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SUMMARY: In this paper, we propose Phillips-Perron type, semi-parametric testing pro- 
cedures to distinguish a unit root process from a mean-reverting exponential smooth 
transition autoregressive one. The limiting nonstandard distributions are derived under 
very general conditions and simulation evidence shows that the tests perform better than 
the standard Phillips-Perron or Dickey-Fuller tests in the region of the null. 
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1. INTRODUCTION 

The application of unit root tests, such as the Augmented Dickey-Fuller 
(ADF) and the Pbill ips-Perron (PP),  has become s tandard  in applied t ime 
series econometrics. In some areas of economics, however, their frequent 
inability to reject the null of nonstat ionari ty contradicts well-established 
theoretical expectations. 

One example is the purchasing power par i ty  (PPP)  hypothesis. In its 
absolute form, it states tha t  a common basket of goods, when quoted in 
the same currency, should cost the same in all countries. Due to several 
factors like taxes, tariffs, t rade restrictions and other marke t  imperfections, 
the relationship may  only be expected to hold in the long run. In empirical 
studies, however, the null hypothesis of a unit root  in the deviations from 
par i ty  can often not be ruled out using ordinary testing procedures. 

As a possible explanation, Dumas (1992), Sercu et al. (1995) and Michael 
et al. (1997) consider models of real exchange rate  determinat ion which take 
t ransact ion costs into account. Their  theory suggests tha t  the larger the 
deviation from PPP,  the stronger the tendency to move back to equilibrium. 
The  result is a nonlinear, mean-revert ing stochastic process. They  claim 
tha t  s tandard unit root tests might lack power in such cases, and thus the 
evidence against P P P  in the l i terature might be the result of a type I I  error. 

I t  has been demonstra ted  by Michael et al. (1997), Sarno (2000), Taylor 
et al. (2001) and Baum et al. (2001), amongst  others, t ha t  the exponential  
smooth  transit ion autoregressive (ESTAR) model is an effective way to de- 
scribe such processes. I t  is par t  of the general class of STAR models, which 
const i tute a broad and flexible family of nonlinear t ime series models, tha t  
has recently been applied in various fields of economics. For an excellent 
survey, see van Dijk et al. (2002). 

The  problem is tha t  these authors assume s ta t ionar i ty  of deviations from 
par i ty  a priori ,  without  using formal inference. To overcome this problem, 
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Kapetanios  et al. (2003) construct  an ADF type test  called tNL in tha t  
framework, and confirm its superiori ty over its linear counterpar t  in some 
situations. Our paper  extends their work by proposing two new test statis- 
tics using a semi-parametr ic  approach along the lines of Phillips (1987) and 
Phillips and Perron (1988). We give analytical expressions for the asymp-  
totic distributions, which are free of nuisance parameters .  By simulation, we 
also s tudy the performance in small samples and find some improvements  
over the tNn. 

The plan of the paper  is as follows. Section 2 describes the theoretical 
framework and derives some impor tant  asymptot ic  results. In Section 3, the 
new tests are developed along with their limit distributions. Finite sample 
properties axe assessed in Section 4, while a small empirical application 
is presented in Section 5. Finally, Section 6 concludes. A more technical 
theorem is given in the Appendix. 

Some words on notation. Throughout  the paper,  ItZllr = (E(IXIr))  1/r 
denotes the Lr  norm, W denotes a s tandard  Wiener process on [0, 1], and 
' 3 '  denotes weak convergence. 

2. THE NONL]NEAR~ E S T A R  FRAMEWORK 

Consider the case of a simple STAR(l )  model given by 

Yt = r  -- G(yt-1 ,8))  q- r  q- vt , (1) 

where G(yt-1 ,8)  is called the transit ion function, is continuous and bounded 
between 0 and 1. The  easiest way to think of such a nonlinear model is 
as a weighted average of two AR(1) processes, with dynamically changing 
weights determined by the level of the process in the previous period. The  
error te rm {vt} is also assumed to obey some assumptions,  which are dis- 
cussed in more detail  below. To begin with, we will assume tha t  Yt is a mean 
zero stochastic process. Other  cases will be discussed in Section 3. 

While there are various transit ion functions being considered in the lit- 
erature,  our focus will be on the exponential  one, which is of the form 

G(yt-1 ,8)  = 1 - exp(-~yt2_l) ,  (2) 

with ~ _> 0. This function is symmetr ical ly  U-shaped around zero and tends 
to 1 as Yt-1 gets large in absolute value, provided tha t  ~ is positive. In the 
case of 0 -- 0, however, the function is zero everywhere. So effectively, 
determines the speed of the transit ion between the two regimes. 

For our part icular  application, we follow Kapetanios  et al. (2003) and 
impose r -- 1, and - 1  < r < 1. In other words, the two regimes of our 
STAR model are assumed to correspond to a unit root process and a stable 
AR(1), respectively. 

Combining these restrictions with (1) and (2), we can write our model 
in the following, reparameter ized form: 

Ayt = ~/Yt-l(1 -- exp(-0yt2_l)) -~ vt ,  (3) 
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where ~/--- r - 1. When - 2  < ~ < 0, which we assume holds, and 8 > 0, the 
process is globally mean-reverting towards the long-run level zero, while it 
locally acts like a unit root process when being close to tha t  same level. We 
will say that  the time series has a partial unit root  in this case. For ~ -- 0, 
there is no mean-reverting behaviour and the process has a full unit root. 

It  seems likely that  s tandard linear unit root tests such as the ADF or P P  
have difficulties to distinguish these two cases, i.e. they lack power against 
the nonlinear alternative described above. For the former test, this was 
shown by Kapetanios et al. (2003), while simulation evidence on the latter 
one is presented in Section 5 of this paper. We will therefore now describe 
an approach to test for a unit root that  takes our specific alternative into 
account. 

The hypothesis we want to test is 

H o : O = 0  vs.  H 1 : 0 > 0 .  (4) 

Note that  the parameter  ~/is not identified under the null. Loosely speaking, 
this means that  nothing can be learned about  "y from the data  if Ho is ac- 
tually true. This highly affects s tandard inferential procedures (see Davies, 
1987), and thus a direct testing procedure is not feasible. However, follow- 
ing Luukkonen et al. (1988), the problem can be overcome by using a first 
order Taylor series approximation of the exponential function around zero, 
leading to the auxiliary regression 

A y t  = ~y3t_ 1 + ut ,  (5) 

where 5 ---- 0% ut  = vt + " / y t - l R ( y t - l , ~ )  and R ( Y t - l , 8 )  is the remainder 
of the Taylor approximation. Here the identification problem is no longer 
present. 

To get an idea of the goodness of the approximation, Figure 1 depicts the 
undisturbed relationship (i. e. without the error term) between consecutive 
observations implied by the respective regressions. As one can see, differ- 
ences are only getting obvious when yt-1 becomes large in absolute value. 
Auxiliary regression (5) therefore captures the dynamics of the true process 
quite well. 

In the regression (5), our hypotheses stated above are equivalent to 

H 0 : 5 = 0  vs.  H 1 : 5 < 0 .  (6) 

The idea now is to base inference on estimates of d and the respective t 
ratios. Note that  although our regression is only an approximation, under 
the null hypothesis this does not influence the properties of the error term, 
since R ( y t - 1 ,  8) - 0 and thus ut = vt when H0 is true. Consequently, it 
does not affect the asymptotic distribution theory under H0. 

Denote the ordinary least squares (OLS) estimate of 5 by 

Yt- 1 AYt (7) 
T 6 
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FIGUaE 1. Undisturbed relationship between yt and yt-1 for the ESTAR(1) 
model (3) and corresponding Taylor approximation (5), using 3' = -1 ,  0 = 0.01. 
The bisecting line represents a unit root process. 

Then the corresponding conventional t statistic is given by 

(~ E L  3 Yt-IAYt 

t ~ - - ~ )  ~//(~2~_~T=iy6_ 1 

where 

(s) 

T 
~2 i Z ( a y  ' -  ~yL1)2 (9) =F 

t=l 
is the usual estimator of the error variance. 

To derive the asymptotics of 5 and t$, we have to be precise about  the 
structure we are going to allow for the error term {vt}. Kapetanios et al. 
(2003) only consider the t statistic (which they call tNL) and show that  for 
an i.i.d, sequence with finite second moments the limit distribution is given 
by 

t$ =~ �88 - 3 f~ W(r)2dr (10) 

They  also demonstrate that  the asymptotic distribution is the same in the 
ease of an autoregressive process of order p, when the auxiliary regression 
(5) is extended with lagged first differences, as in Said and Dickey (1984), 
to p 

Ay t =Syat_l § E p j A y t _ i + e t ,  (11) 
i=1 
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where et is i.i.d. (0, a 2) under the null. Given that  p increases with the 
sample size in a suitable way, it can be shown that  this also holds for general 
s tat ionary and invertible ARMA processes. 

However, it seems unintuitive to restrict the at tention to linear error se- 
quences in the general context of nonlinear time series. A flexible structure 
tha t  allows for various forms of temporal  dependence and also heteroscedas- 
ticity is given by the following assumption: 

ASSUMPTION J. (Hansen, 1992) For some p > fl > 2, {vt} is a zero mean, 
strong mixing sequence with mixing coefficients am of size -p/3 / (p - 13) and (<)') sup,> 1 tlViHp = C < c~. In addition, ( 1 / T ) E  ~ T v ,  ~ > 0 as 

T---* cc. 

The basic idea behind it is a trade-off between the existence of moments 
and the mixing decay rate, which prevents single observations from being 
too influential. For example, if extreme realizations occur relatively often 
(as will be the case when relatively few moments are finite), then the effect 
of such observations should wear off at a faster rate (requiring a larger size). 
Assumption 1 thus assures that  the functional central limit theorem (FCLT) 
and results regarding the convergence to stochastic intergrals will apply to 
certain normalized partial sums of {vt}. 

The parameter  A 2 is the long-run variance. Note that  while the second 
moments of {vt} are not assumed to be constant over time, a strong law of 
large numbers (McLeish, 1975) asserts that  

T T 
1 a.s.) = 1 

~ v~ cr 2 lim ~ E(v~).  (12) 
T--*oo 

�9 i=l  i=1 

Hence there is a parameter  a 2 that  can be interpreted as the average error 
variance. When {vt} is a sequence of i.i.d, variables, we obviously have 
A 2 _ 0 -2. 

Having defined the theoretical framework, we can now establish some 
convergence results that  will be essential for the further asymptotic devel- 
opment. 

LEMMA l Let Assumption 1 hold with t3 = 6 and Ho be t~'ue. Then, as 
T -~ 0% we have: 

T 1 

(a) T - 2 ~ Y ~ - I  ~ A2 ~o W(r)2dr '  
t = l  

T 1 

(b) T-4 E fo W(r)6dr' 
t= l  
T 1 

(C) T - 2  ~-'~ 3 ~ 4 W ( 1 ) 4  3 2 . 2 f  0 Y t _ l V t  :=~ - -  ~a • W(r)2dr .  
t = l  
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PROOF Both a) and b) are standard results that  follow from the FCLT and 
the continuous mapping theorem (CMT), whereas c) is a result of Theorem 4 
in the appendix, its subsequent remark, and the It5 formula. 

Now we can start  to discuss the properties of the quantities in (7)-(9). 
Our first concern is whether the estimates are consistent. This is ensured 
by the following theorem. 

THEOREM 1 Under the conditions of Lemma 1, we have 

a) 5 p 0 and 5 = Op(T-2),  

b) ~r 2 P-L a 2 and ~2 _ q2 : O p ( T - 1 ) .  

PROOF Part  (a) can be shown by a simple comparison of the convergence 
rates of the nominator and denominator in (7), which are Op(T 2) and 
Op(T4), respectively. To prove (b), write 

T ~2 T 

t = l  t = l  t = l  

(13) 

and note that  the first term converges to cA in probability by (12), and the 
last two terms are both Op(T-1).  Hence, the result follows. 

Part  (a) of the theorem implies that  5 converges to its true value zero 
under H0 at rate T 2, which is even faster than the usual superconsistent rate 
T encountered in ordinary time series regressions with a unit root. Using 
this and the previous results, we can now derive the asymptotic distributions 
of the appropriately scaled version of ~ and of ft. 

THEOREM 2 Under the conditions of Lemma 1, we have 

�88 - f3 W(r)2 r 
a) T25 =~ 

)~6 f3 W(r)Od r 

�88 - W(r)2 r 

~/cr2A6 f~ W(r)6dr 

PROOF Part  (a) follows directly from Lemma 1 (b) and (c) and the con- 
tinuous mapping theorem (CMT), whereas part (b) additionally requires 
Theorem 1 (b). 
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3. THE ZNL TEST 

Unfortunately, the limiting distributions derived in Theorem 2 depend on 
unknown nuisance parameters,  and hence the respective test statistics can- 
not directly be used. We solve the problem by the semi-parametric approach 
proposed in Phillips (1987) and Phillips and Perron (1988). Without  spec- 
ifying an explicit model for {vt}, we use consistent estimates of A2 and a2 
to modify the test statistics in such a way that  the parameters  cancel each 
other asymptotically. 

Let us assume for the moment that  we have two such estimators named 
~2 and 52, without worrying about  their exact functional form. These con- 
sistent estimates can now be used to develop two Phill ips-Perron-type test 
statistics, whose limiting distributions do not depend on nuisance paxame- 
ters. 

Define 

and 

( (14) 

= - y~-i , (15) 

where the first term is a transformation of the OLS estimate 5 and the sec- 
ond term one of the corresponding t-statistic t$. The respective asymptotic 
distributions of the two quantities are given by the following theorem: 

THEOREM 3 Under the conditions of Lemma 1, we have 

a) ZNL((~) ::~ 

b) ZNL(t) 

�88 - ~ f~ W(~)~dr 
f~ W(r) 6dr 

�88 3 fo W(r) ~dr 

~/ f~ W(r)6dr  

PROOF Both (a) and (b) are a direct consequence of Theorem 2, Lemma 1 
and the CMT. 

Since their limit distributions axe free of nuisance paxameters, these two 
statistics can now be used to test the unit root hypothesis. Figure 2 depicts 
the respective density functions under H0. It  turns out  tha t  the one of 
ZNL((~ ) is heavily left skewed, whereas the one of ZgL(t) is much more 
concentrated and relatively mildly skewed. 



446 

0.15 1 0,10 

0.05 

0,00 

CHRISTOPH ROTHE AND PHILIPP SIBBERTSEN 

I I ~ I ~ ! I 
-60 -50 -40 -30 -20 -'tO 0 

(a) 

~176 0.4 
0.3 
0.2 
0,t 
0.0 ..... l . . . . . . . . . . .  ~l . . . . . . . . . . . . . . . . . . . . .  [ . . . . . . . . . . . . . . . . . . . . .  1 . . . . . . . . . . . . . . . . . . . . .  ! . . . . . . . . . . . . . . . .  1 .......... 

-3 -2  -1 0 t 2 

(b} 

FIGURE 2. (a) Asymptotic probability density function of the ZNL((~) statistic. 
(b) Asymptotic probability density function of the ZNL(~) statistic. 

Up to now, we have confined our analysis to stochastic processes with 
mean zero, which certainly limits the usefulness of the results for empiri- 
cal applications. To accommodate for nonzero means and/or deterministic 
linear trends, we use the same minor modifications as in Kapetanios et al. 

(2003). In case of a nonzero mean, i. e. when our model is xt -- P+Yt, we use 
the demeaned data, Yt -- xe - 2, where 2 is the sample mean. The new lim- 
iting distributions axe basically the same as in Theorem 3, but with W(r) 

replaced by W*(r), a standard demeaned Wiener process on [0, I]. Simi- 
larly, when we assume both a nonzero mean and a linear trend, i.e. when 
our model is xt = # + ~t + Yt, we will use the demeaned and detrended data, 
Yt = xt - ~ - ~t, where/5 and ~ are the simple OLS estimates. In this case, 
W(r) is replaced by W#(r), a demeaned and detrended standard Wiener 
process defined on [0, I]. 

Asymptotic critical values for these three constellations, termed Case i, 
Case 2 and Case 3, are given in Table i. They were obtained by simulating 
the respective statistics with T -- 1000 observations and i00000 replica- 
tions. Note that the right panel corresponds to the critical values for the 
tNL test in Kapetanios et al. (2003) since their statistic and the ZNL(t) 
have the same limit distribution under the null. 

Finally, a word on the estimation of the nuisance parameters.  In the case 
of cr 2, the usual estimator ~2 has already shown to be consistent under the 
null hypothesis in Theorem 1 (b). There is also a large number of long-run 
variance estimators proposed in the literature (see den Haan and Levin, 
1997, for a comprehensive review). While roughly speaking any consistent 
estimator will yield the same asymptotic results, the exact functional form 
may of course influence finite sample porperties. For the purpose of our 
simulation study in the following section, we choose the combination of a 
~prewhitening' AR(1) filter and a kernel based estimator as proposed by 
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z~L (~) ZNL (t) 
Fractile (~0) Case 1 Case 2 Case 3 Case1 Case 2 Case 3 

1 -130.069 -257.140 -503.641 -2.801 -3.471 -3.944 

5 -51.611 -122.133 -279.296 -2.208 -2.929 -3.402 

10 -29.359 -79.556 -200.274 -1.920 -2.653 -3.123 

Cases refer to raw, demeaned, and demeaned and detrended data, respectively. 

TABLE 1. Asymptotic critical values of the ZNL(~) and ZNL(t) statistics. 

Andrews and Monahan (1992). More specifically, we estimate the regres- 
sion ~t = &ut-1 + et by OLS and use the corresponding residuals to calcu- 
late ~2 = F(O) + 2 ~ T ~ I  w ( i / lT )  F( i ) ,  where/~(~-) = T -1  ET=~+I e te t -T ,  
W(.) is the Bart le t t  kernel and the lag truncation parameter  lT is set at 
[4(T/100)~/9J.  The final estimate of the long-run variance is then given by 

~2 _ ~ (16) 
(1 - &)2" 

It  should be noted that  although this procedure performed well in informal 
simulation experiments, our particular choice is rather an ad hoc decision 
than based on theoretical considerations. The question whether other ap- 
proaches might be more favourable in our context is beyond the scope of 
this paper. 

4. SIMULATION RESULTS 

In order to assess the properties of the new test statistics and to compare 
their performance with the procedures proposed by Kapetanios et al. (2003), 
Phillips and Perron (1988) and Said and Dickey (1984), we conduct a series 
of simulation experiments. For brevity, we only consider the first of the three 
cases described above, with the data  being neither demeaned nor detrended. 
Although the power is lower for the last two cases, the performances of the 
tests relative to each other are similiar. 

Our first concern is the size of the tests in finite samples, and thus we 
construct a null model with moving average errors by 

Yt = Yt-1 + vt with vt = et + p e t - 1 ,  (17) 

where the et are i.i.d N(0, 1), and we consider p E {0, +0.2, +0.5, +0.8}. 
To evaluate the power of the two testing procedures against a globally 

mean-reverting ESTAR(1), we generate the data  by 

A y t  -= ~Yt-l(1 -- exp(-gy2_l ) )  + vt with vt = et + p e t - i ,  (18) 

and consider 9 E {0.01,0.05,0.1,1} and V e { - 1 . 5 , - 1 , - 0 . 5 , - 0 . 1 } .  We 
also used various specifications of the error process, but  for brevity only the 
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case where p = 0.5 and the et are i.i.d N(0, 1) is reported here. Further- 
more, we considered other types of error structures - including conditional 
heteroscedasticity, nonlinear dependence and heavy tails - but  found no 
qualitative differences in the tests'  performances. 

For both size and power simulations, the nominal level of the tests is 
5%, the sample size being considered is T E {50,100}, and the number of 
replications is set at 10 000. 

In contrast to Kapetanios et al. (2003), we do not assume that  the DGP 
is known when applying the tests to the data. In particular, we determine 
the number of augmentations used for the tlVL and ADF tests by minimizing 
the Schwarz Information Criterion SIC in the respective regressions. This 
should certainly give a more realistic impression of the properties of the 
tests than just using the ' t rue '  order. 

Table 2 shows the results on the size of the various tests. For 
p E {0, 0.2, 0.5} all sizes are generally close to the nominal level of 5%. 
We also observe the tendency to overreject the null somewhat when 
p E {-0 .2 ,  0.8}. For large negative values of p, however, size distortions are 
extreme for all of the six tests, with the ADF type test being a little less 
affected. This is a well known result for the usual unit root tests. The prob- 
lem seems to persist in the nonlinear case, and remedies proposed e.g. by 
Perron and Ng (1996) do not easily generalize, so that  none of the tests 
is recommendable when the error process almost has a negative moving 
average unit root. 

Error Process ZIvL (~) Z~vL (~) tNL Z(o~) Z(t) ADF 
T----50 
p---- 0.8 0.090 0.094 0.078 0.085 0.080 0.072 
p---- 0.5 0.069 0.069 0.076 0.067 0.063 ~ 0.068 
p = 0.2 0.040 0.046 0.044 0.047 0.047 0.050 
p = 0 0.036 0.052 0.052 0.049 0.048 0.050 
p = -0.2 0.053 0.094 0.107 0.077 0.083 0.106 
p---- -0.5 0.145 0.278 0.206 0.256 0 .281  0.230 
p---- -0.8 0.495 0.712 0.379 0.651 0.706 0.466 
T--100 
p =  0.8 0.083 0.084 0.056 0.089 0.083 0.051 
p = 0.5 0.064 0.063 0.068 0.066 0.060 0.064 
p = 0.2 0.046 0.045 0.046 0.048 0.047 0.046 
p = 0 0.042 0.051 0.048 0.052 0 .051  0.050 
p = - 0 . 2  0.069 0.091 0.108 0.084 0.087 0.104 
p = -0.5 0.201 0.280 0.134 0.237 0.252 0.152 
p = -0.8 0.717 0.808 0.305 0.683 0.722 0.385 

Note: Data under the null is generated by (19). 

TABLE 2. The size of alternative test. 
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Results of the power simulations are presented in Table 3. The  finding 
of Kapetanios  et al. (2003) was that  their tNL test  performed bet ter  than  
the ADF for small values of/9. In that  case, the process is highly persis- 
tent. When ~ grows, however, the average values of the transit ion function 
G(yt-1, 8) get closer to one and the process more and more resembles a 
stable, linear AR(1). So eventually, the power of the ADF dominates.  1 Our  
simulations confirm these findings and show tha t  the same holds for the two 
usual Phill ips-Perron tests Z (a )  and Z(t). Their performance turns out to 
be marginally worse than  the ADF's  one, but they beat  the tNL provided 
that  0 is sufficiently large. All of the six tests have in common tha t  their 
power is close to one for small values of 7, corresponding to little persistence 
of the process. 

Regarding our two new tests, we make the following observations. First, 
comparing ZNL(5) and ZNL(t), we note tha t  the power of the latter dom- 
inates the one of the former, part icularly when 0 is small. In addition, 
ZNL (5) performs similar or worse than  all its linear competi tors,  leading to 
the conclusion tha t  this test  should not be applied in practice. This comes 
somewhat  unexpectedly, since unit root tests based directly on regression 
coefficients are usually found to be more powerful than the ones based on 
t-ratios (Phillips and Xiao, 1998). 

Secondly, it emerges from Table 3 that  ZNL(t ) is somewhat  more pow- 
erful than  tNL when the error sequence is an MA(1). While the differences 
are admit tedly not huge, they certainly justify the use of our procedure in 
empirical applications. 

5. EMPIRICAL APPLICATION: P P P  

As an empirical application of the unit root test developed in the previous 
chapter,  consider the case of real exchange rates, defined as 

Qt = St" P ;  (19) 
Pt' 

where St is the nominal exchange ra te  and P{, Pt are the foreign and do- 
mestic price levels at  t ime t, respectively. I t  is common, however, to use the 
logarithmic form 

qt = st + p~ - Pt, (20) 

where all lower case variables axe the log of the respective upper  case coun- 
terpart .  As outlined in the Introduction,  the theory of purchasing power 
parity, or PPP,  predicts tha t  the t ime series qt should be mean reverting, 
since short  run deviations from pari ty  should be axbitraged away by marke t  
forces in the long run. Note that  this is equivalent to saying tha t  st, p~ and 
Pt are cointegrated with known cointegration vector (1, 1 , - 1 ) q  Standard  

1 Note that 0 is not a scale free parameter and that thus it is difficult to say which 
values are actually 'small' or 'large'. 
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FIGURE 3. Quarterly (log) real bilateral exchange rate of the Australian and New 
Zealand Dollar. 

unit root  tests, however, are often not able to reject the null of a unit root 
in qt, which has been at t r ibuted to possible nonlinearities in the process. 
We expect o u r  ZNL(t) test (and the similarly constructed tNL) t o  be more 
powerful than the usual procedures in this case. 

For our illustration, we consider the case of Australia and New Zealand. 
Due to their geographical situation and common history as British colonies, 
the countries have strong economic ties. ~ r t h e r m o r e ,  with the 1983 Closer 
Economic Relations Trade Agreement (known as CER),  most trade restric- 
tions have successively been removed. All this makes it more likely to find 
evidence in support  of PPP.  

Our dataset,  obtained from the IMF's International Financial Statistics 
Online service, contains the nominal exchange rate of the Australian to 
the New Zealand Dollar, together with the consumer price indices (CPI) 
of the respective countries as proxies of the price level. Observations were 
sampled at quarterly intervals, starting in 1986, after which both  currencies 
were floating freely, and running to 2004. The resulting real exchange rate 
is displayed in Figure 3. It can be observed that  the two countries' series 
has roughly stayed constant over the inspected t ime period, although there 
have been substantial fluctuations. 

We applied four unit root tests to each of the time series: the usual 
ADF and P P  tests based on the t-statistic, the tNL from Kapetanios et 
al. (2003), and o u r  ZNL(t ) test. Other procedures discussed earlier were 
omit ted since the simulation results from the previous section suggest tha t  
their finite sample properties are at most similar, if not inferior, compared 
to the others. Since there is no theoretical justification for a linear trend 
in real exchange rates, we included only an intercept in the regression for 
the former two tests, and used demeaned data  for the two latter ones. The 
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ADF Z(t) tNz ZNL (~) 

Statistic -2.336 -2.584 -3.362 -3.186 

p-value 0.160 0.095 0.015 0.025 

TABLE 4. Test statistics and corresponding p-values. 

resulting test statistics and corresponding simulated p-values (computed by 
the same means as the critical values in Table 1) are presented in Table 4. 

As one can see, the evidence in favour of P P P  from the ADF and P P  
tests is not compelling. In contrast,  the t~NL and Z N L ( t )  strongly reject the 
hypothesis of a unit root in the real exchange rate, in line with economic 
theory. 

In addition to that ,  we estimated the ESTAR model from (3) for Yt - # 
by nonlinear least squares (NLS), yielding 

Ayt ---- -0.247(yt_1-0.188)(1-exp(--207.617(yt_l-0.188)2)) + vt, (21) 
(0.102) (0.017) (295.846) (0.017) 

where the numbers in parentheses are the corresponding s tandard errors. A 
further analysis of the residuals shows no sign of serial dependence, which 
demonstrates tha t  the model is well specified. It is also strongly favoured 
over a linear AR model with intercept by both  the AIC and SIC. 

As pointed out  by van Dijk et al. (2002), the large s tandard error of the 
estimate of 0 should not be interpreted as evidence against nonlinearity, 
since the asymptotic distribution is nonstandard when 0 - 0 due to the 
identification problem. In fact, the reason is tha t  the residual sum of squares 
function is rather  flat with respect to 0, and thus a precise estimate is hard 
to obtain. 

6. CONCLUDING REMARKS 

In various fields of economics, theory suggests processes to be stat ionary 
or at least mean-reverting. A prime example is the theory of purchasing 
power parity, which we use to motivate our study. The frequent inability of 
s tandard testing procedures to reject the null of a unit root in this cases has 
long caused discomfort amongst applied researchers. Recently, this has been 
a t t r ibuted to a lack of power of those tests against nonlinear alternatives. 

This paper contributes to the li terature in this field by proposing two new 
test statistics in the framework of the exponential smooth transition autore- 
gressive (ESTAR) model. We derive their non-standard limit distributions 
analytically and assess the finite sample properties through a simulation 
study. As a result, one of the tests turns out to have slightly favourable 
properties over a procedure suggested by Kapetanios et al. (2003), the only 
one available in this context so far. In a small empirical application to real 
exchange rates we demonstrate tha t  the approach is at least a promising 
one to solve the puzzle of purchasing power parity. 
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As always, there is some room for improvements.  First, the model con- 
sidered under the al ternative is still somewhat  restrictive. One might want 
to allow for a more complex s t ructure  of the model under the alternative, 
involving a higher order of lagged variables, or a non-constant  mean or t ime 
trend, changing smoothly with the regimes. Other  transit ion functions, such 
as the logistic one, would be interesting to consider as well, as they allow 
for asymmetr ic  adjustment.  

Second, solving the identification problem under the null hypothesis by 
other means than  linearization could be considered. The  issue is discussed, 
inter alia, by Andrews and Ploberger (1994) and Hansen (1996). In a much 
more general context than  the one presented in this paper,  they suggest 
calculating the test  statistics as a function of the unidentified nuisance pa- 
rameters ,  and then use the supremum or average over all possible values to 
conduct inference. The  respective limit distributions will typically be non- 
s tandard and critical values are again obtained via simulation. Theoretical  
considerations suggest tha t  these procedures will yield a be t ter  test. How- 
ever, our approach presented in this paper  has the advantage of greater  
conceptual and computat ional  simplicity. 
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A .  MATHEMATICAL APPENDIX 

For the following convergence theorem, consider a t ime series of the form 

y ~ = y ~ - l §  i = l . . . n ,  (22) 

t V and define V~ --- ~ = 1  ~ and V,~(s) --- n-1/2V[,~sj for s E [0, 1], where [xJ denotes 
the  integer par t  of x. 

THEOREM 4 Let A lim,~--.oo n -1 v-,n v-,oo E %  ~. = 2--i=1 2-,~=~+1 (~v~) I f  Assumption 1 holds 
with ~ = 6, then 

V,~(r)3dY,~(r) ~ B(r)adB(r) + 3A B2(r)dr , 
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where B = A W  is a Brownian mot ion with variance A 2. 

PROOF To begin with, recall that  by the FCLT V,~(.) =~ B(-) and hence V~(.) :~ 
Ba(.) by the CMT. The following derivation extensively uses Theorem 3.1 to 3.3 
from Hansen (1992), which will be refered to as H1 to H3, respectively. 
Let ~-~ = a(v, : i < t) be the smallest sigma-field containing the past history of 
{v~}, and define 

oo 

e,  = ~ ( E ( v , + k l ~ , )  - E ( v , + k [ ~ - , - ~ ) ) ,  

k=0 
co 

k = l  

Then e, + z,-1 - z, = E ( v , l ~  ) = v, and it is easy to show that  {r is a 
martingale difference sequence. With Y,~(s) = n -1/2 V't"~J z..,=l c,, one directly obtains 
the equality 

Odv~(r) = r)dY~(r) + A:~(s), 

[nsJ 
1 E ( V ~  3 3 1 a = _ Vi_ l )z i  - -~Vins jZLns j+l .  A:(s) -~ 

i=1 

Then, by HI, we obtain 

~ o ~ V 3 ( r ) d Y n ( r ) = ~ o ~ B a ( r ) d B ( r ) .  

Now consider the bias term 

L~sJ 
1 E ( V 3  3 z 1 3 = - v,_i) ~-  ~V6<ZL.sj+I A* (s) - ~  

i=1 

1 L~sj 
= n 2 -  E (3~_1v,2 + 3V~_iv 2 + va)z ,  + Op(1) 

i = l  

3 [~J [~J i n~j 
v~_~v, z, + ~ ~ , 5 ,  + o~(,). = - n - 2 E  2 3 1 

i=1 /=1 i=1 

First, by the triangle inequality and H61der's inequality, 

[nsJ V~ Z~ E 1 3 1 k~sJ 
E ~up ~ E < E sup I~,~z,I 

0_~s_~l /=1 --  O~s<:l ~ i = l  

<- - z  E I~2 z, I 
i=l  

_<~ 
' = 1  

_< ~ [Iv, l14 3 Ilz, ll4 --, o 
i = 1  

where 
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as n --+ cr since by Assumption 1 and the proof of H1, respectively, both Ilv~[14 
and ]lz+[14 axe bounded. 
Second, set el = vlz+ - A, which by H2 satisfies the conditions of H3, yielding 

kns] 1~,_2 
sup Vi_lei P-+ 0 

and hence we have 

3 L,'.sJ t"-'J Lnsl V/-1 i 
- -  = V + _ I A + ~ - ~ - ' ~ +  2 e V~-lViZi -~ E 2 n 2 E = 3 3 

i : 1  i=1 i= l  

3Af0 + B2(r)dr .  

Finally, 

13 L',',.sJ L~J E V i - l v ~ z i  < E  sup 3 2 
Z suP0<s<l ~ i = l  O<s<:l ;3  +=,. Iv+-++"+"l 

i 

-< l 
i = l  

_< + llY+-,tt.~ II+'P+,112 - ~  o 
i = l  

as n -+ ec. To see this, note that  by Hblder's inequality 

IIvPz, ll2 4 2 , /2 = (EIv+z+t) < IIv+ltg Ibdt6 
and thus is bounded. Furthermore, 

3 ~ - ~  3~--~ 2 ,/2 ~-z IIV~-,ll2 = ~ (E(V+_,)) 
i=1  i=l 

= ~ E(V?_I) 

<--~+=~ ~ (~)  -+o 

as n --+ oo, since n- IE(V 2) is O(1) and thus bounded. 

REMARK: Note that  since E(V, 0 -- 0 for all n, 

A2=  ,~--.o~lim Vax (--~nV~) 

= lim E ( v ~ ) + 2 E  E E(vivj 
n--*oo ~k n i=1  i = l  j = i + l  / 

= a 2 + 2A. 


