000

units have been generated.

4.1.3 Experiments on a real data set

A subset of the 1997 Italian Labour Cost Survey (LCS) is also used for the evaluation
of the procedure. The LCS is a periodic sample survey that collects information on
employment, hours worked, wages, salaries, and labour cost on about 12,000 firms
with more than 10 employees. Our dataset consists of 1,000 units that belong to the
metallurgic economic activity sector. We analyze four main variables measuring the
“Total number of Employees” (Y1), the “Total number of Hours Worked” (Y2), the
“Wages and Salaries” (Y3), and the “Total Labour Cost” (Y4). The values of the
variables are obtained by means of a logarithmic transformation of the original data.
The experiment will be denoted by CLAV. Figure 2 shows the scatter-plot matrix of
the data used for the experiments.

Since the underlying data distribution is unknown, a resampling approach has been
adopted. The adopted resampling scheme consists in sampling 1,000 observations
(through a simple random sampling with replacement) y(1), . . . ,y(1,000) (bootstrap
sample) from the initial sample, where y(i) represents the ith unit whose observed
variables are (Y1, Y2, Y3, Y4). The bootstrap sample can be thought of as generated
from the empirical distribution of (Y1, Y2, Y3, Y4).
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Fig. 2 The scatter-plot matrix of the dataset used for the experiment CLAV

4.2 Nonresponse simulation

Once a sample of complete data is generated, item nonresponse is simulated accord-
ing to a Missing at Random (MAR) mechanism (Little and Rubin 2002).

When data are generated from a probability distribution, nonresponse-rates for
(Y1, Y2, Y3, Y4) depend on the observed values y5 of the variable Y5. More in de-
tail, denoting by qi the ith quartile of the empirical distribution of Y5, the nonre-
sponse probabilities for (Y1, Y2, Y3, Y4) are the following: 0.10 if y5 < q1, 0.20 if
y5 ∈ [q1, q3), and 0.30 if y5 ≥ q3. No missing values are introduced in the variable Y5.

As far as real data is concerned, missing values have been introduced according to
the previous described mechanism noting that the conditioning completely observed
variable is Y4.

4.3 Estimation and imputation

The incomplete sample is imputed using the NND, the SPMM, the MCM, and the
MRD. In the NND method, the Euclidean distance is used, and the matching variables
for a given incomplete unit are all those observed in that unit.

Concerning finite mixtures, estimates are performed following the algorithm de-
scribed in Sect. 2. Models with different number of components have been estimated.
Once the parameters have been estimated for all the models, the model with the high-
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est BIC is used to impute missing values following the SPMM, MCM, MRD methods
described in Sect. 3.

Starting points for the EM algorithm have been identified by the k-means algo-
rithm. The stopping rule is based on a threshold for the relative increase of the likeli-
hood in two consecutive iterations. In order to avoid singularities due to the unbound-
ness of the likelihood function for heteroscedastic mixtures models (McLachlan and
Peel 2000), the EM runs have been discarded whenever any matrix involved in the
estimation algorithm had determinant below a prefixed threshold.

4.4 Evaluation

The process is replicated 100 times. For each iteration, the following indicators are
computed based on the comparison of the original dataset with the imputed ones. Let
yi1, . . . , yip (i = 1, . . . , n) be the original “true” values of the p-dimensional random
variable Y in the ith unit, and ỹi1, . . . , ỹip the corresponding values after imputation.
As already stated, the performance of an imputation method is measured in terms of
preservation of means and of covariance matrix.

The preservation of the mean is measured through the relative root mean square
error

Dmj
=

√√√√ 1

100

100∑

t=1

(m
(t)
j − m̃

(t)
j )2

(m
(t)
j )2

, j = 1, . . . , p,

where m̃
(t)
j is the mean of variable Yj computed on the imputed dataset in the t th

experiment, and m
(t)
j is the mean computed on the original values.

An overall evaluation index can be obtained by the indicator

Dm =
p∑

j=1

Dmj
.

The preservation of the covariance structure is measured by computing for each pair
of variables Yj and Yk the following quantities:

djk =
√√√√ 1

100

100∑

t=1

(s
(t)
jk − s̃

(t)
jk )2

(s
(t)
jk )2

, j = 1, . . . , p, k = 1, . . . , p,

where s
(t)
jk and s̃

(t)
jk are the corresponding elements of the sample covariance ma-

trices S and S̃ computed on the original and imputed data, respectively, in the t th
experiment. In order to provide an overall evaluation index, the quantities djk are
summarized by the index

DS =
p∑

j=1

p∑

k=j

djk,

providing a measure for the variance and covariance structure preservation.
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Table 1 Results of the indices
Dm and DS computed on the
simulations based on lognormal
data with sample size 500
(LN 500) and 1000 (LN 1000)

LN 500 Dm DS LN 1000 Dm DS

SPMM 0.0002 0.0037 SPMM 0.0001 0.0018

NND 0.0003 0.0045 NND 0.0001 0.0023

MCM 0.0001 0.0049 MCM 0.0001 0.0045

MRD 0.0002 0.0028 MRD 0.0001 0.0011

Table 2 Results of the indices
Dm and DS computed on the
simulations based on
Multivariate Gamma MGL with
sample size 500 (MGL 500) and
1000 (MGL 1000)

MGL 500 Dm DS MGL 1000 Dm DS

SPMM 0.0008 0.0813 SPMM 0.0004 0.0348

NND 0.0007 0.0871 NND 0.0004 0.0434

MCM 0.0004 0.0573 MCM 0.0002 0.0422

MRD 0.0006 0.0499 MRD 0.0003 0.0190

Table 3 Results of the indices
Dm and DS computed on the
simulations based on
Multivariate Gamma MGH with
sample size 500 (MGH 500) and
1000 (MGH 1000)

MGH 500 Dm DS MGH 1000 Dm DS

SPMM 0.0014 0.0881 SPMM 0.0007 0.0332

NND 0.0013 0.0715 NND 0.0007 0.0319

MCM 0.0006 0.0545 MCM 0.0003 0.0659

MRD 0.0009 0.0434 MRD 0.0005 0.0250

Table 4 Results of the indices
Dm and DS computed on the
experiment CLAV

CLAV Dm DS

SPMM 0.0014 0.0881

NND 0.0013 0.0715

MCM 0.0006 0.0545

MRD 0.0009 0.0434

5 Results

The results of the experiments concerning the lognormal distribution are reported in
Table 1, while Tables 2 and 3 contain the results referring to the multivariate Gamma
distribution with low and high correlation, respectively. Finally, Table 4 shows the
values of the indicators related to the experiment carried out on the Labour Cost data.

The results show that the preservation of the mean is similar in all the methods,
although it can be noticed, as it was expected, a better behavior of MCM that is based
on imputation of conditional means. Concerning the preservation of the covariance
matrix, there is more difference among the methods. The best one is the imputa-
tion based on random draw from the estimated conditional probability distribution
(MRD).

It is interesting to compare NND with SPMM, since the latter can be interpreted
as a nearest neighbor donor with a particular distance. When there are some variables
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with low correlations, the behavior of the SPMM is better (Tables 1 and 2). When
the variables are correlated, the behavior is similar with a slight preference for NND.
This can be explained by the fact that the distance used in SPMM is based on the
conditional expected values estimated through an explicit model. Thus, SPMM takes
into account the different influences of the covariates on the response variables, while
NND treats all the covariates at the same way, unless different weights are assigned
to different variables in the distance function. However, in the latter case, it is evident
how difficult is to assign a weight to the variable. This difficulty is also increased by
the fact that the weights should change according to the missing data pattern. In other
words the SPMM can be broadly also considered as a distance computation assigning
different weights to the covariates, where the weights vary according to the missing
data pattern. On the other hand, when correlation among the variable is high, we can
say that all the covariates explain the response variables, and imputation based on a
real distance function, instead of predictive means, results in a better estimation of
the conditional probability distribution.

The results suggest the random draw from the model as the best method to use.
However, it is also worthwhile to remark an important characteristic of the SPMM.
This method imputes only “live” values, thus avoiding strange “synthetic” values,
for instance, the imputation of negative values when the variables are nonnegative.
Hence, this method is particularly appealing whenever micro data must be released.
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