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Abstract
Every year, a massive volume of textile waste is disposed of in a landfill or incinerated, contributing to resource loss and 
environmental consequences. Researchers are using textile waste to simultaneously develop composite materials to address 
both issues. Although manufacturing composites temporarily solves the problem, these composites will eventually wind up 
in landfills at the end of their service life unless appropriate manufacturing and recycling methods are followed. This review 
assessed the feasibility, benefits, drawbacks, and limitations of various composites manufactured from textile waste and their 
recycling procedures in terms of having minimal or no environmental impact after their end-of-life. This paper discusses two 
alternative composite manufacturing technologies and various recycling processes. Based on the review, developing biocom-
posites from textile waste comprised of natural components is one of the most promising options regarding sustainability and 
environmental friendliness. Moreover, by adopting this method, some partially biodegradable composites can be transformed 
into fully biodegradable materials, resulting in various benefits, including improved mechanical properties. Then, as one of 
the potential solutions, ionic liquids are discussed. Ionic liquids can dissolve a wide range of fibers. Most crucially, ionic 
liquids can dissolve a specific fiber from a blend of fibers, which is traditionally considered the main difficulty with textile 
waste. Furthermore, for some fully non-biodegradable and partially biodegradable composites, several recycling strategies 
have been discussed and, in part, used by numerous companies to recover waste fibers and keep them out of landfills. The 
advantages, downsides, and limitations of each recycling process have also been explored. Finally, applications and future 
perspectives for these manufacturing and recycling processes are emphasized.
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Introduction

The world's population is rising, and people's lifestyles are 
changing rapidly, putting strain on resources and the eco-
system's carrying capacity [1]. The formulation, including 
composites traditionally made of glass, carbon, and other 
synthetic fibers, is deemed essential due to environmental 
concerns [2]. The current and proposed Waste Management 
legislation includes overly strict landfill and incineration 

policies, so the fiber-reinforced composite industry, man-
ufacturers, and suppliers must deal with the problem by 
identifying possible recycling solutions to ensure the sus-
tainability of their goods for the construction sector [3]. 
Simultaneously, scientists are exploring alternative materi-
als to replace petroleum polymers due to strong constraints 
on their preservation and product end-life cycle performance 
[4]. Many articles have been reported in the literature focus-
ing on the development of new composites comprising vari-
ous materials, such as natural fiber from vegetable sources 
(bamboo, banana, coconut, flax, hemp, jute, kenaf, sisal, 
wood) and animal sources (wool, silk), agricultural resi-
dues (citrus, coconut shell, duck feather, rice husk, sunflower 
husk), textile fiber waste, for example.

According to research findings, chemical and textile fib-
er’s synthesis surged more than four times between 1975 and 
2018, from 23.94 million metric tons to 105.6 million met-
ric tons, a 40-year increase [5]. As shown by the Food and 
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Agriculture Organization (FAO), 3.7 kg of textile fiber was 
consumed per person in 1950, and this amount has steadily 
climbed to 11.1 kg per person in 2007 [6]. According to the 
European Environment Agency (EEA) briefing, the manu-
facture of apparel, footwear, and home textiles for Europeans 
contributed to an estimated 654 kg of  CO2 equivalent emis-
sions per European Union (EU), representing textiles as the 
fifth greatest source of  CO2 emissions related to private con-
sumption [7]. The awareness of environmental issues grows 
together with the increase in  CO2 emissions [8]. Every year, 
a large volume of fibrous textile waste is dumped into land-
fills worldwide [9]. Wide varieties of textile wastes have 
environmental consequences since these are not biodegrad-
able and may discharge poisonous fumes into the environ-
ment [10]. Global concerns regarding textile waste disposal 
and management have recently intensified in recent years 
[11]. Considerable research and industrial initiatives have 
been launched as a tactic for restoring textile waste from 
landfills. They suggest that the proposed technical solution 
has much potential in managing textile waste and aiding the 
recovery of natural textile wastes as value-added products 
into natural fiber-reinforced composites [12].

Although textile wastes are employed in composite 
materials and reduce pollution, composite materials are 
discarded or incinerated after being used. As a result, after 
a few days, contamination from textile waste will emerge. 
The composite material comprises various types of textile 
fibers that damage land, air, and water when disposed of or 
incinerated. These synthetic fibers are highly hazardous to 
humans and other living things. It has also been reported 
that every year, approximately 100,000 marine animal spe-
cies and over a million sea birds die as a direct result of 
ingesting plastic debris [13]. Different forms of fiber from 
textile waste, such as nylon, polyester, polyamide, rayon, 
and others, are contained in this plastic garbage. Seafood 
eating is the principal source of these fibers in the human 
body. According to reports, approximately 20 kg of seafood 
is consumed per capita each year [14]. Chronic inhalation 
of these fibers has been linked to lung infection and inflam-
mation, stomach, liver, and kidney damage, cardiovascular 
difficulties, brain damage, cancers, and human reproductive 
abnormalities [15].

Researchers seek ways to implement various waste 
management and recycling technologies to prevent unde-
sirable environmental impacts and maximize raw mate-
rial utilization. Stanescu [16] discussed the valorization 
of post-consumer waste using several approaches, such as 
novel materials (non-woven and composite), fibers, and 
various compounds (cellulose derivatives, graft polymers, 
succinic acid, ethanol, and activated carbon) as carbon and 
energy sources. Rahman et al. [17] proposed a slew of novel 

construction materials and geotechnical engineering solu-
tions, including polymer concrete and composites, thermal 
and acoustic insulation, asphalt concrete, fiber-reinforced 
soil, rammed earth, and so on. Sivakumar and Mohan [18] 
studied polymer composites and nanocomposite materi-
als from leather and textile fiber waste. Rotimi et al. [19] 
looked into the existing literature on sustainability within 
the fashion industry's supply chain to identify available 
sustainable methods for dealing with post-consumer textile 
waste (PCTW) at the end of the garment's lifecycle. Santos 
and Campos [20] analyzed and characterized post-consumer 
textile waste management procedures in garments and then 
examined them using environmental, economic, and social 
factors. Zhou et al. [21] presented innovative techniques 
for handling textile waste, such as its utilization value and 
transformation processes, to aid in remediation and mitigate 
environmental consequences. Wojnowska-Baryła et al. [22] 
discussed a bio-based textile management system based on 
sorting, pretreatment, and recovery of textile materials, as 
well as the production of bioethanol, biogas, and composting 
from textile waste. Several recent review papers imply that 
textile wastes are becoming increasingly popular in manu-
facturing composite materials. Mishra et al. [23] published a 
review that presented textile waste as a raw material source 
for producing various value-added goods, such as plastic 
composites and composites for construction applications. 
Sotayo et al. [24] examined the different manufacturing 
procedures that use carpet waste as a raw material to cre-
ate possible composite materials for structural load-bear-
ing applications. For the advancement of the automotive 
industry, Darshan et al. [25] conducted literature research 
on waste silk fiber-reinforced polymer composites (FRPCs) 
made from various silk waste fibers. Patti et al. [26] dis-
cussed using textile waste across multiple polymer matri-
ces such as thermosetting resins, thermoplastic polymers, 
natural matrices, hybrids, and concrete matrices. Tran et al. 
[27] studied the engineering performance of textile waste 
fiber-reinforced concrete. These reviews represent initia-
tives aiming to produce textile waste composites (TWC) to 
reduce textile waste in landfills and utilize raw materials. 
However, none of them contemplated what would happen 
if these composites reached the end of their lifespans and 
were landfilled or incinerated, contributing to pollution. This 
review discussed the current TWC manufacturing process 
and its environmental consequences and impact on human 
health. Then, alternative TWC manufacturing and recycling 
processes were examined as potential solutions to ensure 
that these TWCs have minimal or no environmental impact 
after their end of life. The feasibility, benefits, downsides, 
and limitations of these processes are also analyzed in this 
review.
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Textile waste

The world's population, which is already 7.6 billion, might 
increase to 8.6 billion in 2030, 9.8 billion in 2050, and 
11.2 billion in 2100 [28]. Global demand for textile prod-
ucts is rising continuously, a trend predicted to remain as 
the world's population grows [29]. By 2025, the global 
textile and apparel market is expected to have grown at a 
compound annual growth rate of 3.7 percent, surpassing 
100 million tons [30]. In 2018, however, global fiber pro-
duction crossed 107 million metric tons, manufacturing 
significantly more than expected [31], showing a much 
higher production than predicted. Correspondingly, annual 
textile waste is estimated to reach 26.0, 1.0, and 12.4 mil-
lion tons in China, the United Kingdom, and the United 
States (US) [30]. The Council for Textile Recycling found 
that between 1998 and 2009, there was a 40% spike in 
textile waste but only a 2% increase in landfill diversion. 
They responded by setting a goal for the US to create zero 
landfill-bound textile waste by 2037 [32]. Until 2013, the 
EEA certified a quantity of textile waste of 5.6 million 
tons (Mt): 20% of the textile waste was reused or recycled, 
1.5 Mt was shipped outside of the EU, and the remaining 
80% was lost [33]. More than 20 million tons of textile 
waste in China, but only 2.33 million tons (less than 10%) 
are recycled yearly [9]. The situation in Hong Kong is 
likewise dire, with around 293 tons of textile waste gener-
ated daily [34]. In 2009, Portugal created 293,000 tons of 
textile waste [35]. In 2011, Spain solely produced 301,600 
tons of textile waste [36]. These large amounts of waste 
that end up in landfills and incineration lead to environ-
mental hazards and waste many resources for not being 
used effectively.

Selection

Google Scholar was initially used to find out the targeted 
articles. Articles on composite materials made from TWC 
are the targeted ones. In this criterion, a total of 92 articles 
were found. These 92 articles are then assorted into two 
groups. One group, known as non-biodegradable com-
posites (both the matrix and reinforcing agents are non-
biodegradable), is listed in Table 1 and has 34 articles. 
The other 58 articles are in Table 2, considered partially 
biodegradable composites (matrix or reinforcing agent, 
one is biodegradable). Four possible cases considered in 
this criterion are given below:

• Natural Fiber (Biodegradable) + Synthetic Matrix 
(Non-Biodegradable)

• Synthetic Fiber (Non-Biodegradable) + Natural Matrix 
(Biodegradable)

• Synthetic and Natural Fiber Mix + Synthetic Matrix
• Synthetic and Natural Fiber Mix + Natural Matrix

Finally, how these two types of composites can be manu-
factured using more ecologically friendly procedures is 
addressed.

Composite from textile waste

Every year, a massive amount of textile fiber waste is land-
filled or incinerated, causing a slew of environmental issues, 
such as groundwater contamination and the production of 
greenhouse gases during decomposition [126]. Thus, it is 
essential to find ways to recycle these materials to lessen 
environmental effects and save energy [10]. This recycling 
of textile fiber waste contributes to long-term sustainabil-
ity. Reusing and recycling more textiles might minimize the 
manufacturing of raw textile fibers and, in the case of reuse, 
avoid engineering activities later in the textile product's life 
cycle, which would positively influence the environment 
[127]. Recently, textile fiber waste has been incorporated 
into composite products. Nylon and polypropylene fibers 
from carpet waste [48], polyamide fiber from tire waste [38], 
cotton [72], polyester [50], wool [113], silk [89], and other 
textile fibers from fabric (woven, non-woven, knit) waste 
are all examples of textile fibers that can be reused. These 
composites are widely employed in construction [46], sound 
absorption materials [45], the automobile industry [120], 
furniture materials [116], polymer concrete [50], the food 
packaging industry [128], and many other applications.

The most common difficulty faced while recycling textile 
fiber is that both natural and synthetic fibers are used simul-
taneously in making yarn or fabric. For this reason, choosing 
a specific recycling process becomes very difficult as these 
multiple fibers have multiple characteristics. It often requires 
various recycling techniques to separate them; sometimes, 
even multiple techniques are not enough. This scenario is 
also true for TWCs, which often contain numerous fiber 
types as reinforcing or matrix agents in a single composite. 
That is why these composites are complicated to recycle and 
will harm the environment as textile waste in just a delayed 
manner. It is necessary to segregate these TWCs, requiring 
different approaches to make them environmentally friendly, 
to overcome these problems. The chosen articles make two 
categories (non-biodegradable and partially biodegradable). 
Table 1 summarizes previous research into non-biodegrada-
ble TWCs. Whereas Table 2 lists some prior studies on par-
tially biodegradable TWCs. Tables 1 and 2 also show which 
composite parts were made from waste textiles. Although 
these composite materials' usage is presented in the chart, 
some are not addressed in the peer-reviewed literature.
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Table 1  Non-biodegradable composite materials produced from textile waste

Non-biodegradable composite materials

Serial No Reinforcement Matrix or Binder Application References

1 Polyamide, Polyacrylic, Modal (TW) Polyurethane foam SIM [37]
2 Polyamide, Rubber granules

(Tire waste)
Epoxy Renovation of machine parts

Roofing material
[38]

3 Chopped Garment (TW)
Fly ash

Epoxy Ceiling panels, Roof tiles
SIM
Park benches, Chairs

[39]

4 Acrylic (TW) Epoxy N/M [40]
5 Wool, Nylon, Polypropylene (TW) Colemanite Ore Insulation material [41]
6 Rubber (TW) Polyurethane foam Thermal insulating material [42]
7 Synthetic fiber (TW) Polyvinyl acetate Puzzle, Toys [43]
8 Nomex, Kevlar, Polyester (TW) Low-Melting Point Polyester Protective materials [44]
9 Polyester Waste (TW) Polyurethane, Dimethylformamide SIM [45]
10 Glass, Polyester, Polypropylene fiber 

(TW)
PC BM [46]

11 Polyester (TW)
Polypropylene

Needle punching technique was used 
to hold the reinforcing material

Non-woven composite [47]

12 Nylon, Polypropylene yarn (TW) Silty Sand Soil reinforcement [48]
13 Polyester, polypropylene (TW) Melted Polypropylene Non-Woven 

Selvedge waste
SIM [49]

14 Polyester (TW) Polypropylene
Low-Density Polyethylene

SIM
BM

[50]

15 Polyacrylonitrile, Polyamide, Polyester 
(TW)

Polychloroprene SIM [51]

16 Polyester (TW) PC BM [52]
17 Nylon, Jute (TW) Low-Density Polyethylene Automotive

BM
[53]

18 Polyamide Fabric Polyamide (TW) Tents, facade coverings, container lin-
ings, and tarpaulins

[54]

19 Nylon (TW) Polyamide (TW) Textile bioreactor [55]
20 Activated Carbon (TW) Phenolic Resin Textile effluent (Anionic dye removal) [56]
21 Polyacrylonitrile (TW) Multiwall Carbon nano tube Textile effluent (Dye removal) [57]
22 Polyacrylonitrile, Polyamide, Polyester 

(TW)
Polystyrene
Cork
Polyethylene

SIM [58]

23 Polyacrylonitrile (TW) Co-Zn ZIF/MoS2 hybrid nanosheet Geotechnical cloth, filtration and 
household textile

[59]

24 Polyamide (TW) Gypsum BM [60]
25 Rubber (TW) Fly ash

Activator Solution
BM [61]

26 Polypropylene (TW)
Palm Oil Fuel Ash

PC BM [62]

27 Polypropylene (TW) PC
Rice husk ash

BM [63]

28 Polybutylene terephthalate, Polyethyl-
ene terephthalate, Polyamide (TW)

Fly Ash BM [64]

29 Polypropylene (TW) PC
Palm Oil Fuel Ash

BM [65]

30 Acrylic (TW)
Wood chips

Urea Formaldehyde Wood based panel [66]

31 Polypropylene Cot Rubber (TW) Damping application [67]
32 Nitrile butadiene rubber

Chlorinated Polyethylene
Rubber (TW) High damping film material [68]
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Challenges of composite waste products

The composite material that comprises textile waste such as 
tire waste, carpet waste, wear gloves and masks, used textile 
garments, and fabric scraps are employed in building, auto-
mobile, food packaging, and particleboard industries. These 
composite materials are incinerated or landfilled following 
their use, polluting water, land, and air. Synthetic fibers dis-
covered in these composite materials generated from textile 
waste have an adverse effect on birds and fish. Humans eat 
these fish and consequently develop infections.

Effect of terrestrial microfiber pollution

The terrestrial environment is the primary source of micro-
fiber pollution, with approximately 400 million tons of 
plastic produced worldwide yearly [129]. Synthetic fibers' 
inorganic and non-biodegradable properties are the primary 
drivers of terrestrial pollution and environmental change, 
ultimately leading to the next level. Synthetic fibers are also 
delivered to sewage for various causes and through diverse 
methods. It is estimated that 80–90% of garment fibers are 
detected in sewage, with polyester (66%) and acrylic (7%) 
accounting for the majority [130].

Sludge from sewage treatment plants is used as a cheap 
fertilizer on agricultural lands, and it is a typical practice in 
developing nations on a large scale [131]. These microplas-
tics (MPs) have a deleterious effect on the soil, the living 
organisms, and the plants that grow in it. Due to contamina-
tion with microfibers, De Souza Machado and colleagues 
showed a rise in soil bulk density and aeration [132]. These 
MPs impede plant seedlings' growth and development [133]. 
MPs also directly impact the plant by obstructing seed pores, 
which slow or stop water uptake by sticking to the surface 
of seed pores [134]. Additionally, soil-dwelling microorgan-
isms may be harmed as chemicals are required to make MPs 
[135]. In several experiments, MPs are poisonous to earth-
worms [136], microbes [137], and plants. Furthermore, MPs 
have been shown to reduce the microbial population in the 
soil [138]. Since plants, organisms, and soil are all part of 

an ecosystem and interdependent, changing one negatively 
influences the other. Plant and agricultural growth could be 
significantly impacted by MPs' reduced microbial activity 
[139] (See Fig. 1). According to Boots and coworkers, soil 
contamination with high-density polyethylene (HDPE) low-
ers soil pH, affecting microbial activity [140]. Besides, MPs 
contamination could alter the carbon-to-nitrogen ratio in the 
soil [141], which could affect the entire plant population. 
Changes in soil composition and structure may also reduce 
the growth of microorganisms in the rhizosphere, lessening 
soil fertility [141]. Plants interact with both beneficial and 
harmful communities in the soil through the rhizosphere, a 
virtual interface [142].

Effect of aquatic and marine microfiber pollution

Because of the presence of microfiber, aquatic pollution has 
received much attention in recent decades. These microfibers 
are derived from synthetic fibers that migrate to the ocean 
from various landfills and incineration sites via rain and 
wind.

If nothing is executed, it is estimated that plastic debris in 
the ocean will increase by 850 Mts by 2050 [144]. Sunlight, 
strong waves, and ultra violet (UV) light break down these 
synthetic fibers into microfibers (see Fig. 2). These partially 
degraded particles end up in the ocean, where it is predicted 
that 100,000 particles accumulate per cubic meter on the 
surface of the water in the marine environment around the 
world [126]. Synthetic fabrics also degrade partially to form 
synthetic microfibers, which are non-biodegradable and will 
remain in the ocean perpetuity. Around 60% of microfibers 
in freshwater systems near metropolitan centers emerge from 
synthetic clothes made of polyester, polyethylene terephtha-
late (PET), and other synthetic fibers. According to reports, 
nearly 85 percent of microplastic fibers present in global 
seashore lines are polyester, nylon, and polyvinylchloride. 
This problem is not confined to aquatic systems; studies have 
found that drinking water [143], bottled water [145], sea salt, 
seafood [146], sugar, beer, and other products are adulter-
ated with plastic fibers. If this pollution continues, it will 

Table 1  (continued)

Non-biodegradable composite materials

Serial No Reinforcement Matrix or Binder Application References

33 Aramid (TW) Low-Melting Point Polyester
Aramid
Composite board

N/M [69]

34 Nylon, Polyester (TW) PC
Silty Sand

BM [70]

Reinforcing agents and matrices, as well as which part came from the textile waste, are mentioned. Applications of these composite materials in 
real life are also listed, but some of them are not mentioned in the respective articles
TW textile waste, N/M not mentioned, PC portland cement, SIM sound insulation material, BM building material
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Table 2  Partially biodegradable composite materials produced from textile waste

Partially Biodegradable Composite Materials

Serial No Reinforcement Matrix or Binder Biodegradable Part Application References

1 Cotton, Jute (TW)
Glass fabric

Unsaturated Polyester Resin Cotton, Jute, Unsaturated 
Polyester Resin

N/M [71]

2 Cotton (TW)
Graphene oxide

Epoxy Cotton FM
AP

[72]

3 Cotton, Nylon, Viscose, 
Polyester (TW)

PC Cotton, Viscose BM [73]

4 Rubber Crumbs
Flax (TW)

Polyurethane foam Flax SIM [74]

5 Cotton (TW) PC Cotton BM [75]
6 Cotton, Wool, Polyester, 

Polypropylene, Polyamide 
(TW)

PC Cotton, Wool BM [76]

7 Wool
Polyester (TW)
Recycled Paper

Glue Wool SIM
BM

[77]

8 Cotton (TW)
Jute

Epoxy Cotton, Jute AP
FM
Leisure equipment
BM

[78]

9 Polyester (TW)
Coconut Fiber

Low-Melting Point Polyester Coconut Fiber SIM [79]

10 Alpaca powder (TW)
Polyacrylonitrile

Dimethyl Sulfoxide Solvent Alpaca powder Composite fiber [80]

11 Cotton (TW) Urea Formaldehyde Cotton Particleboard [81]
12 Lycra, Polyester, Cotton 

(TW)
Fiber glass

Epoxy Cotton SIM [82]

13 Cotton (TW)
Virgin Polypropylene

Polypropylene Cotton N/M [83]

14 Green Palm Fiber
Cotton, Wool, Polyester 

(TW)

NPT Green Palm, Cotton, Wool Composite Non-woven
BM

[84]

15 Cotton (TW)
Glass fiber

PC Cotton Thermal Insulator [85]

16 Cotton (TW) Soil Cotton BM [86]
17 Cotton, Polyester (TW) PC Cotton BM [87]
18 Cotton (TW) Low-Density Polyethylene Cotton Different types of indoor 

and outdoor application
[88]

19 Cotton, Silk (TW) Polycarbonate Cotton, Silk N/M [89]
20 Cotton (TW) Polypropylene Cotton AP

Packing materials
Engineering materials

[90]

21 Polypropylene (TW) Unsaturated Polyester Resin Unsaturated Polyester Resin BM [91]
22 Wool (TW) Tetra Pack waste Wool SIM [92]
23 Glass fiber

Flax, Cotton (TW)
Unsaturated Polyester Resin Flax, Cotton, Unsaturated 

Polyester Resin
N/M [93]

24 Polyester, Cotton (TW) Epoxy Cotton SIM [94]
25 Silk, Cotton (TW) High Density Polyethylene Cotton, Silk N/M [95]
26 Jute, Cotton, Polyester, 

Polypropylene (TW)
Poly Lactic Acid (PLA) Jute, Cotton, PLA N/M [96]

27 Stubble, Sunflower Stalks
Cotton (TW)

Urea Formaldehyde Stubble, Sunflower Stalks, 
Cotton

Thermal Insulator [97]
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Table 2  (continued)

Partially Biodegradable Composite Materials

Serial No Reinforcement Matrix or Binder Biodegradable Part Application References

28 Microcrystalline Cellulose 
(MCC)

Nylon (TW) MCC AP [98]

29 Jute Medical Gloves. (TW) Jute Partition purpose [99]
30 Cotton. (TW) Polyester Waste Cotton N/M [100]
31 Polyester, Cotton (TW) Natural Rubber Cotton SIM [101]
32 Cotton (TW)

Glass Mesh fiber
Gypsum Cotton Non-structural partition 

walls
BM

[102]

33 Cotton (TW) Phenolic Resin Cotton SIM [103]
34 Wool, Acrylic (TW) NPT Wool Non-woven composites

Thermal Insulator
[104]

35 Flax (TW) Acrylic acid
Acrylamide

Flax Superabsorbent for modern 
agriculture and horticul-
ture

[105]

36 Silk, Jute (TW) Epoxy Silk, Jute N/M [106]
37 Cotton, Synthetic Fiber 

(TW)
Natural Hydraulic Lime Cotton BM [36]

38 Sisal, Glass
Carbon Waste (TW)

Polypropylene Sisal Industrial parts (Gears, 
Bearings, Seals, Brakes)

[107]

39 Cotton (TW)
Fly ash
Barite

Epoxy Cotton BM [108]

40 Wool, Acrylic (TW) PC
Natural Hydraulic Lime

Wool BM [109]

41 Cotton (TW) Allyl glycidyl ether
Bisphenol diglycidyl ether

Cotton N/M [110]

42 Polyester, Cotton, Wool 
(TW)

Epoxy Cotton, Wool N/M [111]

43 Sawdust Polypropylene (TW) Sawdust BM [112]
44 Wool (TW) Polyethylene terephthalate Wool BM [113]
45 Cotton, Polyester (TW) Natural Rubber Latex Cotton SIM [101]
46 Cotton, Polyester, Flax (TW) PC Cotton, Flax Facade cladding, raised 

floors, and pavements
[114]

47 Cotton (TW) Natural Rubber Latex Cotton Wearable strain sensors [115]
48 Hemp (TW) Polypropylene Hemp AP

FM
[116]

49 Cotton, Polyester blend 
(TW)

Polyester waste Cotton N/M [117]

50 Cotton, Polyester, Silk, 
Rayon (TW)

Epoxy
Foundry Sand

Cotton, Silk BM [118]

51 Cotton (TW) Recycled polyethylene 
terephthalate

Cotton 3D printing applications [119]

52 Cotton, Flax, Hemp (TW) Linear Low-Density Poly-
ethylene

Cotton, Flax, Hemp AP [120]

53 Wool, Cotton, Nylon (TW) PC Wool, Cotton BM [121]
54 Jute (TW) Natural Rubber Latex Jute SIM

AP
[122]

55 Cotton (TW) Phenol formaldehyde Cotton BM [123]
56 Cotton, Hemp (TW) Polyurethane Cotton, Hemp Ships, Building materials, 

furniture, automobile
[124]

57 Cellulose Waste (TW) Polypropylene film Cellulose FM
SIM

[125]
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influence the aquatic ecosystem and the different ecosystems 
connected to it.

Microfibers have a negative impact on marine life as 
well. Synthetic fibers and composite materials made from 
textile fiber waste migrate from landfills and incineration 
sites in the marine environment. With the aid of wind and 
rainfall, these synthetic fibers first enter lakes and riv-
ers before making their way to the sea. These pollutants 
adversely influence the terrestrial to marine environment 

and appear to be a threat to aquatic fauna [148]. Microfib-
ers are manufactured from synthetic textile fiber waste, 
soaking up all toxic chemicals, heavy metals, and oil in 
the water [149]. As a result, the concentrations of these 
micropollutants are much higher in seawater than in ter-
restrial water. A variety of marine wildlife, along with 
corals, phytoplanktons, zooplanktons, fish, sea urchins, 
lobsters, turtles, penguins, crustaceans, seabirds, and oth-
ers, misjudge these tiny fibers for food, causing them to 

Table 2  (continued)

Partially Biodegradable Composite Materials

Serial No Reinforcement Matrix or Binder Biodegradable Part Application References

58 Cotton, Wool, Acrylic, 
Polyester, Polypropylene, 
Nylon (TW)

Polypropylene Cotton, Wool BM [29]

Reinforcing agents and matrices, the part that came from the textile waste and the part that is biodegradable, are mentioned. Applications of 
these composite materials in real life are also listed, but some of them are not mentioned in the respective articles
TW textile waste, N/M not mentioned, PC portland cement, BM building material, SIM sound insulation material, AP automotive parts, FM fur-
niture material, NPT needle punch technique was used to hold the reinforcing material

Fig. 1  Exposure and bioaccumulation of microplastics (MPs) and potentially toxic elements (PTEs) in agricultural soil [241]. (Reproduced with 
permission)
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be moved to higher nutritional ranks and wreaking havoc 
on the entire food chain [150].

Fabric contaminants have a negative impact on plankton, 
which are the base of the aquatic food chain [151]. Fur-
thermore, these have been identified in the digestive sys-
tems of benthic fish species in the marine environment and 
differently sized plastics in their intestines [152]. Half of 
all sea bird species are threatened with extinction due to 
the destructive, hazardous pollutants ejected by microfib-
ers, which have a detrimental effect on their bodies, caus-
ing changes in feeding behavior, reproduction, and mortal-
ity [153]. Similarly, many routine whale deaths have been 
reported due to a significant amount of MPs stock in their 
stomach [154]. Microfibers and synthetic fibers have been 
confirmed to endanger sea birds, turtles, seals, polar bears, 
and whales. Choking, fiber accumulation in gastro intestine 
tracts, poisoning due to the contaminated food source, and 
other problems may occur in these animals. According to 
Lamb et al. (2018), approximately 124,000 corals from 159 
reefs are at risk of illness due to direct exposure to synthetic 
plastic fibers, leading to a rise of these fibers from 4 to 89 
percent in the Pacific coastal regions of Asia [155]. Ingestion 
induces choking at the digestive organs [156] and hinders 
animals from being fed, contributing to death as a result 
of starvation and malnourishment. In a variety of marine 
animals, declines in feeding capacity [157], digestion rate, 
predator performance [152], and swimming velocity [158] 
have been well recorded (see Fig. 2).

Effect of microfibers on human life

Synthetic fibers derived from textile waste fiber composite 
material have been presented in a broad range of human 
environments and enter the body via food, water, and air, 
elevating concerns about human wellbeing. Human expo-
sure to microfiber pollutants occurs primarily through con-
suming seafood, a required nutritional component since 
seafood accounts for 20% of animal protein consumed by 
the world's 4.3 billion people [159]. Aside from sea-derived 
foods, synthetic MFs have been found in honey, beer, and 
sugar worldwide, polluted by airborne fibers. These fibers 
have been claimed to be present in drinking water and have 
emerged as a matter of anxiety in human health [160]. The 
contamination test using Nile Red tagging in eleven bot-
tled water brands collected from 19 different areas in nine 
countries found that 93% of the 259 processed bottles had 
evidence of microplastic contamination [145]. As these fib-
ers are deposited in lung tissues, humans and animals who 
breathe horrendously become infected with lung infection 
and inflammation [161]. The bioaccumulation of synthetic 
microfibers in the human gastrointestinal tract and lungs 
[162] has been reported. These microfibers can cause vari-
ous adverse symptoms, including inflammations, genotox-
icity, oxidative stress, and apoptosis in the human body 
[15](see Fig. 2). These also affect the immune system and 
cell health by transferring from the digestive system to the 
circulatory system [163] and depositing in the secondary 
organs. The chemical configurations of synthetic materi-
als, such as phthalates, polychlorinated biphenyls (PCB) 

Fig. 2  Sources, pathways and fate of microfibers in environmental systems and its effect on aquatic biota, marine biota and human health [147]. 
(Reproduced with permission)
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[164], and bisphenol A (BPA) [165], may have a multitude 
of consequences for human health, including damage to the 
intestines, liver, and kidneys; blood infection [166]; breast 
cancer, and hormonal imbalance in female reproductive 
systems.

Potential solutions and future research

The hazards  of microfibers and plastics derived 
from TWC on human and animal life are extreme. However, 
it is believed that some solutions to these challenges already 
exist. There are two types of textile waste fibers: natural 
and synthetic. Bio-composite materials may be a practical 
solution for producing TWC, where the waste is entirely 
composed of natural fiber. These materials, also known as 
green composites, are extremely environmentally benign, 
reducing disposal and incineration challenges. Table 3 lists 
some studies on biocomposites created from textile waste, 
where many researchers found it to be a suitable alternative 
for producing different end products. Sect. "Biocompos-
ites" goes into detail about biocomposites made from textile 
waste. Recycling can be employed when TWC is manufac-
tured entirely of synthetic fiber waste, and the matrix com-
ponent is non-biodegradable. Recycling reduces landfilling 
and incineration by providing recycled materials that are the 
same as the original material's integrity, alleviating environ-
mental concerns about landfilling solutions. Furthermore, 
these recycled fibers are used in the automobile industry, 
pointing to a possible economic benefit. Sect. "Recycling of 
Composites" discusses many recycling systems, each with 
its advantages, disadvantages, and restrictions. One main 
issue with textile waste that makes it challenging to man-
age is that it contains both natural and synthetic fibers in 
the waste component. This problem makes the process of 
separation very difficult to use the above two options. Ionic 
liquids can be helpful in some instances. Ionic liquids have 
already been demonstrated to be solvents capable of dissolv-
ing a wide range of compounds. The key benefit of employ-
ing ionic liquid is that it can dissolve a specific synthetic and 
natural fiber blend component. Therefore, ionic liquids can 
dissolve both natural and synthetic elements. Many studies 
on ionic liquids are discussed in Sect. "Ionic Liquids", and 
various applications are also addressed.

Biocomposites

Green composites or biocomposites are composite mate-
rials that are entirely bio-based, indicating that both the 
matrix and the reinforcing agents are derived from renew-
able sources [190]. Recently, the findings of investigations 

on environmentally friendly composites based on plant 
fibers and the diversity of matrices degrading in the envi-
ronment were announced [191]. Green composites will 
lessen waste disposal issues, notably in agricultural fields 
and contamination, and can be used in many engineering, 
electronic, and vehicular areas. Green composites have 
additional benefits, including reduced machinery wear-
ing, low abrasiveness, and lack of health hazards during 
manufacturing, application, and disposal [192]. Natural 
fiber-reinforced polymer composites have been proven to 
be perfect in structural and non-structural applications, 
including heat isolation and cover soundproofing, through-
out the last few decades. Recently, textile waste has been 
applied in the field of biocomposite. Textile waste has the 
benefit of lowering expenses even more while also con-
tributing to trash reduction and reuse, which is one of the 
sustainable development agendas. Table 3 demonstrates 
the application and type of textile waste utilized to make 
biocomposites in the realm of composite materials.

The use of textile waste in composite materials is 
becoming increasingly prevalent. Textile waste is used 
to make many composite products that are only partially 
biodegradable. There are two types of partially biode-
gradable composites. One has a biodegradable reinforc-
ing material but not a biodegradable matrix or adhesive. 
On the other hand, another type has a non-biodegradable 
reinforcing agent and a biodegradable matrix. Serial num-
bers 5, 19, 27, 28, and many others have a biodegrad-
able reinforcing agent and non-biodegradable resin, as 
shown in Table 2. The outer layer of such a composite 
is composed of epoxy resins, polyurethane, phenol–for-
maldehyde, low-density polyethylene (LDPE), and other 
non-biodegradable materials, where it does not satisfy 
the objective of a partially biodegradable composite. The 
organic part of these composites is enveloped by thermo-
plastic, making them unlikely to come into contact with 
air, water, or microorganisms [193]. As an outcome, the 
strengthened material's decomposition is prevented and 
will worsen the environment. It will be utterly biodegrad-
able if the non-biodegradable matrix can be replaced with 
a biodegradable matrix such as unsaturated polyester resin, 
polylactic acid (PLA), green epoxy resin, mineral binder, 
and natural rubber latex. Besides, some TWCs are entirely 
non-biodegradable. As these composites are created from 
textile waste, separating the synthetic fiber from the waste 
will be challenging. In today's world, several types of fib-
ers with diverse qualities are blended to create products, 
making it almost impossible to distinguish between them. 
So, if the matrix is biodegradable, the composite will be 
partially biodegradable, reducing the negative environ-
mental impact.
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Recycling of composites

When it comes to composite materials that are approach-
ing their End-of-Life (EoL), the concern of what to do with 

them emerges. Landfill disposal, incineration, and recycling 
are the three basic EoL alternatives for managing composite 
waste. The effect of each was well displayed by Witik et al. 
in a 2015 article [194], which is shown in Fig. 3.

Table 3  Bio-composite materials produced from textile waste

Reinforcing agents, matrices, and the part from textile waste are mentioned. Applications of these composite materials in real life are also listed, 
but some of them are not mentioned in the respective articles
TW textile waste, PLA poly lactic acid, PBS thermoplastic aliphatic polyester, SAM sound absorbing material, P/S panels or shells, BM building 
material, PM packaging material, AP automotive parts

Bio-composite Materials

Serial No Fibers Matrix or Binder Application References

1 Rice husk
Wheat husk
Wood fiber
Cotton (TW)

Polybutylene adipate-co-terephthalate
PLA

BM [167]

2 Jute (TW) Green Epoxy To develop a value-added product [168]
3 Cotton, Flax (TW) PLA SAM [169]
4 Wood

Jute (TW)
Mineral Binder (clay) SAM [170]

5 Cellulose Nanocrystal (TW) Soy protein film Thin film composites
PM

[171]

6 Cotton (TW) Unsaturated Polyester Resin Eco-friendly substitute of the glass 
fiber composite

[172]

7 Cotton (TW)
Carbon particles

Green Epoxy Electrically conductive material
EMI shielding material

[173]

8 Microcrystalline Cellulose (TW) Natural Rubber Latex Not Mentioned [174]
9 Wood

Jute, Wool (TW)
Wheat flour
Clay

SAM [175]

10 Cotton (TW) Wheat fiber Insulator material [176]
11 Cotton (TW)

Wood fiber
Sodium alginates adhesives BM [177]

12 Cotton (TW)
Jute

Bio resin BM [178]

13 Flax, Jute (TW) Unsaturated Polyester Resin Particleboard Industry [179]
14 Cotton (TW) PLA

Chitosan
PM [128]

15 Jute (TW) PLA PM [180]
16 Cotton (TW)

Coconut fiber
Sugarcane

Green Epoxy Resin BM
AP
Household furniture

[181]

17 Wool (TW) Chitosan SAM [182]
18 Wool (TW) Gum Arabic

Chitosan
SAM [183]

19 Cotton (TW) PLA Industrial Application [184]
20 Cotton (TW) 1-butyl-3-methyl imidazolium acetate AP

Furniture and indoor construction
Sports and leisure equipment

[185]

21 Silk (TW)
Bamboo

PBS P/S [186]

22 Wool, Jute (TW)
Wood

White Acrylic Copolymer
Ecologic Acrylic Copolymer

SAM
AP

[187]

23 Cotton (TW) Soil BM [188]
24 Cotton, Hemp (TW)

Wood
PLA Production development [189]
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According to Amanda Jacob, these inquiries are esca-
lating yearly, suggesting that the composites sector and its 
consumers are no longer satisfied with landfills and incinera-
tion as traditional disposal options [195]. According to the 
European Composites Industry Association (EuCIA) [196], 
political drivers are also behind this trend. Thus, conven-
tional waste treatment routes such as landfill and incinera-
tion are becoming severely limited and suspended, and com-
posites industries and their users are looking for more green 
technologies. Composite materials recycling, which initially 
began during the Hybrid Technology Integration Phase, has 
become one of composite research's fastest-growing areas 
[197]. Over the last two decades, there has been a push to 
reduce weight, lower composite material costs, and create 
composite recycling technologies [198]. Extensive recycling 
activities have been carried out, and various technologies 
that are to be implemented have been established in three 
categories: mechanical recycling [199], pyrolysis or thermal 
recycling [200], and chemical recycling [201]. Shredding 
and grinding are proceeded by screening to segregate the 
fiber-rich to the resin-rich fractions for reuse [202]. Picker-
ing [199] describes pyrolysis as the thermal decomposition 
of polymers. However, this recycling approach necessitates 
a significant amount of heat energy to remove the matrix. 
Chemical recycling is another option. Chemical de-polym-
erization or matrix removal is achieved by utilizing chemical 
dissolution reagents for fiber liberation [203]. Other than 
these, solvolysis [204] and fluidized bed techniques [205] 
aim to reclaim individual fibers in the fiber-reinforced com-
posite. The advantages, disadvantages, and limitations of 
these recycling processes are shown in Table 4.

Due to the low utilization of natural resources, energy, 
labor, and near-virgin fiber quality, the recycled fibers from 
this technology have an additional market value [215]. 
Palmer et al. [207] explored closed-loop thermoset com-
posite recycling involving grinding and reincorporation, 
with the aim of expanding the mechanical integrity of 
recycled composites through separation and reformulation. 

Considerably higher volumes of recyclable materials are 
used, implying that the recycled composites' mechani-
cal integrity is not always inferior to the original content 
[216]. These recycled materials are employed in a variety of 
industries. Recycled fiber-reinforced polymers (FRPs) can 
be found in aircraft and automobiles [217]. In the automo-
tive industry, for example, recycled materials can be used 
as exterior materials in a variety of ways. The BMW Group 
and Airbus collaborated in 2012 to cooperate on carbon 
fiber recycling and reuse solutions [218]. Shredded short 
fibers can be employed to deliver non-woven sheet molding 
compound (SMC) semi-finished goods [219], such as the 
C-pillar with SMC utilizing fibers in the BMW i7 series or 
the SMC material for the hatch door frame in the Mitsubishi 
Rayon (Toyota) [220].

Ionic liquids

Ionic liquids (ILs) are ionic substances that contain both an 
organic cation and an anion. Because of their unique physi-
cal and chemical properties, such as low vapor pressure, 
good solubility, and high thermal stability, ILs are widely 
studied in organic synthesis and catalysis, separation and 
retrieval, electrochemistry, materials science, and other 
fields with the development of green chemistry [221]. The 
flexibility to alter the properties of an ionic liquid enables a 
wide range of applications to profit from its use [222]. With 
the advent of green chemistry and the demand for environ-
mental regulation [223], ionic liquids have garnered much 
attention as green and designable solvents. One of the goals 
of green chemistry is to employ ILs to produce a cleaner, 
more sustainable chemistry and gain steam as eco-friendly 
solvents in many synthetic and catalytic processes [224].

In recent years, ILs have become popular solvents for 
organic synthesis, catalysis, and media for extraction opera-
tions [225]. Ionic liquids have already been proven to dis-
solve a wide range of biomacromolecules with high effi-
ciency, notably cellulose [226], silk fibroin [227], lignin 

Fig. 3  Comparison of impacts 
from landfilling, incinera-
tion and recycling on climate 
change, resources, ecosystem 
quality and human health for the 
carbon fiber (CF) replacement 
case [194]. (Reproduced with 
permission)



1279Journal of Material Cycles and Waste Management (2023) 25:1267–1287 

1 3

[228], starch and zein protein [229], chitin/chitosan [230], 
wool keratin [227]. According to Swatloski et al. [231], 
[BMIM] + Cl- was a suitable solvent for cellulose dissolv-
ing. The traditional system, which uses toxic chemicals for 
separation, is the fundamental reason for the popularity of 
ILs. An additional reason for its appeal is the flexibility of 
ionic liquids to dissolve textile waste fibers. Johansson et al. 
[232] employed cotton waste dissolved in 1-butyl-3-methyl 
imidazolium ionic liquid to make a composite. From a mate-
rial standpoint, the current fundamental impediment to tex-
tile recycling is the lack of sorting and separation techniques 
[233]. However, most fabrics are made of various fibers, 
such as cotton/polyester and wool/polyester blends, which 
can be difficult or impossible to separate once blended [233]. 
One of the most significant issues with composites manufac-
tured from textile waste is that synthetic fiber will be evident 
in several cases.

Ionic liquids' versatility allows them to be used in a broad 
array of applications, such as optical thermometers, bio 
catalysis and separation processes, polymer and catalytic 
chemistry, electrolytes, biosensors, analytic devices, lubri-
cants, solvent substitute applications, and lunar telescopes, 
to mention a few [234]. High molecular weight cellulose 
can be dissolved with the above ionic liquids at rather large 

concentrations, around 15–20 percent. Electrospinning of 
cellulose and its composites has been attempted using ionic 
liquid as a spinning solvent [235]. The technology suggested 
here will allow researchers to apply ionic liquids as a com-
mon platform to disperse nanoparticles and then dissolve a 
number of natural, sustainable polymers to build nanocom-
posites in one step, thanks to their ability to dissolve a wide 
range of natural polymers [236]. In polymer science, ILs are 
not confined to a typical polymerization medium [237]. ILs 
have also been studied as components of polymeric matrices 
(such as polymer gels). Ueki and Watanabe [238] recently 
published a review of polymer and IL-based gels, focusing 
on the physical parameters and interactions in so-called ion 
gels. A few researchers have recently used ionic liquids to 
treat chitin to create films, fibers, gels, and foams [239]. 
Additionally, Abdulkhani et al. [240]examined the physical 
and mechanical properties of regenerated biocomposite films 
and studied the performance of dissolution cotton linter in 
ILs [emim][Cl] and [dmim][MeSO4]. These characteristics 
identify the ILs as an extremely impressive lignocellulosic 
biomass pretreatment technology. The pretreated material 
might be used as reinforcements or fillers in a myriad of 
thermoset and thermoplastic polymer matrices. Johansson 
et al. [232] created a composite material from textile waste 

Table 4  Summary analysis of different recycling process [206]. (Reproduced with permission)

Process Advantages Disadvantages Limitation Citation

Mechanical Recovery of both fibers and  resina

No use or production of hazardous 
materials

Significant degradation of mechanical 
 propertiesa

Unstructured, coarse, and non-consistent 
fiber  architectureb

Limited possibilities for re-manufac-
turing

Only synthetic fibers are recycled a[199]
b[207]
d[208]
e[209]
m[210]
g[211]
o[212]
r[213]
s[214]
u[201]
w[206]

Pyrolysis High retention of mechanical properties
Potential to recover chemical feedstock 

from the  resind

No use of chemical solvents

Possible deposition of char on fiber 
 surfacee

Sensitivity of properties of recycled fib-
ers to processing  parameterse

Environmentally hazardous off-gasesg

Only synthetic fibers are recycled

Fluidized bed High tolerance to  contaminationa

No presence of residual char on fiber 
 surfacem

Well-established and documented 
process

Strength degradation between 25 and 
50%o

Fiber length  degradationo

Unstructured (‘‘fluffy”) fiber 
 architectureo

Impossibility of material recovery from 
 resinr

Only synthetic fibers are recycled

Chemical Very high retention of mechanical prop-
erties and fiber  lengths

High potential for material recovery 
from  resinu

Commonly reduced adhesion to poly-
meric  resinss

Low contamination  toleranceu

Reduced scalability of most  methodsu

Possible environmental impact if hazard-
ous solvents are  usedw

Only synthetic fibers are recycled
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fiber that might be used in aircraft, automobiles, corrugated 
board applications, and sound absorption materials. Baghei 
et al. [185] manufactured composites for automotive inte-
rior parts, furniture and indoor construction, sports, leisure 
equipment, and more.

Conclusion

The study concludes that biocomposite and ionic liquid 
manufacturing methods to fabricate TWC can reduce envi-
ronmental issues while ensuring raw material utilization. 
Moreover, rather than only landfill or incineration, it may be 
inferred that the existing recycling options can contribute to 
reducing environmental repercussions if implemented.

Biocomposites have multiple benefits, such as low abra-
sive, fewer health hazards, lightweight, moderate mechanical 
properties, and soil contamination prevention. These materi-
als are used in various value-added goods, including sound 
absorption materials, thin film composites, electromagnetic 
interference (EMI) shielding, particleboard industries, build-
ing materials, and furniture. Some partially biodegradable 
composites with natural reinforcing agents can be easily 
converted to biocomposites, which is a unique feature of 
biocomposites. One significant drawback is that this pro-
cedure only utilizes textile waste from natural fibers. If the 
waste contains blended fibers (natural and synthetic), this 
approach is ineffective, making it only suited for a fraction 
of the waste.

The unique feature of ionic liquids is their ability to dis-
solve a particular fiber from a multi-fiber mixture, which 
solves one of the most challenging problems in the textile 
industry: fiber separation. Natural and synthetic fibers from 
cotton/polyester and wool/polyester blends can be dissolved 
by ILs. Ionic liquids have a wide range of applications, 
covering nanocomposites, polymerization media, thermo-
set and thermoplastic, and polymer matrices. ILs could be 
employed in aircraft, automobiles, corrugated board applica-
tions, sound absorption materials, furniture, indoor construc-
tion, sports and leisure equipment, and other applications. 
Although ILs can dissolve a broad array of waste fibers, 
more research is needed for frequent industrial practices.

There are two critical problems with recycling com-
posites: whether the method is environmentally friendly 
and whether the recovered fibers have the desired market 
value. The answers for both of them are yes. According 
to the findings of this study, recycling not only retrieves 
resources but also has a favorable impact on climate change, 
ecological quality, and human health. Additionally, recy-
cled fibers are highly valued in the aircraft and automobile 
industries. Recently, recycled materials have been seen in 
renowned automotive industries such as BMW and Toyota. 
Mechanical recycling, pyrolysis, fluidized bed recycling, and 

chemical recycling are all discussed in this review. Pyroly-
sis and chemical recycling ensures high mechanical prop-
erty retention, which mechanical recycling cannot achieve. 
Material recovery from resin is achievable by mechanical, 
pyrolysis, and chemical methods, with the latter two having 
the most potential for recovery. However, unlike the other 
three methods, the fluidized bed approach cannot recover 
components from resin.
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