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Phillips-Perron-type unit root tests in the
nonlinear ESTAR framework

By CHriIsTOPH ROTHE AND PHILIPP SIBBERTSEN *

SuMMARY: In this paper, we propose Phillips-Perron type, semi-parametric testing pro-
cedures to distinguish a unit root process from a mean-reverting exponential smooth
transition autoregressive one. The limiting nonstandard distributions are derived under
very general conditions and simulation evidence shows that the tests perform better than
the standard Phillips-Perron or Dickey-Fuller tests in the region of the null.
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1. INTRODUCTION

The application of unit root tests, such as the Augmented Dickey-Fuller
(ADF) and the Phillips-Perron (PP), has become standard in applied time
series econometrics. In some areas of economics, however, their frequent
inability to reject the null of nonstationarity contradicts well-established
theoretical expectations.

One example is the purchasing power parity (PPP) hypothesis. In its
absolute form, it states that a common basket of goods, when quoted in
the same currency, should cost the same in all countries. Due to several
factors like taxes, tariffs, trade restrictions and other market imperfections,
the relationship may only be expected to hold in the long run. In empirical
studies, however, the null hypothesis of a unit root in the deviations from
parity can often not be ruled out using ordinary testing procedures.

As a possible explanation, Dumas (1992), Sercu et al. (1995) and Michael
et al. (1997) consider models of real exchange rate determination which take
transaction costs into account. Their theory suggests that the larger the
deviation from PPP, the stronger the tendency to move back to equilibrium.
The result is a nonlinear, mean-reverting stochastic process. They claim
that standard unit root tests might lack power in such cases, and thus the
evidence against PPP in the literature might be the result of a type II error.

It has been demonstrated by Michael et al. (1997), Sarno (2000), Taylor
et al. (2001) and Baum et al. (2001), amongst others, that the exponential
smooth transition autoregressive (ESTAR) model is an effective way to de-
scribe such processes. It is part of the general class of STAR models, which
constitute a broad and flexible family of nonlinear time series models, that
has recently been applied in various fields of economics. For an excellent
survey, see van Dijk et al. (2002).

The problem is that these authors assume stationarity of deviations from
parity a priori, without using formal inference. To overcome this problem,
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Kapetanios et al. (2003) construct an ADF type test called ¢ty in that
framework, and confirm its superiority over its linear counterpart in some
situations. Qur paper extends their work by proposing two new test statis-
tics using a semi-parametric approach along the lines of Phillips (1987) and
Phillips and Perron (1988). We give analytical expressions for the asymp-
totic distributions, which are free of nuisance parameters. By simulation, we
also study the performance in small samples and find some improvements
over the tny.

The plan of the paper is as follows. Section 2 describes the theoretical
framework and derives some important asymptotic results. In Section 3, the
new tests are developed along with their limit distributions. Finite sample
properties are assessed in Section 4, while a small empirical application
is presented in Section 5. Finally, Section 6 concludes. A more technical
theorem is given in the Appendix.

Some words on notation. Throughout the paper, || X|[. = (E(|X|")*/"
denotes the L, norm, W denotes a standard Wiener process on [0, 1}, and
‘=’ denotes weak convergence.

2. THE NONLINEAR ESTAR FRAMEWORK

Consider the case of a simple STAR(1) model given by

Yt = $1ye-1(1 — G(y¢-1,9)) + d2ye—1G(ye—1,0) + v, (1)

where G(yt—1, 8) is called the transition function, is continuous and bounded
between 0 and 1. The easiest way to think of such a nonlinear model is
as a weighted average of two AR(1) processes, with dynamically changing
weights determined by the level of the process in the previous period. The
error term {v,} is also assumed to obey some assumptions, which are dis-
cussed in more detail below. To begin with, we will assume that y, is a mean
zero stochastic process. Other cases will be discussed in Section 3.

While there are various transition functions being considered in the lit-
erature, our focus will be on the exponential one, which is of the form

G(ye-1,0) =1 — exp(—0y7_;), 2)

with @ > 0. This function is symmetrically U-shaped around zero and tends
to 1 as y;—1 gets large in absolute value, provided that @ is positive. In the
case of § = 0, however, the function is zero everywhere. So effectively, 8
determines the speed of the transition between the two regimes.

For our particular application, we follow Kapetanios et al. (2003) and
impose ¢ = 1, and —1 < ¢2 < 1. In other words, the two regimes of our
STAR model are assumed to correspond to a unit root process and a stable
AR(1), respectively.

Combining these restrictions with (1) and (2), we can write our model
in the following, reparameterized form:

Ay = yyi—1(1 — exp(—6y7_,)) + vz, (3)
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where v = ¢2—1. When —2 < v < 0, which we assume holds, and 6 > 0, the
process is globally mean-reverting towards the long-run level zero, while it
locally acts like a unit root process when being close to that same level. We
will say that the time series has a partial unit root in this case. For § = 0,
there is no mean-reverting behaviour and the process has a full unit root.

It seems likely that standard linear unit root tests such as the ADF or PP
have difficulties to distinguish these two cases, i. e. they lack power against
the nonlinear alternative described above. For the former test, this was
shown by Kapetanios et al. (2003), while simulation evidence on the latter
one is presented in Section 5 of this paper. We will therefore now describe
an approach to test for a unit root that takes our specific alternative into
account.

The hypothesis we want to test is

Hy:6=0 wvs. Hi:0>0. (4)

Note that the parameter +y is not identified under the null. Loosely speaking,
this means that nothing can be learned about v from the data if Hp is ac-
tually true. This highly affects standard inferential procedures (see Davies,
1987), and thus a direct testing procedure is not feasible. However, follow-
ing Luukkonen et al. (1988), the problem can be overcome by using a first
order Taylor series approximation of the exponential function around zero,
leading to the auxiliary regression

Aye = 6y3_1 +ue, (5)

where § = 8y, v = vy + YY—1R(ys-1,8) and R(y;-1,6) is the remainder
of the Taylor approximation. Here the identification problem is no longer
present.

To get an idea of the goodness of the approximation, Figure 1 depicts the
undisturbed relationship (i. e. without the error term) between consecutive
observations implied by the respective regressions. As one can see, differ-
ences are only getting obvious when y;_1 becomes large in absolute value.
Auxiliary regression (5) therefore captures the dynamics of the true process
quite well.

In the regression (5), our hypotheses stated above are equivalent to

Hy:6=0 ws. Hy:6<0. (6)

The idea now is to base inference on estimates of § and the respective ¢
ratios. Note that although our regression is only an approximation, under
the null hypothesis this does not influence the properties of the error term,
since R(y;—1,0) = 0 and thus u; = v, when Hy is true. Consequently, it
does not affect the asymptotic distribution theory under Hy.

Denote the ordinary least squares (OLS) estimate of § by

T
5= D i1 y?—lAyt

Z;F=1 y?——l @
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FIGURE 1. Undisturbed relationship between 3; and y.—1 for the ESTAR(1)
model (3) and corresponding Taylor approximation (5), using v = —1, 8 = 0.01.
The bisecting line represents a unit root process.

Then the corresponding conventional ¢ statistic is given by

T
_ Zt=1 yt3-—1Ayt

t8 = = = ) (8)
\/Var(J) \/&2 E;F:l Yo
where
1 & .
=7 > (Aye - byi_,)? (9)
t=1

is the usual estimator of the error variance.

To derive the asymptotics of 4 and t5, we have to be precise about the
structure we are going to allow for the error term {v;}. Kapetanios et al.
(2003) only consider the ¢ statistic (which they call t57) and show that for
an i.i.d. sequence with finite second moments the limit distribution is given
by

1y 1)4 fo (r)2dr

They also demonstrate that the asymptotic distribution is the same in the
case of an autoregressive process of order p, when the auxiliary regression
(5) is extended with lagged first differences, as in Said and Dickey (1984),
to

t; = (10)

P
Ay, = 6y2_ 4+ Z pjAYt—i + €, (11)

i=1
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where €; is i.i.d. (0,02) under the null. Given that p increases with the
sample size in a suitable way, it can be shown that this also holds for general
stationary and invertible ARMA processes.

However, it seems unintuitive to restrict the attention to linear error se-
quences in the general context of nonlinear time series. A flexible structure
that allows for various forms of temporal dependence and also heteroscedas-
ticity is given by the following assumption:

AssuMPTION 1 (Hansen, 1992) For some p > > 2, {v:} is a zero mean,
strong mizing sequence with mizing coefficients auy, of size —pB/(p — B) and

2
sup;>; f|uill, = C < oo. In addition, (1/T)E((ZIT%) > 522> 0 as
T — oo.

The basic idea behind it is a trade-off between the existence of moments
and the mixing decay rate, which prevents single observations from being
too influential. For example, if extreme realizations occur relatively often
(as will be the case when relatively few moments are finite), then the effect
of such observations should wear off at a faster rate (requiring a larger size).
Assumption 1 thus assures that the functional central limit theorem (FCLT)
and results regarding the convergence to stochastic intergrals will apply to
certain normalized partial sums of {v;}.

The parameter A\? is the long-run variance. Note that while the second
moments of {v;} are not assumed to be constant over time, a strong law of
large numbers (McLeish, 1975) asserts that

T—00

1 & 1
T > v? &5 0= lim T > E@W}). (12)
i=1 i=1

Hence there is a parameter o2 that can be interpreted as the average error
variance. When {v;} is a sequence of i.i.d. variables, we obviously have
A2 =02

Having defined the theoretical framework, we can now establish some
convergence results that will be essential for the further asymptotic devel-
opment.

LEMMA 1 Let Assumption I hold with 8 = 6 and Hy be true. Then, as
T — 00, we have:

T 1

(@ T72) yt =X / W (r)2dr,
t=1 0
T 1

() T b= / W (r)8dr,
t=1 0

T 1
© T2 g} v= %/\4W(1)4 - -;302,\2 / W (r)2dr.
0

t=1
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Proor Both a) and b) are standard results that follow from the FCLT and
the continuous mapping theorem (CMT), whereas c) is a result of Theorem 4
in the appendix, its subsequent remark, and the It6 formula.

Now we can start to discuss the properties of the quantities in (7)-(9).
Our first concern is whether the estimates are consistent. This is ensured
by the following theorem.

THEOREM 1 Under the conditions of Lemma 1, we have

~

a) 6§ 50 and § = 0,(T7?),

b) 62 5 6% and 6% — 0% = 0,(T7Y).

PROOF Part (a) can be shown by a simple comparison of the convergence
rates of the nominator and denominator in (7), which are O,(T?) and
O, (T*), respectively. To prove (b), write

>

T

T “2 T
Z T Yo 1 + = Zy?—1 (13)
t=1 t=1 tzl

’“3|
%)

and note that the first term converges to o2 in probability by (12), and the
last two terms are both O,(7T~!). Hence, the result follows.

Part (a) of the theorem implies that § converges to its true value zero
under Hy at rate T2, which is even faster than the usual superconsistent rate
T encountered in ordinary time series regressions with a unit root. Using
this and the previous results, we can now derive the asymptotic distributions
of the appropriately scaled version of ¢ and of ;.

THEOREM 2 Under the conditions of Lemma 1, we have

1
+ AWt - 30202 [ W(r)2dr

a) T25 = 1 ’
A8 [ W(r)Sdr
1
by b5 = INMW(L) = 30202 [ W(r)2dr .
\/02)\6 fol W (r)Sdr

PROOF Part (a) follows directly from Lemma 1 (b) and (c) and the con-
tinuous mapping theorem (CMT), whereas part (b) additionally requires
Theorem 1 (b).
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3. THE Zn, TEST

Unfortunately, the limiting distributions derived in Theorem 2 depend on
unknown nuisance parameters, and hence the respective test statistics can-
not directly be used. We solve the problem by the semi-parametric approach
proposed in Phillips (1987) and Phillips and Perron (1988). Without spec-
ifying an explicit model for {v;}, we use consistent estimates of A% and o2
to modify the test statistics in such a way that the parameters cancel each
other asymptotically.

_Let us assume for the moment that we have two such estimators named
A2 and 42, without worrying about their exact functional form. These con-
sistent estimates can now be used to develop two Phillips-Perron-type test
statistics, whose limiting distributions do not depend on nuisance parame-
ters.

Define

T T -1
. . 3 <

Znr(8) = X2T? | 6 - 3 Z y2 . ()\2 - 02) (Z yf_1> (14)

t=1 t=1

and
& 3& s e

Znp(t) = ;\‘ts 3 z;ytz—l (’\2 - &2) (Az Zl?!f—l) s (15)

t= t=

where the first term is a transformation of the OLS estimate é and the sec-
ond term one of the corresponding t-statistic ¢;. The respective asymptotic
distributions of the two quantities are given by the following theorem:

THEOREM 3 Under the conditions of Lemma 1, we have
Iw (1)t -3 [ w(r)2dr
Jy W(r)sdr
Iw@)t -2 [ W(r)2dr

b) Znp(t) = 4
\/fol W (r)8dr

PRrROOF Both (a) and (b) are a direct consequence of Theorem 2, Lemma 1
and the CMT.

a) Znp(d) =

Since their limit distributions are free of nuisance parameters, these two
statistics can now be used to test the unit root hypothesis. Figure 2 depicts
the respective density functions under Hy. It turns out that the one of
Znr(9) is heavily left skewed, whereas the one of Zyy(t) is much more
concentrated and relatively mildly skewed.
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FIGURE 2. (a) Asymptotic probability density function of the Zn(8) statistic.
(b) Asymptotic probability density function of the Zyr(¢) statistic.

Up to now, we have confined our analysis to stochastic processes with
mean zero, which certainly limits the usefulness of the results for empiri-
cal applications. To accommodate for nonzero means and/or deterministic
linear trends, we use the same minor modifications as in Kapetanios et al.
(2003). In case of a nonzero mean, i. e. when our model is z; = u+vy¢, we use
the demeaned data, §; = z; — Z, where Z is the sample mean. The new lim-
iting distributions are basically the same as in Theorem 3, but with W(r)
replaced by W*(r), a standard demeaned Wiener process on [0,1]. Simi-
larly, when we assume both a nonzero mean and a linear trend, i.e. when
our model is z; = p+ Bt +y:, we will use the demeaned and detrended data,
4t = x, — i — Ot, where fi and § are the simple OLS estimates. In this case,
W (r) is replaced by W#(r), a demeaned and detrended standard Wiener
process defined on [0, 1].

Asymptotic critical values for these three constellations, termed Case 1,
Case 2 and Case 3, are given in Table 1. They were obtained by simulating
the respective statistics with T = 1000 observations and 100000 replica-
tions. Note that the right panel corresponds to the critical values for the
tyr test in Kapetanios et al. {2003) since their statistic and the Zyp(t)
have the same limit distribution under the null.

Finally, a word on the estimation of the nuisance parameters. In the case
of o2, the usual estimator 52 has already shown to be consistent under the
null hypothesis in Theorem 1 (b). There is also a large number of long-run
variance estimators proposed in the literature (see den Haan and Levin,
1997, for a comprehensive review). While roughly speaking any consistent
estimator will yield the same asymptotic results, the exact functional form
may of course influence finite sample porperties. For the purpose of our
simulation study in the following section, we choose the combination of a
‘prewhitening’ AR(1) filter and a kernel based estimator as proposed by
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Zni(6) Zni(t)
Fractile (%) Case 1 Case 2 Case 3 | Case 1 Case2 Case3
1 -130.069 -257.140 -503.641 | -2.801 -3.471 -3.944
5 -51.611  -122.133 -279.296 | -2.208 -2.929 -3.402
10 -29.359 -79.556  -200.274 | -1.920 -2.653 -3.123

Cases refer to raw, demeaned, and demeaned and detrended data, respectively.
TaBLE 1. Asymptotic critical values of the Zn1(5) and Znp(t) statistics.

Andrews and Monahan (1992). More specifically, we estimate the regres-
sion 4y = @1 + € by OLS and use the corresponding residuals to calcu-
late A2 = 1'(0) + 2 57  w (i/lr) ['(3), where [(7) = T-1 1. &é& -,
w(-) is the Bartlett kernel and the lag truncation parameter lr is set at
|4(7/100)%/°|. The final estimate of the long-run variance is then given by

<o 32
A= 16

(1 - a&)? (16)
It should be noted that although this procedure performed well in informal
simulation experiments, our particular choice is rather an ad hoc decision
than based on theoretical considerations. The question whether other ap-
proaches might be more favourable in our context is beyond the scope of
this paper.

4. SIMULATION RESULTS

In order to assess the properties of the new test statistics and to compare
their performance with the procedures proposed by Kapetanios et al. (2003),
Phillips and Perron (1988) and Said and Dickey (1984), we conduct a series
of simulation experiments. For brevity, we only consider the first of the three
cases described above, with the data being neither demeaned nor detrended.
Although the power is lower for the last two cases, the performances of the
tests relative to each other are similiar.

Our first concern is the size of the tests in finite samples, and thus we
construct a null model with moving average errors by

Ye=Y—1+vn Wwith ve=-e¢+pe;_q, (17)

where the e; are i.i.d N(0,1), and we consider p € {0,+0.2,+0.5,+0.8}.
To evaluate the power of the two testing procedures against a globally
mean-reverting ESTAR(1), we generate the data by

Ay = yy_1(1 —exp(—6yZ_))) +v; with v; = e; + pes_1, (18)

and consider § € {0.01,0.05,0.1,1} and v € {-1.5,—1,-0.5,—0.1}. We
also used various specifications of the error process, but for brevity only the
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case where p = 0.5 and the e, are i.i.d N(0,1) is reported here. Further-
more, we considered other types of error structures - including conditional
heteroscedasticity, nonlinear dependence and heavy tails - but found no
qualitative differences in the tests’ performances.

For both size and power simulations, the nominal level of the tests is
5%, the sample size being considered is T € {50,100}, and the number of
replications is set at 10000.

In contrast to Kapetanios et al. (2003), we do not assume that the DGP
is known when applying the tests to the data. In particular, we determine
the number of augmentations used for the ¢y and ADF tests by minimizing
the Schwarz Information Criterion SIC in the respective regressions. This
should certainly give a more realistic impression of the properties of the
tests than just using the ‘true’ order.

Table 2 shows the results on the size of the various tests. For
p € {0,0.2,0.5} all sizes are generally close to the nominal level of 5%.
We also observe the tendency to overreject the null somewhat when
p € {—0.2,0.8}. For large negative values of p, however, size distortions are
extreme for all of the six tests, with the ADF type test being a little less
affected. This is a well known result for the usual unit root tests. The prob-
lem seems to persist in the nonlinear case, and remedies proposed e.g. by
Perron and Ng (1996) do not easily generalize, so that none of the tests
is recommendable when the error process almost has a negative moving
average unit root.

Error Process Zni{(6) Zni1(t) tnz Z(a) Z(t) ADF

T=50
p=08 0.090 0.094 0.078 0.085 0.080 0.072
p=05 0.069 0.069 0.076 0.067 0.063 -0.068
p=02 0.040 0.046 0.044 0.047 0.047 0.050
p=0 0.036 0.052 0.052 0.049 0.048 0.050
p=-02 0.053 0.094 0.107 0.077 0.083 0.106
p=-05 0.145 0.278 0.206 0.256 0.281 0.230
=-0.8 0.495 0.712 0379 0.651 0.706 0.466
T=100
p=038 0.083 0.084 0.056 0.089 0.083 0.051
p=105 0.064 0.063 0.068 0.066 0.060 0.064
p=02 0.046 0.045 0.046 0.048 0.047 0.046
p=0 0.042 0.051 0.048 0.0562 0.051 0.050
p=-02 0.069 0.091 0.108 0.084 0.087 0.104
p=—05 0.201 0.280 0.134 0.237 0.252 0.152
p=—08 0.717 0.808 0.305 0.683 0.722 0.385

Note: Data under the null is generated by (19).
TABLE 2. The size of alternative test.
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6 =10.01 6 =0.05

Znp(8) Zwni(t) tne Z{e) Z{t) ADF | Znp(6) Znir(t) tvr Z(e) Z(t) ADF
T=50
v=-15 0.624 0.790 0.724 0.547 0.584 0.581 0.971 0985 0967 0.945 0.952 0.943
v=-1.0 0.472 0.663 0.625 0.423 0464 0.484 0.902 0.954 0907 0.857 0.875 0.839
v=-0.5 0.272 0416 0.422 0.252 0.294 0.309 0.683 0.793 0.731 0.636 0.668 0.651
v=-0.1 0.078 0.139 0.155 0.086 0.117 0.123 0.166 0.263 0276 0.179 0.224 0.242
T =100
vy=-15 0.996 0995 0976 0974 0976 0.937 1.000 1.000 1.000 1.000 1.000 0.999
y=-1.0 0.977 0976 0940 0.926 0931 0.875 1.000 1.000 0.997 0.999 0999 0.995
y=-05 0.826 0.879 0.817 0.721 0.740 0.715 0.997 0993 0972 0991 0.992 0.961
v=-0.1 0.194 0307 0.321 0191 0.220 0.237 0.519 0.574 0.539 0511 0.544 0.512

0=0.1 =10

ZNe(8) Zni(t) tne Z(a) Z(t) ADF | Zni{(d) ZniL(t) tne  Z(a) Z(t) ADF
T =50
y=-15 0.995 0.996 0992 0995 0.996 0.990 0.999 0.998 0981 1000 1.000 0.997
v=-1.0 0.973 0.983 0.964 0963 0974 0.957 0.987 0976 0957 1.000 1.000 0.995
v =-0.5 0.827 0.877 0.811 0.817 0.839 0.783 0.898 0.832 0.772 0987 0986 0.943
v=-0.1 0.228 0309 0.312 0.244 0291 0.305 0.280 0.325 0327 0334 0372 0.372
T =100
¥y=-15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000
~v=-1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0985 1.000 1.000 1.000
vy=-05 0.999 0997 0988 0.999 0999 0.992 0.999 0.981 0944 1.000 1.000 1.000
v=-0.1 0.604 0.606 0.570 0.628 0.655 0.618 0.661 0.588 0.546 0754 0.770 0.724

Note: Data under the alternative is generated by (20) with p = 0.5.

TABLE 1. The power of alternative test with MA(1) errors.
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Results of the power simulations are presented in Table 3. The finding
of Kapetanios et al. (2003) was that their ¢y, test performed better than
the ADF for small values of #. In that case, the process is highly persis-
tent. When 6 grows, however, the average values of the transition function
G(yt~1,0) get closer to one and the process more and more resembles a
stable, linear AR(1). So eventually, the power of the ADF dominates.! Our
simulations confirm these findings and show that the same holds for the two
usual Phillips-Perron tests Z(a) and Z(t). Their performance turns out to
be marginally worse than the ADF’s one, but they beat the ¢y provided
that @ is sufficiently large. All of the six tests have in common that their
power is close to one for small values of 4, corresponding to little persistence
of the process.

Regarding our two new tests, we make the following observations. First,
comparing Znr(4) and Znp(t), we note that the power of the latter dom-
inates the one of the former, particularly when # is small. In addition,
Zn1(8) performs similar or worse than all its linear competitors, leading to
the conclusion that this test should not be applied in practice. This comes
somewhat unexpectedly, since unit root tests based directly on regression
coefficients are usually found to be more powerful than the ones based on
t-ratios (Phillips and Xiao, 1998).

Secondly, it emerges from Table 3 that Zy(¢) is somewhat more pow-
erful than ¢x 1 when the error sequence is an MA(1). While the differences
are admittedly not huge, they certainly justify the use of our procedure in
empirical applications.

5. EMPIRICAL APPLICATION: PPP

As an empirical application of the unit root test developed in the previous
chapter, consider the case of real exchange rates, defined as
P*
=5 =%, 19

Q=53 (19)
where S; is the nominal exchange rate and P}, P, are the foreign and do-
mestic price levels at time ¢, respectively. It is common, however, to use the
logarithmic form

Q=S¢ +Dp; — Dt (20)

where all lower case variables are the log of the respective upper case coun-
terpart. As outlined in the Introduction, the theory of purchasing power
parity, or PPP, predicts that the time series ¢; should be mean reverting,
since short run deviations from parity should be arbitraged away by market
forces in the long run. Note that this is equivalent to saying that s;, p} and
p: are cointegrated with known cointegration vector (1,1, —1)". Standard

! Note that 8 is not a scale free parameter and that thus it is difficult to say which
values are actually ‘small’ or ‘large’.
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FIGURE 3. Quarterly (log) real bilateral exchange rate of the Australian and New
Zealand Dollar.

unit root tests, however, are often not able to reject the null of a unit root
in g;, which has been attributed to possible nonlinearities in the process.
We expect our Zyr(t) test (and the similarly constructed ¢nxr) to be more
powerful than the usual procedures in this case.

For our illustration, we consider the case of Australia and New Zealand.
Due to their geographical situation and common history as British colonies,
the countries have strong economic ties. Furthermore, with the 1983 Closer
Economic Relations Trade Agreement (known as CER), most trade restric-
tions have successively been removed. All this makes it more likely to find
evidence in support of PPP.

Our dataset, obtained from the IMF’s International Financial Statistics
Online service, contains the nominal exchange rate of the Australian to
the New Zealand Dollar, together with the consumer price indices (CPI)
of the respective countries as proxies of the price level. Observations were
sampled at quarterly intervals, starting in 1986, after which both currencies
were floating freely, and running to 2004. The resulting real exchange rate
is displayed in Figure 3. It can be observed that the two countries’ series
has roughly stayed constant over the inspected time period, although there
have been substantial fluctuations.

We applied four unit root tests to each of the time series: the usual
ADF and PP tests based on the t-statistic, the ¢y from Kapetanios et
al. (2003), and our Zyy(¢) test. Other procedures discussed earlier were
omitted since the simulation results from the previous section suggest that
their finite sample properties are at most similar, if not inferior, compared
to the others. Since there is no theoretical justification for a linear trend
in real exchange rates, we included only an intercept in the regression for
the former two tests, and used demeaned data for the two latter ones. The
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ADF Z(t) tne Znir(t)
Statistic -2.336 -2.584 -3.362 -3.186
p-value 0.160 0.095 0.015 0.025

TABLE 4. Test statistics and corresponding p-values.

resulting test statistics and corresponding simulated p-values (computed by
the same means as the critical values in Table 1) are presented in Table 4.

As one can see, the evidence in favour of PPP from the ADF and PP
tests is not compelling. In contrast, the ¢yz and Zn(t) strongly reject the
hypothesis of a unit root in the real exchange rate, in line with economic
theory.

In addition to that, we estimated the ESTAR model from (3) for y; — p
by nonlinear least squares (NLS), yielding

—0.24 - —207.617 ~0. 188 , (21
Ay, = (%1 T(ye—1 0188)(1 exp( o 46)(.% 1-01 )))+Ut (21)

where the numbers in parentheses are the corresponding standard errors. A
further analysis of the residuals shows no sign of serial dependence, which
demonstrates that the model is well specified. It is also strongly favoured
over a linear AR model with intercept by both the AIC and SIC.

As pointed out by van Dijk et al. (2002), the large standard error of the
estimate of 8 should not be interpreted as evidence against nonlinearity,
since the asymptotic distribution is nonstandard when # = 0 due to the
identification problem. In fact, the reason is that the residual sum of squares
function is rather flat with respect to 8, and thus a precise estimate is hard
to obtain.

6. CONCLUDING REMARKS

In various fields of economics, theory suggests processes to be stationary
or at least mean-reverting. A prime example is the theory of purchasing
power parity, which we use to motivate our study. The frequent inability of
standard testing procedures to reject the null of a unit root in this cases has
long caused discomfort amongst applied researchers. Recently, this has been
attributed to a lack of power of those tests against nonlinear alternatives.

This paper contributes to the literature in this field by proposing two new
test statistics in the framework of the exponential smooth transition autore-
gressive (ESTAR) model. We derive their non-standard limit distributions
analytically and assess the finite sample properties through a simulation
study. As a result, one of the tests turns out to have slightly favourable
properties over a procedure suggested by Kapetanios et al. (2003), the only
one available in this context so far. In a small empirical application to real
exchange rates we demonstrate that the approach is at least a promising
one to solve the puzzle of purchasing power parity.
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As always, there is some room for improvements. First, the model con-
sidered under the alternative is still somewhat restrictive. One might want
to allow for a more complex structure of the model under the alternative,
involving a higher order of lagged variables, or a non-constant mean or time
trend, changing smoothly with the regimes. Other transition functions, such
as the logistic one, would be interesting to consider as well, as they allow
for asymmetric adjustment.

Second, solving the identification problem under the null hypothesis by
other means than linearization could be considered. The issue is discussed,
inter alia, by Andrews and Ploberger (1994) and Hansen (1996). In a much
more general context than the one presented in this paper, they suggest
calculating the test statistics as a function of the unidentified nuisance pa-
rameters, and then use the supremum or average over all possible values to
conduct inference. The respective limit distributions will typically be non-
standard and critical values are again obtained via simulation. Theoretical
considerations suggest that these procedures will yield a better test. How-
ever, our approach presented in this paper has the advantage of greater
conceptual and computational simplicity.
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A. MATHEMATICAL APPENDIX
For the following convergence theorem, consider a time series of the form
Yi=%Yi-1+v, i=1...m, (22)
and define V; = 37!

=

the integer part of z.

L Ui and Vi(s) = n™Y/2V|,,, for s € [0,1], where || denotes

THEOREM 4 Let A = limpoon™ 30 352, 1) Evivg). If Assumption 1 holds
with 3 = 6, then

/O T Va(r)dVa(r) = /0 " B(r)*dB(r) + 34 /0 " B (r)dr,
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where B = AW is a Brownian motion with variance \°.

PROOF To begin with, recall that by the FCLT V,.(-) = B(-) and hence V;2(-) =
B3(") by the CMT. The following derivation extensively uses Theorem 3.1 to 3.3
from Hansen (1992), which will be refered to as H1 to H3, respectively.

Let F; = o(vi : i < t) be the smallest sigma-field containing the past history of
{v:}, and define

€ = Z(E(v,;+klfi) — E(witr)Fi-1)) ,
k=0

Zi = ZE('UI‘I-ICI'Fl) .

k=1

Then € + zi-1 — 2z = E(v;|F;) = v; and it is easy to show that {e;, F:} is a
martingale difference sequence. With Y, (s) = n™1/2 E}EJ €, one directly obtains
the equality

[ = [ vieave) + a0,
0 0

where
[ns)

* 1
A (S Z(Vs - V3 ﬁvﬁnsjzl_nsji-l .

Then, by H1, we obtain

/ V3 (r)dYa(r) = / " B3(r)dB(r).
(¢} 0

Now consider the bias term
o 3 3 3
E (V — ‘/z 1)zz QVLnsJZ[nsJJ-l

e
Z(BVf_lvi +3Vic1v? + vi)z + 0p(1)
i=1

Lns) |ns] |ns)

n2ZV,21wz, ZV 1] zi+—thz,+op

First, by the triangle inequality and Holder’s inequality,

A5 (s)

li

1
n?

I

lns) |ns)
g, 21| < B, o 3 ot
< —LG: |v z
—_— n = T
<ii 2l
=2 Z A
1 n

L HE e
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as n — oo, since by Assumption 1 and the proof of H1, respectively, both [fvi,
and ||z}, are bounded.
Second, set e; = viz; — A, which by H2 satisfies the conditions of H3, yielding

Lns)

2
—3 E Viliei| =
n

i=1

sup
0<s<1

and hence we have

s} Ins] Ins]

n2 Z V_l’ulz, = — Z V2 1/1 + Z V 1€

= 34 / B*(r)dr
0

Finally,
Lns)

1-?2 Z Vl“‘lv Zi

3 [ns]
<E sup — Z |‘/1}—1v1'221'

0<s<1 7 S

E sup
0<s<1

< %Z}E“&‘lv?“l

IA

3 n
2 S Wl o, 0
i=1

as n — oo. To see this, note that by Hélder’s inequality
2 2 2
07 zl|, = (Blviz2)? < Jlvall N1zl

and thus is bounded. Furthermore,

3 =« 3
;;H‘Llllz =

|
NE
&
T‘<“

3 (1 ,,0\"
<33 (RE0D) =0
as n — 00, since n~ ' E(V;?) is O(1) and thus bounded.
REMARK: Note that since E(V,) = 0 for all n,

1
A = lim Var (——vn)
T— 00 \/_

=13er;o< ZE 2+ = ZZEUWJ)>

i=1 j=i+1
=0%+24.



