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Abstract The analysis of time-indexed categorical data is important in many fields,
e.g., in telecommunication network monitoring, manufacturing process control, ecol-
ogy, etc. Primary interest is in detecting and measuring serial associations and depen-
dencies in such data. For cardinal time series analysis, autocorrelation is a convenient
and informative measure of serial association. Yet, for categorical time series analy-
sis an analogous convenient measure and corresponding concepts of weak stationarity
have not been provided. For two categorical variables, several ways of measuring as-
sociation have been suggested. This paper reviews such measures and investigates
their properties in a serial context. We discuss concepts of weak stationarity of a
categorical time series, in particular of stationarity in association measures. Serial as-
sociation and weak stationarity are studied in the class of discrete ARMA processes
introduced by Jacobs and Lewis (J. Time Ser. Anal. 4(1):19–36, 1983).

Keywords Categorical time series · Serial association · Weak stationarity · Discrete
ARMA processes

An intrinsic feature of a time series is that, typically, adjacent observations are dependent. The nature of
this dependence among observations of a time series is of considerable practical interest. Time series
analysis is concerned with techniques for the analysis of this dependence. (Box et al. 1994, p. 1)
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1 Introduction

A discrete-time categorical time series is a sequence (Xt )T of random variables,
where the time range can be assumed to be T = Z, and where the range V of the
Xt consists of a finite number of unordered categories (symbols or letters), which
may be coded by m pairwise different real numbers x1, . . . , xm. As pointed out by
the above remark of Box et al. (1994), the analysis of such a time series requires the
analysis of serial dependence. In case of a cardinal or binary time series, a convenient
tool of this analysis is the (partial) autocorrelation function.

Categorical time series occur in various fields of practice. Besides applications in
biological sequence analysis, see Example 1.1, Göb (2006) used several examples
from industrial process monitoring and control to illustrate the need for statistical
modelling of categorical time series. Applications to language modeling, software
usage and musical analysis are also known.

Example 1.1 (Bovine Leukemia Virus) The genome of an organism consists of se-
quences of the four DNA bases (nucleotides): the pyrimidines thymine (‘t’) and cy-
tosine (‘c’), and the purines adenine (‘a’) and guanine (‘g’). It can be considered
as a categorical time series with range V = {a,c,g,t}. Consider the genome of the
Bovine leukemia virus.1 for instance, which is of length 8419. Even the first 120
symbols,

gaagcgttct cctcctgaga ccctagtgct cagctctcgg tcctgagctc

tcttgctccc gagaccttct ggtcggctat ccggcagcgg tcaggtaagg

caaaccacgg tttggagggt . . . ,

exhibit many runs, indicating the possible presence of serial dependence. The detec-
tion and analysis of patterns in genetic sequences is of great use for the recognition
of genes, and the understanding of their structures, functionalities and evolutionary
roots. Models for categorical time series play an important role in the analysis of
biological sequences, with the aim of sequence identification, comparison, character-
ization and classification. Later, in Example 6.1, we will identify and fit a model to
the genome of the Bovine leukemia virus.

At present, modelling of categorical time series is discussed mainly in the knowl-
edge discovery from databases (KDD) community, see Weiss and Hirsh (1998). Mod-
els and inference in statistical time series analysis have concentrated on the paradigm
of continuous numerical data whereas categorical time series analysis has received
relatively little attention. In particular, standard measures for dispersion and serial
dependence, or concepts of weak stationarity have not been defined.

In cardinal analysis, serial correlation is built from the bivariate correlation of each
two random variables. It is natural to use an analogous approach for categorical analy-
sis. Section 2 discusses general concepts of measures of association and dependence

1Source: http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi??db=nucleotide\&val=NC_001414.
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for categorical variables. Section 3 discusses the concept of weak stationarity and
considers measures of serial association for categorical time series. For the particular
class of discrete ARMA models introduced by Jacobs and Lewis (1983), measures
of association and weak stationarity are investigated in Sects. 4 and 5. The results
are used in Sect. 6 for the purpose of model identification and estimation in discrete
ARMA processes. Section 7 contains our conclusions.

2 Concepts of dependence

Throughout this section, we consider the following bivariate categorical scheme.

Scheme 2.1 (Bivariate Categorical Scheme) Let X, Y be categorical random vari-
ables with range Vx = {x1, . . . , xmx } and Vy = {y1, . . . , ymy }, respectively, where
x1, . . . , xmx and y1, . . . , ymy are mx and my pairwise different values, respectively.
The distributions are given by P(X = xi) = px,i , i = 1, . . . ,mx , and P(Y = yj ) =
py,j , j = 1, . . . ,my . The ranges are chosen in such a way that px,i ,py,j > 0 for all
i = 1, . . . ,mx , j = 1, . . . ,my . Let pij = P(X = xi, Y = yj ) be the joint probabil-
ity, and let pi|j = P(X = xi | Y = yj ) = pij

py,j
denote the corresponding conditional

probability.

To motivate our approach for defining measures of dependence and association,
we review briefly the approaches for measuring dispersion of a categorical random
variable, see Appendix A. The definition starts from an intuitive point of view. Large
dispersion is associated with high uncertainty about the outcome of X, and accord-
ingly small dispersion is associated with a low uncertainty. In this informal under-
standing, the ‘quantity of uncertainty’ about the outcome of X measures the disper-
sion of X. So, the hallmarks for a measure of dispersion are the basic requirements
that a uniform distribution represents maximal dispersion, and a one-point distribu-
tion represents minimal dispersion. In the third step, referring to Appendix A, axioms
for a measure of dispersion can be defined by considering the exposed hallmarks.

We proceed in an analogous manner to define measures of dependence, consider-
ing the extreme cases of stochastic independence and perfect stochastic dependence.

Definition 2.2 (Dependence of Categorical Random Variables) Let X and Y be cat-
egorical random variables as in the model Scheme 2.1.

(i) X and Y are (stochastically) independent, iff pij = px,i · py,j (equivalently,
pi|j = px,i ) for all i = 1, . . . ,mx , j = 1, . . . ,my .

(ii) X perfectly depends on Y , iff for every j = 1, . . . ,my , the conditional distrib-
ution of X, conditioned on Y = yj , is a one-point distribution, i.e., if for every
j = 1, . . . ,my there exists ϕ(j) = ij ∈ {1, . . . ,mx} such that

pi|j =
{

1 if i = ij = ϕ(j),

0 otherwise,
and pij =

{
py,j if i = ij = ϕ(j),

0 otherwise.



74 C.H. Weiß, R. Göb

In Appendix B, we list desirable properties (A1)–(A5) of corresponding measures
of association. Association measures A satisfying these requirements may also be
called measures of dependence. Also several examples of such measures are briefly
reviewed in Appendix B.

For given marginal distributions of X and Y , it is always possible to find a joint
distribution, such that X and Y are independent. The same is not true for perfect
dependence.

Lemma 2.3 (Perfect Dependence) Let X and Y be categorical random variables as
in the model Scheme 2.1.

(a) If X depends perfectly on Y , then mx ≤ my . More specifically, the mapping
ϕ: {1, . . . ,my} → {1, . . . ,mx} defined by part (ii) of Definition 2.2 is surjective.

(b) Let mx = my . If X depends perfectly on Y , then ϕ is even bijective, py,j =
px,ϕ(j), and Y depends perfectly on X. The propositions (i) “X depends per-
fectly on Y ”, and (ii) “Y depends perfectly on X”, are equivalent.

(c) If X depends perfectly on Y and mx < my , then px,i = ∑
j∈ϕ−(i) py,j , where

ϕ−(i) denotes the preimage of i.

See Appendix C.1 for the proof of Lemma 2.3. According to Lemma 2.3, perfect
dependence is in general a nonsymmetric relation. Part (b) of Lemma 2.3 states that
perfect dependence is a symmetric relation between X and Y only if the ranges of X

and Y are of equal size. In the latter case the random variables X and ϕ(Y ) are
identical with probability 1, and they show the same dispersion. In the situation of
part (c), X is determined by Y by lumping some states together.

In some situations, it is desirable to further distinguish between signed (orientated)
association and unsigned (unorientated) association. In the cardinal case, correlation
is a signed measure, where positive and negative directions are distinguished and can
be interpreted. The absolute value of the correlation is unsigned and measures only
the strength of the relationship. In the general categorical case, the sign or orientation
of association or dependence is meaningless. Accordingly, the unsigned measures
considered in Appendix B are all nonnegative, where the value 0 is adopted if X and Y

are independent, and where the maximum is adopted in case of perfect dependence.
An indispensable prerequisite for signed or orientated association to become

meaningful is that the ranges of X and Y are identical, i.e., mx = m = my ,
{x1, . . . , xmx } = {z1, . . . , zm} = {y1, . . . , ymy }, also refer to part (b) of Lemma 2.3.
In this case, we can distinguish negative and positive perfect dependence. Desirable
properties of corresponding measures are listed in Appendix B, together with Co-
hen’s κ as a concrete example.

Definition 2.4 (Perfect Positive, Negative Dependence) Let X and Y be categorical
random variables as in the model Scheme 2.1 with an identical range {z1, . . . , zm}.

X and Y are called perfectly positively dependent, if they are perfectly dependent
and if pi|j = 1 for i = j , i.e., X and Y necessarily adopt the same value. In contrast,
if all pi|i = 0, they show perfect negative dependence.
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A related approach is known from the discipline of measuring mobility. The con-
cept of perfect positive dependence includes that of immobility, while independence
is interpreted as perfect mobility. For an elementary overview, see Shorrocks (1978).

3 Weak stationarity of categorical time series

We consider the time series (Xt )Z of categorical variables Xt with identical ranges
VX = {x1, . . . , xmx }. Concepts of stationarity are essential for time series analysis.
The concept of strict (strong) stationarity, i.e., the identity of the joint distributions
of Xt1, . . . ,Xtm and of Xt1+k, . . . ,Xtm+k for arbitrary t1, . . . , tm, k, does not refer
to the type of data considered, and is valid for time series of cardinal, ordinal or
categorical observations. In contrast, the concept of weak stationarity from cardinal
time series analysis, i.e., the invariance of the expectations E[Xt ] and all covariances
Cov[Xt,Xt+h] in t , is essentially cardinal and inadequate for ordinal or categorical
data.

The topic of weak stationarity of categorical time series seems to have received
little interest in literature. Stationarity is commonly interpreted as strict stationarity,
whereas concepts of weak stationarity are not used. A discussion of weak stationarity
of categorical time series is necessary. We list some concepts of categorical station-
arity, together with relations among them.

Definition and Theorem 3.1 (Stationarity of a Categorical Time Series) Let (Xt )Z

be a time series of categorical variables with identical ranges VX = {x1, . . . , xmx }.
The following concepts of weak stationarity of (Xt )Z are defined.

(i) C(k) stationarity: C(k) stationarity holds if the k categories with largest prob-
abilities are invariant in t . The probabilities of the categories with the k largest
probabilities may vary.

(ii) D(k) stationarity: D(k) stationarity holds if the time series (Xt )Z is C(k) sta-
tionary and if, in addition, the k largest among the mx probabilities P(Xt = x1),

. . . ,P(Xt = xmx ) are invariant in t .
(iii) Marginal stationarity: Marginal stationarity holds if the mx probabilities

P(Xt = x1), . . . ,P(Xt = xmx ) are invariant in t .
(iv) Measure A stationarity: Measure A stationarity, i.e., stationarity with respect to

an association measure A, holds if the associations A(Xt−k,Xt ) are invariant
in t .

(v) Bivariate stationarity: Bivariate stationarity holds if the pairwise joint distribu-
tion of Xt−k,Xt is invariant in t .

The following relations hold between the above defined concepts:

(a) Bivariate stationarity ⇒ measure A stationarity.
(b) Bivariate stationarity ⇒ marginal stationarity ⇒ C(k), D(k) stationarity.
(c) Marginal stationarity ⇐⇒ D(mx) stationarity.

The definition of C(k) and D(k) stationarity are generalizations of C(1) and D(1)

stationarity, introduced by McGee and Harris (2005). C(k), D(k) and marginal sta-
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Table 1 Measures of serial dependence for bivariate stationary time series

Measure Definition Range

Goodman and Kruskal’s τ A
(τ)
ν (k) =

∑m
i,j=1

pij (k)2

pj
−∑m

i=1 p2
i

1−∑m
i=1 p2

i

[0;1]

Goodman and Kruskal’s λ A
(λ)
ν (k) =

∑m
j=1 maxi pij (k)−maxi pi

1−maxi pi
[0;1]

Uncertainty coefficient A
(u)
ν (k) = −

∑m
i,j=1 pij (k) ln (

pij (k)

pipj
)∑m

i=0 pi lnpi
[0;1]

Pearson measure X2
n(k) = n

∑m
i,j=1

(pij (k)−pipj )2

pipj
[0;n(m − 1)]

�2-measure �2(k) = X2
n(k)
n [0;m − 1]

Sakoda measure p∗(k) =
√

m�2(k)

(m−1)(1+�2(k))
[0;1]

Cramer’s v v(k) = �(k)√
m−1

[0;1]

Cohen’s κ κ(k) =
∑m

j=1(pjj (k)−p2
j
)

1−∑m
j=1 p2

j

[−
∑m

j=1 p2
j

1−∑m
j=1 p2

j

; 1]

tionarity are based on the marginal distribution alone and ignore the aspect of ser-
ial association. As in the cardinal case, a reasonable definition of weak stationarity
should account for serial association. This might be achieved by adding measure A

stationarity to one of the marginal concepts. However, the problem is in choosing
an equivalent to the correlation measure in the cardinal case. Appendix B presented
a considerable variety of categorical association measures. It is not clear, which of
these should be chosen to define a measure A stationarity to be added to the marginal
stationarity.

Bivariate stationarity may be a reasonable alternative. It includes marginal and
association measure stationarity of any kind, and may be used to characterize weak
stationarity in the categorical case. Under bivariate stationarity, all association mea-
sures A(Xt−k,Xt ) are invariant in t and depend only on k. Hence, we can write the
kth order serial association as A(k) = A(Xt−k,Xt ). In this notation, the serial ver-
sions of the measures of association are presented by Table 1.

All variables in the process (Xt )Z are assumed to have the same range V . Hence
positive and negative kth-order serial association can be measured by Cohen’s κ(k).
Distinguishing positive and negative serial association is important for time series
analysis. Sequences with strong positive first-order serial association tend to show
long runs of symbols from V . Sequences with perfect positive sth-order serial depen-
dence are s-periodic.

Models for purely categorical time series are rare, for an overview see McKenzie
(2003). A sparsely parameterized class of such models are the discrete ARMA models
of Jacobs and Lewis (1983). In the Sects. 4, 5 and 6, we shall study the specific
class of categorical NDARMA processes. This class exhibits an important and useful
property: association measure stationarity and bivariate stationarity are equivalent.
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4 NDARMA models: definition and basic properties

We illustrate the usefulness of the measures of serial association introduced before
in Sect. 3 by investigating association and dependence in a discrete variant of the
familiar cardinal ARMA model. Under the name discrete ARMA (DARMA) models
they have been introduced in several papers by Jacobs and Lewis (1978a, 1978b,
1978c). Jacobs and Lewis (1978a, 1978b, 1978c) discussed special cases. Jacobs and
Lewis (1983) introduced the general version of DARMA(p, q + 1) models. How-
ever, DARMA processes appeared to be unnecessarily complex and difficult to in-
terpret: They “define the autoregression via an autoregressive tail”, but “the au-
toregression can be made explicit, as in the usual (normal theory) linear processes”
(Jacobs and Lewis 1983, p. 24). So they defined the NDARMA(p, q) model as a
new discrete ARMA model, which “is more reminiscent of the linear ARMA(p,N)

process” (Jacobs and Lewis 1983, p. 24). We shall concentrate on the latter type of
models.

Definition 4.1 (NDARMA Model) Let (Xt )Z, (εt )Z be categorical time series
where all components have identical ranges V = {x1, . . . , xm} with m pairwise
different real numbers x1, . . . , xm. Let (εt )Z be i.i.d. with marginal distribu-
tion of each εt given by P(εt = xj ) = πj for j = 1, . . . ,m, t ∈ Z. For t ∈ Z,
εt is assumed to be independent of (Xs)s<t . Let the i.i.d. decision variables
Dt = (α1,t , . . . , αp,t , β0,t , . . . , βq,t ) have a multinomial distribution MULT(1;φ1,

. . . , φp,ϕ0, . . . , ϕq) and let Dt be independent of (εs)Z and of (Xs)s<t .
The process (Xt )Z is called an NDARMA(p, q) process if it fulfills the recursion

Xt = α1,tXt−1 + · · · + αp,tXt−p + β0,t εt + · · · + βq,t εt−q . (4.1)

In case of q = 0, the process is called a DAR(p) process, and in case of p = 0, it is
called a DMA(q) process.

Jacobs and Lewis (1983) considered two cases: initialized NDARMA process and
strictly stationary NDARMA processes. The following lemma collects some elemen-
tary properties of NDARMA processes (Xt )Z without assuming special cases.

Lemma 4.2 (NDARMA Model) Let (Xt )Z, (εt )Z be an NDARMA(p, q) process as
characterized by the Definition 4.1.

(a) Equivalently to Definition 4.1, (Xt )Z can be characterized as

Xt = VtXt−At + (1 − Vt)εt−Dt , (4.2)

where (εt )Z, (At )Z, (Dt )Z, (Vt )Z are mutually independent i.i.d. processes, and
where εt , At , Dt , Vt are independent of (Xs)s<t . Furthermore, P(Vt = 1) = φ1 +
· · · + φp , P(Vt = 0) = ϕ0 + · · · + ϕq , P(At = l) = φl/(φ1 + · · · + φp) for l =
1, . . . , p, P(Dt = m) = ϕm/(ϕ0 + · · · + ϕq) for m = 0, . . . , q .
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(b) For t ∈ Z, let Ti(t), i = 1,2, . . . , be recursively defined by T1(t) = t , Ti+1(t) =
Ti(t) − ATi(t), and let

Rt =
{min{i ≥ 1 | VTi(t) = 0}, if {i ≥ 1 | VTi(t) = 0} 
= ∅,

+∞, if {i ≥ 1 | VTi(t) = 0} = ∅.
(4.3)

Then for each t ∈ Z we have Rt < +∞ and Xt = εRt with probability 1. The
processes (Rt )Z and (εt )Z are independent among each other.

(c) For t1, . . . , tk ∈ Z, xi1, . . . , xik ∈ V , we have

P(Xt1 = xi1, . . . ,Xtk = xik ) = πi1 · · ·πik

∑
s1≤t1,...,sk≤tk
il 
=im⇒sl 
=sm

P(Rt1 = s1, . . . ,Rtk = sk).

(4.4)
(d) For t ∈ Z, xi ∈ V , we have P(Xt = xi) = πi = P(εt = xi), i.e., (Xt )Z is mar-

ginally stationary and the distribution of each Xt equals the distribution of the
i.i.d. variables εs , s ∈ Z.

(e) For t1, t2 ∈ Z, xi1, xi2 ∈ V , we have

P(Xt1 = xi1,Xt2 = xi2) = πi1πi2P(Rt1 
= Rt2) + δi1i2πi2P(Rt1 = Rt2). (4.5)

In particular, (Xt )Z is bivariately stationary iff for t1, t2 ∈ Z, the probabilities
P(Rt1 = Rt2) depend on t1, t2 only through |t1 − t2|.

The proof of Lemma 4.2 is given in Appendix C.2.

5 Serial dependence in NDARMA processes

We shall study serial association and dependence in NDARMA processes. In Defini-
tion 4.1, the range V = {x1, . . . , xm} was assumed to consist of real numbers. Hence,
pro forma autocorrelations can be calculated. The subsequent Lemma 5.1 expresses
autocorrelations in terms of probabilities.

Lemma 5.1 (Autocorrelation in NDARMA Processes) Let (Xt )Z be an
NDARMA(p, q) series as introduced in Definition 4.1, and let t1, t2 ∈ Z. Then we
have

Corr[Xt1,Xt2] = P(Rt1 = Rt2), (5.1)

P(Xt1 = xi1,Xt2 = xi2) = πi1πi2

(
1−Corr[Xt1 ,Xt2]

)+δi1i2πi1 Corr[Xt1 ,Xt2]. (5.2)

In particular, Corr[Xt1 ,Xt2] ≥ 0.

Jacobs and Lewis (1983, p. 23) proved the validity of (5.1) for DARMA processes.
The proof for the NDARMA case is completely analogous. Equation (5.2) follows
from (4.5) and (5.1).

Based on Lemma 5.1, Theorem 5.2 shows that the autocorrelation is meaningful
under the categorical interpretation, and can be used to express measure A stationarity
of NDARMA processes.
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Theorem 5.2 (Autocorrelation and Weak Stationarity of NDARMA Processes) Let
(Xt )Z be an NDARMA(p, q) series as introduced in Definition 4.1.

(a) For t1, t2 ∈ Z, the following formulae relate the correlation Corr[Xt1,Xt2] to
measures of association, namely Cohen’s κ , Cramér’s v, Goodman and Kruskal’s
Aν

(τ), �2, Pearson’s X2, and Sakoda’s p∗:

Corr[Xt1,Xt2] = κ(Xt1 ,Xt2) = v(Xt1,Xt2)

=
√

A
(τ)
ν (Xt1,Xt2) =

√
�2(Xt1,Xt2)

m − 1
= d

√
X2

n(Xt1,Xt2)

n(m − 1)
, (5.3)

p∗(Xt1,Xt2) = Corr[Xt1 ,Xt2]
√

m

1 + (m − 1)Corr[Xt1 ,Xt2]2
. (5.4)

(b) The following concepts of weak stationarity of (Xt )Z are equivalent: (i) associa-
tion measure stationarity with respect to one of the association measures A from
Appendix B and (ii) bivariate stationarity.

The proof of Theorem 5.2 is provided in Appendix C.3.
Theorem 5.2 points out three strong and useful properties of NDARMA processes.

(i) Except Goodman and Kruskal’s λ, the uncertainty coefficient, and the deviance
measure, all association measures A discussed in Appendix B are simple one-to-one
functions of the correlation. (ii) Each single association measure A leads to the same
concept of association measure stationarity in the sense of Definition 3.1. (iii) Asso-
ciation measure stationarity in the sense of (ii) is equivalent to bivariate stationarity,
and also equivalent to correlation stationarity. These properties lead to a considerable
simplification—both in theory and in modelling and data analysis—of NDARMA
processes. The concept of correlation stationarity, which is familiar from cardinal
time series analysis, is sufficient for the understanding and for the analysis of weak
stationarity of NDARMA processes.

Lemma 5.1 relates autocorrelations and the probabilities P(Rt1 = Rt2),
P(Xt1 = xi1 ,Xt2 = xi2). These quantities can be expressed in terms of the model
parameters φ1, . . . , φp,ϕ0, . . . , ϕq used by Definition 4.1: Jacobs and Lewis (1983)
showed that the autocorrelations of an NDARMA process satisfy a set of Yule–
Walker equations, as in the case of cardinal ARMA models, see Brockwell and Davis
(2002), for instance. Let (Xt )Z be a bivariate stationary NDARMA(p, q) process,
and let

ρ(k) = Corr[Xt,Xt+k] for k = 0,1,2, . . . (5.5)

be the stationary autocorrelation function. The Yule–Walker equations for the
NDARMA(p,q) model established by Jacobs and Lewis (1983) are

ρ(k) =
p∑

j=1

φjρ
(|k − j |) +

q−k∑
i=1

ϕi+kr(i) for k ≥ 1, (5.6)
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where the correlations r(i) = Corr[εt−i ,Xt ] equal 0 for i < 0, and are determined by

r(0) = ϕ0 and r(i) =
i−1∑

j=max(0,i−p)

φi−j r(j) +
q∑

j=1

δij ϕj . (5.7)

In cardinal time series analysis, partial autocorrelation is a useful tool for model iden-
tification, see Box et al. (1994) or Brockwell and Davis (2002). Partial autocorrela-
tions are determined by a system of linear equations: Let

Rk = (
ρ
(|i − j |))1≤i,j≤k

for k = 1,2, . . . (5.8)

be the matrix of autocorrelations, and consider the solutions (ak1, . . . , akk) of the
system

Rk(ak1, . . . , akk)
 = (

ρ(1), . . . , ρ(k)
)

. (5.9)

Then ρp(k) = akk is the kth order partial autocorrelation. By Lemma 5.1, the auto-
correlations are reasonable parameters of an NDARMA process, since they depend
on the range only through the bivariate distributions of the Xt . In the same sense, the
partial autocorrelations are also reasonable. From a modelling point of view, partial
autocorrelations can be used in a way that is analogous to the familiar way of check-
ing for an AR(p) model in cardinal time series analysis, see Brockwell and Davis
(2002). Since the Yule–Walker equations of the DAR(p) process, see (5.6), are the
same as for the cardinal AR(p) model, it follows immediately that

ρp(k) = 0 for k > p in case of a DAR(p) model.

Hence partial autocorrelations can be used to check whether a DAR(p) model is
appropriate and of which order p it is.

Remark 5.3 (DAR(p) Process) Since the DAR(p) process is a Markov process of
order p with very sparsely parameterized transition probabilities, given by

P(Xt = i0 | Xt−1 = i1, . . . ,Xt−p = ip) = ϕ0 · πi0 +
p∑

r=1

δi0ir · φr,

see (4.1), one can easily compute the likelihood function. Akaike’s information cri-
terion and the Bayesian information criterion (AIC and BIC, respectively), which are
based on the maximized log-likelihood function (see Katz 1981) can then be applied
to determine the model order p.

6 NDARMA model: estimation and model identification

Consider a categorical time series (Xt )Z. Assume that (Xt )Z satisfies bivariate sta-
tionarity in the sense of Definition 3.1. All serial association measures A(k) =
A(Xt ,Xt+k) in Table 1 depend on the range size mx , the marginal probabilities
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P(Xs = xi) = pi , and on the bivariate probabilities P(Xt = xi,Xt+k = xj ) = pij (k).
Estimators Â(k) for A(k) are obtained by replacing the probabilities pi and pij (k) by
the respective estimators p̂i , p̂ij (k) in the formulae for the measures A(k) in Table 1.
Let X1, . . . ,XT be a segment of observations from (Xt )Z, and let

Nij (k) = number of pairs (Xt ,Xt−k) = (i, j) in X1, . . . ,XT , (6.1)

Ni = number of variables Xt in the segment X1, . . . ,XT equal to i. (6.2)

Then unbiased estimators for pi and pij (k) are

p̂i = Ni

T
and p̂ij (k) := Nij (k)

T − k
. (6.3)

Model identification is very important in time series analysis. We can use Theo-
rem 5.2 to establish an empirical check for the adequacy of an NDARMA(p, q)

model. If an NDARMA(p, q) model is adequate, then by Theorem 5.2 the estimates
κ̂(k) for Cohen’s κ , v̂(k) for Cramér’s v, and the square root of the estimate Âν

(τ) for
Goodman and Kruskal’s τ should be approximately equal. In case of large differences
among the estimates, an NDARMA(p, q) model is inappropriate.

If an NDARMA model seems to be appropriate, the stationary correlation ρ(k) =
Corr[Xt,Xt+k] is estimated by ρ̂(k) = κ̂(k). The model parameters φ1, . . . , φp,ϕ0,

. . . , ϕq used by Definition 4.1 can be estimated by inserting ρ̂(k) into the Yule–
Walker equations of (5.6). By solving the resulting equations, one obtains estimates
for φ1, . . . , φp,ϕ0, . . . , ϕq .

Under an NDARMA model, by Theorem 5.2, the stationary correlation ρ(k) may
be estimated by κ̂(k), v̂(k), or by the square root of Â

(τ)
ν . Other measures from Ta-

ble 1 should not be used for estimating the serial association. Particular caution is
required with respect to Goodman and Kruskal’s λ. In cases with a dominant state
r ∈ V , dominant in the sense

πr

(
1 − ρ(k)

) ≥ πi

(
1 − ρ(k)

) + ρ(k) for all i 
= r, (6.4)

it follows that

m∑
j=0

πj · max
i

pi|j (k) = πr

(
1 − ρ(k)

) m∑
j=0

πj + πrρ(k) = πr, so A(λ)
ν (k) = 0.

Hence A
(λ)
ν (k) indicates serial independence, independent of ρ(k).

Example 6.1 (Bovine Leukemia Virus) In the following, we analyze the genome
of the Bovine leukemia virus, see Example 1.1. The marginal distribution can be
estimated by the relative frequencies π̂a = 0.220, π̂c = 0.331, π̂g = 0.210 and
π̂t = 0.239. Estimates of some of the measures of serial dependence of Theorem 5.2
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Table 2 Parameter estimates for varying model order p

p Method π̂a π̂c π̂g φ̂1 φ̂2 AIC BIC

0 YW 0.220 0.331 0.210

ML 0.220 0.331 0.210 23053 23074

1 YW 0.220 0.331 0.210 0.080

ML 0.220 0.331 0.208 0.081 22900 22928

2 YW 0.220 0.331 0.210 0.079 0.018

ML 0.219 0.331 0.209 0.079 0.020 22892 22927

up to lag 5 are summarized in the first columns of (6.5).

Lag k κ̂(k) v̂(k)

√
Â

(τ)
ν (k) ρ̂p(k)

1 0.0804 0.1134 0.1118 0.0804

2 0.0248 0.0445 0.0447 0.0185

3 0.0008 0.0281 0.0299 −0.0026

4 −0.0065 0.0222 0.0232 −0.0069

5 −0.0151 0.0294 0.0300 −0.0141

(6.5)

Since the estimates for Cohen’s κ(k), Cramér’s v(k), and the square root of Good-
man and Kruskal’s A

(τ)
ν (k) are roughly equal to each other, it is plausible to model

the data by an NDARMA model. Based on the estimates κ̂(k) of Cohen’s κ , esti-
mates for the partial autocorrelations ρ̂p(k) are determined as the solution of (5.9);
the results are summarized in the last column of (6.5). The partial autocorrelations
ρ̂p(k) of (6.5) are about 0 for k ≥ 3, which implies modelling the genetic sequence
by a DAR(p) model with p ≤ 2.

Assuming an underlying DAR(p) model of order p ≤ 2, we used two approaches
to estimate the corresponding model parameters. First, we computed simple Yule–
Walker estimates (YW), i.e., π is estimated by the relative frequencies above, and
φ1, . . . , φp are estimated by solving the Yule–Walker equations (5.6), with inserted
estimates κ̂(k). Second, we numerically maximized the log-likelihood function, lead-
ing to ML estimates, see Remark 5.3. This was done using Mathematica, with the YW
estimates as initial values.

The results are summarized in Table 2, together with the respective values of the
information criteria AIC and BIC (see Katz 1981). It becomes clear that the model as-
suming serial independence (p = 0) performs worst. Both criteria prefer the DAR(2)
model, although its BIC is only slightly below that of the DAR(1) model.

7 Conclusion

We reviewed measures of association among categorical variables and applied these
quantities for measuring serial association in categorical time series. We discussed
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several approaches to defining weak stationarity in a categorical time series. The
rationale of these measures and concepts has been demonstrated for the class of
NDARMA(p, q) models introduced by Jacobs and Lewis (1983). The following re-
sults are important: (i) For NDARMA processes, the correlation is meaningful un-
der a strictly categorical interpretation. (ii) Cohen’s κ , Cramér’s v, Goodman and
Kruskal’s Aν

(τ), �2, Pearson’s X2, and Sakoda’s p∗ are equivalent measures. (iii) All
of the latter measures are one-to-one functions of the correlation. (iv) Stationarity in
one of the latter measures is equivalent to the stationarity of the bivariate distribu-
tions. We have demonstrated the usefulness of these results for estimation and model
identification.

Future research should concentrate on generalizing the results from NDARMA
processes to a wider class of processes. If analogous results can be established for a
large class of categorical processes, it may be possible to define a simple convenient
measure of serial categorical association in analogy to the autocorrelation familiar
from the cardinal case.

Acknowledgements The authors thank the referees for useful comments on an earlier draft, and
Prof. Dr. M. Biewen, Department of Statistics, University of Mainz, for drawing their attention to the
work on mobility indices.

Appendix A: Measures of dispersion—a brief review

The literature suggested various approaches to an axiomatic definition of a measure
of dispersion for a categorical random variable; for an overview see Uschner (1987).
Several authors, e.g., Uschner (1987) and Vogel and Kiesl (1999), collected desirable
properties of such a measure. The following properties are essential:

(D1) The dispersion measure should have range [0;u] for some u > 0. For a stan-
dardized measure, we should have u = 1 independent of the number m of cat-
egories.

(D2) The dispersion measure should adopt its minimum value 0 in case of a one-
point distribution, and its maximum value u in case of a uniform distribution.

(D3) The dispersion measure should depend on the range {x1, . . . , xm} only through
the size m of the range and the probability distribution p1 = P(X = x1), . . . ,

P(X = xm).

Popular standardized measures of dispersion and some elementary properties are
summarized in Table 3. For estimators of these measures, see Lehmann and Casella
(1998) and Johnson et al. (1997).

Table 3 Standardized measures of dispersion

Standardized measures of dispersion:

• Gini index: νG(X) := m
m−1 (1 − ∑m

j=1 p2
j
).

• Entropy: νE(X) := − 1
lnm

∑m
j=1 pj lnpj , 0 · ln 0 := 0.

• Chebycheff dispersion: νC(X) := m
m−1 (1 − maxj pj ).

Properties: (D1), (D2), (D3), with range [0;1].
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Appendix B: Measures of association and dependence

Stochastic dependence is a concept defined by exclusion of stochastic independence,
see Definition 2.2. In contrast, there is no unique definition of association. The term
‘association’ is used if interest is in establishing measures of mutual relationship
of variables, see Liebetrau (1983), Goodman and Kruskal (1979), Agresti (1990) or
Gibbons (1993). In each particular case, the relation of such measures and the con-
cept of stochastic independence has to be investigated. In the following, we collect
essential properties of categorical measures A(X,Y ) of association relating associa-
tion to independence and perfect dependence. These properties are motivated by the
arguments of Sect. 2.

B.1 Measures of unsigned association

The following properties are important for unsigned measures, whereas additional
properties of signed measures are discussed afterwards.

(A1) The measure A(X,Y ) depends on the ranges {x1, . . . , xmx }, {y1, . . . , ymy }
only through mx , my and the distribution parameters px,i ,py,j ,pij and is
a continuous function thereof.

(A2a) If X, Y are independent, the association measure A(X,Y ) adopts the value 0.
(A2b) If A(X,Y ) = 0, then X, Y are independent.
(A3) Under fixed mx , my and given marginal distributions of X and Y , the measure

A(X,Y ) has the range [0;a] where a > 0.
(A4a) If X depends perfectly on Y , then the association measure A(X,Y ) adopts the

maximum of its range.
(A4b) If Y depends perfectly on X, then the association measure A(X,Y ) adopts the

maximum of its range.
(A4c) If the association measure A(X,Y ) adopts the maximum of its range, then X

depends perfectly on Y , or Y depends perfectly on X.
(A5) The measure is symmetric in X and Y .

The unsigned measures suggested in Tables 4 and 5 are organized into two cate-
gories: measures based on proportional reduction of variation, and measures based
on Pearson’s χ2-statistic. Measures of the second group are summarized in Table 5.
The proof of the properties given there is simple and based on elementary algebra.
Measures of the first group make use of a parametric measure of dispersion ν, refer
to Appendix A. Then consider the conditional dispersion ν(X|Y = yk), which is ob-
tained by replacing pj by pj |k := P(X = xj | Y = yk) in the definition of ν. Then
E[ν(X|Y)] = ∑my

k=1 ν(X|Y = yk) · P(Y = yk), and a parametric measure of associa-
tion may be defined as

Aν(X|Y) := ν(X) − E[ν(X|Y)]
ν(X)

= 1 − E[ν(X|Y)]
ν(X)

. (B.1)

By inserting the dispersion measures introduced in Table 3 into the scheme of formula
(B.1), we obtain the specific measures of association summarized in Table 4. For the
proof of the properties given there, see Goodman and Kruskal (1979) on the τ and
the λ measure, and Theil (1972) on the uncertainty coefficient.
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Table 4 Measures of association by proportional reduction of variation

Measuring association by proportional reduction of variation:

• Goodman and Kruskal’s τ based on the Gini index:

A
(τ)
ν (X|Y ) =

∑mx
i=1

∑my
j=1

p2
ij

py,j
−∑mx

i=1 p2
x,i

1−∑mx
i=1 p2

x,i

=
∑mx

i=1
∑my

j=1
(pij −px,i py,j )2

py,j

1−∑mx
i=1 p2

x,i

.

• Goodman and Kruskal’s λ based on the Chebycheff dispersion:

A
(λ)
ν (X|Y ) =

∑my
j=1 maxi pij −maxi px,i

1−maxi px,i
.

• The uncertainty coefficient based on the entropy:

A
(u)
ν (X|Y ) = −

∑mx
i=1

∑my
j=1 pij ln(

pij
px,ipy,j

)∑mx
i=1 px,i lnpx,i

.

Properties: Goodman and Kruskal’s τ and uncertainty coefficient satisfy (A1), (A2a), (A2b), (A3), (A4a),
(A4c). Goodman and Kruskal’s λ satisfies (A1), (A2a), (A3), (A4a), (A4c). All three fail to satisfy the
symmetry required by (A5). The range of these measures is [0;1].

Table 5 Measures of association derived from sample statistics

Measuring association derived from sample statistics:

• Pearsons’s X2 derived from the χ2-statistic:

X2
n(X,Y ) = n

∑mx
i=1

∑my

j=1
(pij −px,ipy,j )2

px,ipy,j
.

• The �2 measure based on Pearson’s X2:

�2(X,Y ) = 1
n · X2

n(X,Y ).

• Sakoda’s standardized measure, where m := min(mx,my):

p∗(X,Y ) =
√

m
m−1 · (1 − 1

1+�2(X,Y )

)
.

• Cramér’s v:

v(X,Y ) := �(X,Y )/
√

m − 1, where m = min{mx,my }.

Properties: The measures satisfy all requirements (A1), (A2a), (A2b), (A3), (A4a), (A4b), (A4c), (A5). In
particular, defining m = min{mx,my }, Pearson’s X2(X,Y ) has range [0;n · (m − 1)], the �2 measure has
range [0;m − 1], and Sakoda’s measure and Cramér’s v(X,Y ) have range [0;1].

B.2 Measures of signed association

For signed measures, see Definition 2.4, the following requirements replace the re-
quirements (A3) and (A4) established above:
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Table 6 Measuring signed association

Measuring signed association:

Cohen’s κ:

κ(X,Y ) :=
∑m

j=1(pjj −px,j py,j )

1−∑m
j=1 px,j py,j

.

Properties: Cohen’s κ has range [−
∑m

j=1 px,j py,j

1−∑m
j=1 px,j py,j

;1] and satisfies (A1), (A2a), (AS3), (AS4a), (AS4b)

and (A5). In general, the properties (A2b) and (AS4c) do not hold.

(AS3) The measure has the range [l;u] where l < 0 < u.
(AS4a) In case of perfect negative dependence the measure adopts the minimum l,

and in case of perfect positive dependence the measure adopts the maxi-
mum u.

(AS4b) If the measure adopts the maximum of its range, then X and Y exhibit perfect
positive dependence.

(AS4c) If the measure adopts the minimum of its range, then X and Y exhibit perfect
negative dependence.

An example of a signed measure of association is Cohen’s κ , see Table 6. The proofs
of the assertions in Table 6 are evident.

Appendix C: Proofs of theorems and lemmata

C.1 Proof of Lemma 2.3

Let X perfectly depend on Y . Since all px,i ,py,j > 0, we have |{pij > 0}| = |{py,j

> 0}| = |Vy |, and since px,i = ∑
j∈Vy

pij , it follows that |Vx | = |{px,i > 0}| ≤ |Vy |.
If for a given i ∈ Vx we have pij = 0 for all j ∈ Vy , then also px,i = ∑

j∈Vy
pij

= 0, which is a contradiction. Hence, there exists a j ∈ Vy for all i ∈ Vx such that
ϕ(j) = i, so ϕ is surjective.

If |Vx | = |Vy | < ∞, then any surjective mapping from Vy onto Vx is also injective.
Hence, there is a one-to-one correspondence between Vx and Vy such that

px,ϕ(j) = py,j and px,i = py,ϕ−1(i).

So Y also perfectly depends on X. In contrast, if |Vx | < |Vy |, then pij = 0 for all
j 
∈ ϕ−(i). So px,i = ∑

j∈Vy
pij = ∑

j∈ϕ−(i) pij = ∑
j∈ϕ−(i) py,j . This completes

the proof.

C.2 Proof of Lemma 4.2

Part (a) is obvious. From Definition 4.1, we obtain the recursion

P(Rt−j = t − n) =
q∑

i=0

ϕi · δn−j,i +
p∑

l=1

φl · P(Rt−j−l = t − n), j, n ≥ 0.
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Therefore, it follows for m ≥ q + k · p, k ≥ 1, that

P(Rt ≥ t − m) ≥ ϕ•
(
1 + φ• + · · · + φk•

) = 1 − φk+1• −→
k→∞ 1,

where ϕ• = ∑q

i=0 ϕi and φ• = ∑p

j=1 φj , so part (b) follows. For a proof of parts (d)
and (e), we refer to Jacobs and Lewis (1983), and part (c) can be shown in analogy to
part (e).

C.3 Proof of Theorem 5.2

From (5.2) we obtain

P(Xt1 = Xt2) =
m∑

j=1

π2
j

(
1 − Corr[Xt1,Xt2]

) +
m∑

j=1

πj · Corr[Xt1 ,Xt2]

=
m∑

j=1

π2
j + Corr[Xt1 ,Xt2]

(
1 −

m∑
j=1

π2
j

)
,

hence

Corr[Xt1,Xt2] = P(Xt1 = Xt2) − ∑m
j=1 π2

j

1 − ∑m
j=1 π2

j

= κ(Xt1 ,Xt2).

Since

P(Xt1 = xi,Xt2 = xj ) − πiπj = πj Corr[Xt1 ,Xt2](δij − πi),

we obtain for Pearson’s X2 of Table 5

X2
n(Xt1 ,Xt2) = n

m∑
i=1

m∑
j=1

(P(Xt1 = xi,Xt2 = xj ) − πiπj )
2

πjπj

= (5.2) n · Corr[Xt1,Xt2]2
m∑

i,j=1

πj

πi

(δij − πi)
2

= n · Corr[Xt1,Xt2]2

( ∑
1≤i,j≤m

i 
=j

πiπj +
m∑

i=1

(1 − πi)
2

)

= n · Corr[Xt1,Xt2]2

( ∑
1≤i,j≤m

πiπj +
m∑

i=1

(1 − 2πi)

)

= n(m − 1)Corr[Xt1,Xt2]2.

The latter result provides

Corr[Xt1,Xt2] =
√

�2(Xt1,Xt2)

m − 1
=

√
X2

n(Xt1 ,Xt2)

n(m − 1)
= v(Xt1,Xt2),
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see Table 5. For Goodman and Kruskal’s τ , we obtain from Table 4 and (5.2):

A(τ)
ν (Xt1 ,Xt2) =

∑m
i,j=1

(P(Xt1=xi ,Xt2=xj )−πiπj )2

πj

1 − ∑m
i=1 π2

i

= Corr[Xt1 ,Xt2]2

1 − ∑m
i=1 π2

i

( ∑
i,j 
=i

π2
i πj +

m∑
i=1

πi(1 − πi)
2

)

= Corr[Xt1 ,Xt2]2

1 − ∑m
i=1 π2

i

m∑
i=1

(
π2

i (1 − πi) + πi(1 − πi)
2)

= Corr[Xt1 ,Xt2]2

1 − ∑m
i=1 π2

i

m∑
i=1

πi(1 − πi) = Corr[Xt1 ,Xt2]2.

Equation (5.4) follows from Table 5 and (5.3). This completes the proof of asser-
tion (a) of Theorem 5.2. Assertion (b) follows from assertion (a), Definition 3.1 and
Lemma 5.1.
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