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Abstract
Several sustainable white ceramic composites were prepared from 3 to 7 wt.% of hazardous toner waste, 30–40% of spent 
foundry sand, 15–25% of galvanic glass waste, and 35–45% kaolin clay. Developed composites were sintered at 1100°, 
1150°, 1200°, 1250°, and 1275 °C. The ceramics’ flexural resistance values reached up to 12.29 MPa, linear shrinkage varied 
between 2.99 and 11.20%, and water absorption—between 19.90 and 10.85%. The investigation of the ceramics structure 
formation processes using the X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy-dispersive spec-
troscopy, atomic absorption spectroscopy, and lased micro-mass analysis methods showed the synthesis of predominantly 
glassy structures with the inclusion of mullite and cristobalite crystalline structures. The analysis of the chemical composi-
tion of the gases emitted during ceramics firing at 1275 °C by the atomic absorption spectroscopy method, as well as the 
analyses of solubility and leaching of metals from ceramics sintered, showed that the developed composites and technology 
were in full compliance with Brazilian sanitary standards.
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Introduction

The primary reason for the rise in the temperature of our 
planet atmosphere and the resulting growing number of envi-
ronmental disasters that worry its population is the huge 
and constantly increasing quantity of industrial and munici-
pal landfills that pollute the atmosphere, soil, surface and 
underground waters. A reasonable solution to this problem 
is to transform all those wastes into new sustainably and 
economically attractive raw materials.

Developed composites consist of three hazardous indus-
trial waste—toner waste (TW), spent foundry sand (FS), and 
galvanic glass dust waste (GW) and natural kaolin clay. TW 
is not only harmful to health but also explosive. Accord-
ing to the [1], toner cartridges must be removed from any 

waste electrical and electronic equipment collected before 
recycling. TW is composed of small particles of a thermo-
plastic polymer containing carbon black or iron dioxide as 
a pigment (black toner), various organic pigments (color 
toner), and external additives such as wax, titanium diox-
ide, and silica [2]. Qualitatively similar to titanium dioxide, 
classified as carcinogenic, and comparable to asbestos, it 
can be irritating to people with respiratory conditions such 
as asthma or bronchitis [3].

International technical literature contains some number 
of papers on these wastes’ utilization. Ruan and Xu [4, 5] 
have improved the eddy current separation (ECS) method 
for separating aluminum from plastic in crushed waste toner 
cartridge (TCs).

Gaikwad, et al. [6] completely transformed TW into a 
useful product using a temperature of 1550 °C, with an iron 
recovery of 81.6%. Kumar et al. [7] proposed the use of TW 
as a source of iron oxide; to recycle oil waste via hydropho-
bic sponge prepared from toner waste [8, 9], Huang, et al. 
used WT as an asphalt modifier for better engineering per-
formance and cost-saving.
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[10] applied FS to develop environmentally clean con-
struction materials from hazardous bauxite red mud. Guney 
et al. [11] replaced natural sand with FS by up to 15%; [11] 
evaluated its use as a substitute for fine aggregate in concrete 
production; FS was used with other industrial wastes [12], 
such as hazardous car paint waste [14] and galvanic Cr–Zn 
[15].

Glass waste is a waste of mechanical cleaning of metal 
objects with glass microspheres under the compressed air 
before they are electroplated with a thin layer of chromium, 
nickel or zinc. A large group of researchers used glass waste 
(GW) as a valuable binding component in materials’ pro-
duction: Jani et al. [16] used GW in cement and concrete; 
[17] applied it as cementing materials. Avila-Lopez et al. 
[18] researched binders containing GW and limestone. [19] 
added 10% GW to clay bricks and noticed a decrease of 
almost 100 °C in the firing temperature. Wei et al. [20] pre-
pared lightweight aggregates from GW and coal fly ash.

Kaolin clay (KC) was the only natural component of this 
study. The reactivity of kaolin was explored by Emmanuel 
et al. [21] after NaOH activation. [21] revealed thermal reac-
tions between kaolinite and calcite during alumina extraction 
from kaolin.

This overview of different methods for disposal of the 
industrial wastes used as raw materials in this research 
shows the scientific novelty of this paper and the originality 
of the developed method, because its objectives were: (1) to 
characterize the local hazardous industrial wastes, namely 
toner waste, galvanic glass waste, and spent foundry sand, 
here used as principal raw materials; (2) to develop sustain-
able ceramics from these waste with mechanical and physi-
cal properties corresponding to the demands of Brazilian 
technical and ecological standards; (3) to study the physical 
and chemical processes of the developed ceramics structure 
formation during their sintering at different temperatures.

Materials and methods

Raw materials and test samples (TSs) preparation

To decrease transportation cost of the developed ceram-
ics, all raw materials were obtained from local industries in 
the city of Curitiba, Brazil. All test samples were prepared 
in pre-determined percentages, manually homogenized, 
hydrated, and compacted them.

Methods

All raw materials and developed ceramics were studied 
by the following methods: for the particle size distribu-
tion by laser diffraction; analysis of the particle size dis-
tribution by SALD-2300 Shimadzu analyzer dry method 

in combination with sew method; chemical composition by 
X-ray fluorescence (XRF) on a Philips/Panalytical. Micro-
chemical composition has been studied in three comple-
mentary methods: (1) the energy-dispersive spectroscopy 
(EDS) method with an Oxford Penta FET-125 Precision; 
(2) by the lixiviation and solubility analyses using the 
atom absorption spectroscopy (AAS) method with a 4100 
Perkin Elmer spectrometer; (3) isotopes’ composition—
by laser micro-mass analysis (LAMMA 1000). Mineral 
composition—by X-ray diffractometry (XRD) on a Philips 
PW1830; the results were interpreted with Super-Q X’Pert 
High Score Software. Changes of micro-morphological 
structure during ceramics’ firing were studied by scanning 
electron microscopy (SEM) method. Three-points flexural 
resistance of the ceramics’ test samples was carried out 
using the universal testing machine EMIC DL10,000; and 
linear shrinkage on Mitutoyo caliper; water absorption 
was determined by the weight increases after 24 h of total 
immersion in water.

Test samples were prepared in different pre-set percent-
ages: toner waste (TW) variation: 0–7%; foundry sand 
(FS): 0–42%; glass waste (GW): 0–25% and kaolin clay 
(KC) 0–93%. The homogenized mixtures were hydrated 
with water content 12–19% and pressed with 5 MPa in a 
rectangular mold of 60 mm x 20 mm x 10 mm in size. The 
compacted samples were dried at 100 °C and burned for 
an hour at a 10 °C per minute heating rate ranging from 
1100 °C to 1275 °C and unregulated furnace cooling.

Calculations

The linear shrinkage LS (%) values were obtained through 
the following equation:

where Li is the initial specimen length (mm), and Ls is the 
specimen length after sintering (mm).

The determination of the water absorption coefficients 
 (CWA) was carried out after ceramics’ sintering using the 
following equation:

where  MSAT is the test sample mass after total water satura-
tion for 24 h, and  MD is the dry test specimen mass.

Calcination loss (C.L.) values of the raw materials were 
obtained through the following equation:

where Wi is the initial specimen weight (gr), and Ws is the 
specimen weight after sintering for 1 h at 1000 °C (%).

(1)LS =
[

(Li - Ls) ∕ Li
]

x 100

(2)C
WA

=
[(

M
SAT

- M
D

)

∕M
D

]

x 100

(3)C.L. =
[

(Wi - Ws) ∕ Ws
]

x 100
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Research results

Raw materials’ characterization

The raw materials were characterized by the particle size 
distribution, chemical and mineral compositions, and micro-
morphological structure.

Particle size distribution of the raw materials

The natural kaolin clay presented the finest material 
(Table 1), containing the highest content (54.21%) of smaller 
particles (between 0 and 0.074 mm) followed by tonner 
waste (63.44%) of particles between 0 and 0.149 mm. 

These results are comparable to those previously 
obtained by [22]. 39.38% of waste glass’s particles was 
between 0.149 mm and 0.075 mm; 18.78% was smaller than 
0.074 mm. 85.17% of the raw materials used in this research 
was foundry sand varying from 0.59 mm to 0.30 mm. The 
biggest part (39.38%) of waste glass’s particles had size 
between 0.149 and 0.075 mm, 18.78% of particles is less 
than 0.074 mm.

Chemical composition of the raw materials by the XRF 
method

Chemical composition of the toner waste (TW) mainly con-
sisted of  SiO2,  Al2O3,  TiO2, and  Fe2O3, with a total content 
of 41.02 wt.% (Table 2). All organic components of TW can 
explain such a high calcination loss value (C.L. = 46.07%). 
In addition, the results of studies AAS method (Table 3) 
also determined the presence of hazardous oxides such as 
PbO—3.30%,  Cr2O3—0.90%, ZnO—0.08%, BaO—0.60%, 
and CuO—0.54% in TW (Table 3), which significantly 
exceeds the maximum permissible standards of Brazil [23]. 
Parthasarathy [24] informed that TW is one of the major 
electronic waste materials posing serious environmental 
threat and health hazards.

Globally, only about 20–30% of toner waste is recycled, 
while the remaining percentage is dumped in landfills. The 

World Health Organization has classified toner waste as class 
2B carcinogen due to its potential health hazard. Consider-
ing the enormous volume of toner waste generated globally 
every year, better recycling and transformation strategies are 
needed immediately.

Spent foundry sand essentially contained  SiO2—89.06%, 
 Al2O3—4.02%, with impurities of  Fe2O3—1.06% and 
 SO3—1.03% and rather low C.L. = 4.15%. Glass waste had 
content of  SiO2 = 77.47%, CaO = 8.35%,  Na2O = 10.16%, 
and MgO = 3.04% with extremely low C.L. = 0.45%. As 
stated by [25], glass has similar general compositions, at 
least regarding the main oxides  (SiO2,  Na2O, and CaO).

Kaolin clay presented the plainest chemical composition 
(Table 1): 47.16% of  SiO2 and 36.20% of  Al2O3. The high 
CL value (15.02%) is most likely due to the hydroxyl groups 
(OH)8 of kaolinite  Al4(Si4O10)(OH)8 [27] and the pyrolysis 
of vegetable particles in the kaolin clay.

Mineral composition of the raw materials

The XRD pattern (Fig.  1) showed that the main 
minerals present in the toner waste were illite 
 2K2O·3MgO·Al2O3·24SiO2·12H2O, titanium dioxide  TiO2 
in the rutile and anatase phases, and quartz  SiO2. The 
stumpy maximum value of the crystalline peaks, noticed in 
TW’s chemical composition, indicates a very high content 
of amorphous materials. The highest peak at 2Θ° = 26.5° 
refers to coincident reflections of illite and quartz; however, 
the sum of their intensities was only 250–300 cps. Other 
minerals showed even lower intensity peaks.

Foundry sand (Fig. 1b) presented quartz  SiO2 and its 
high-temperature modification cristobalite quartz  SiO2. The 
amorphous phase quantity in FS is even higher than in TW 
because of the destruction of the quartz crystal structure by 
numerous thermal shocks in contact with molten iron. Part 

Table 1  Raw materials’ particle size distribution

Size (mm) Toner waste Foundry 
sand

Glass waste Kaolin clay

More than 
1.2

0.00 0.00 0.00 2.93

1.19–0.60 0.00 0.26 0.00 7.45
0.59–0.30 16.24 85.17 23.29 9.26
0.29–0.15 20.32 13.86 18.55 19.43
0.149–0.075 27.73 0.62 39.38 6.72
0.074–0.0 35.71 0.08 18.78 54.21

Table 2  Chemical composition of the raw materials (by the XRF 
method)

Oxides Oxides’ contents (wt. %)

TW FS GW KC

SiO2 19.30 89.06 77.47 47.16
Al2O3 10.04 4.02 0 36.20
TiO2 7.70 0.25 0  < 0.1
Fe2O3 3.90 1.06 0.20 0.43
CaO 0.08 0 8.35 0
K2O 0.80 0.13 0.33 0.54
SO3 0.90 1.03 0 0.65
Na2O 0.43 0 10.16 0
MgO 0.40 0.32 3.04 0
C.L 46.07 4.15 0.45 15.02
Ʃ 100.00 100.00 100.00 100.00
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of the FS was melted, as evidenced by a structural X-ray 
halo, typical of glass, in the range of 2Θ° = 12°–38°. This 
halo makes it similar to glass waste (Fig. 2c) with a slight 
expansion range within 2Θ° = 10°–40° due to the complete 
glass melting. FS, GW, and kaolin clay (Fig. 2d) showed 
resembling X-ray backgrounds (25cps), which indicates a 
relatively similar content of amorphous materials. Never-
theless, FS presented a higher amount of better-crystalized 
quartz and cristobalite with a peak intensity of 225 cps and 
higher. Kaolin clay comprised a small quantity of crystalized 

kaolinite  Al4(Si4O10)(OH)8, illite  (K0.75(H3O)0.25)Al2(Si3Al)
O10((H2O)0.75(OH)0.25)2, and quartz  SiO2.

Micro‑morphological structure of the raw materials

All raw materials had rather distinct morphological struc-
tures (Fig. 2) due to the significant difference in their ori-
gin and chemical composition. TW consists of irregularly 
shaped debris with sharp-angle particles of various sizes 
between 1 and 200 µm. Toner powder embodies several 

Table 3  Results of leaching 
and solubility tests of the of 
the toner waste and developed 
ceramics composition 5 sintered 
at 1275 °C

Elements Leaching, mg/L Solubility, mg/L

TW Comp. 5 [23] TW Comp. 5 [23]

As 3.24 0.29 1.0 4.28  < 0.001 0.01
Ba 0.60  < 0.1 70.0 1.26  < 0.1 0.7
Cd 1.39  < 0.005 0.5 3.18  < 0.005 0.005
Pb 3.30  < 0.01 1.0 4.72  < 0.01 0.01
Cr 0.90  < 0.05 5.0 1.18  < 0.05 0.05
Hg 1.83  < 0.001 0.1 2.96  < 0.0002 0.001
Se 2.14  < 0.05 1.0 2.68  < 0.01 0.01
Al 16.22  < 0.10 * 18.27  < 0.10 0.2
Cu 0.54  < 0.05 * 1.20  < 0.05 2.0
Fe 27.13 0.09 * 29.95  < 0.05 0.3
Mn 15.62  < 0.05 * 29.31  < 0.05 0.1
Zn 0.08  < 0.10 * 2.19  < 0.10 5.0

Fig. 1  XRD patterns of the raw 
materials: a printer powder 
waste; b foundry sand; c glass 
waste and d kaolin clay

a – Toner waste b - Foundry sand

c– Glass waste d - Kaolin clay
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mixed ingredients made up of tiny particles that generally 
range from 5 to 15 microns.

FS is composed of rounded particles measuring between 
100 and 700 µm; GW, like FS, also showed mainly rounded 
particles, but significantly smaller—from 1 to 60 µm; and 
the KC particles had a wide variety of forms—lamellar, nee-
dle-like, but mostly shapeless—with sizes from 1 to 15 µm.

Developed materials’ characterization

Flexural resistance of the developed materials

The flexural resistance of ceramics made only with kao-
lin clay (Table 4, composition 1) increased from 2.41 to 
5.10 MPa after firing at 1100° with decreasing till 2.95 MPa 
due to excessive melting of test samples at 1275 °C. The 
addition of 7% TW in kaolin clay (composition 8) increased 
the resistance from 3.49 to 12.29 MPa. 

In order to determine the role of GW, its content was 
increased by 2% (compositions 5 and 4). Even with an 

Fig. 2  SEM micro-imagens of 
the raw materials: a toner waste, 
b foundry sand, c glass wastes, 
d kaolin clay

     a x500                            20µm b x250                       100µm

c x500                           20µm d x2.000                       10µm

Table 4  Flexural resistance of 
the developed ceramics

Nº Composition, wt.% Flexural resistance (MPa) after T°C

TW FS GW KC 1100 1150 1200 1250 1275

1 0 0 0 100 2.41 4.27 5.10 4.82 2.95
2 5 40 20 35 2.68 3.86 4.83 4.75 3.14
3 3 40 20 37 2.47 3.39 4.73 5.67 5.36
4 3 42 25 30 2.87 6.04 7.05 10.11 11.86
5 7 40 23 30 2.39 4.09 6.70 7.14 6.73
6 7 30 23 40 2.96 5.42 8.89 10.44 8.54
7 5 35 15 45 2.75 4.26 6.65 6.91 8.66
8 7 0 0 93 3.49 6.88 10.21 11.75 12.29
9 7 30 0 63 3.18 5.14 7.72 8.10 10.12
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increase in FS amount at the expense of a sharp decrease in 
toner (to 3%), there was a robust increase in flexural resist-
ance up to 11.86 MPa at 1275 °C, only lower than composi-
tion 8’s resistance.

The KC influence was observed when comparing changes 
in flexural resistance of compositions 5 and 6 with equal 
amounts of TW (7%) and GW (23%) and with the replace-
ment of 10% FS with 10% KC. The flexural resistance of 
ceramic 6 (40% clay) significantly exceeded the flexural 
resistance of ceramics 5 (30% clay), especially after firing 
at 1275 °C (10.44 versus 7.14 MPa). Above 1250 °C, both 
ceramics excessive melted, maintaining the difference in 
resistance, which was more noticeable at 1250 °C. Brazilian 
Technical Norm NBR 7170 [23] establishes that the value of 
flexural resistance for Class A solid bricks must be at least 
2.5 MPa, for Class B, between 2.5 and 4 MPa and Class C, 
greater than 4 MPa.

Comparing the resistance of compositions 2 and 3 (equal 
amount of GW—20% and FS—40%), it was noted that the 
melting point of ceramics 2 (35% kaolin) and the onset of 
resistance loss was between 1200° and 1250°. For ceramics 
3 (37% kaolin), the melting started between 1250 °C and 
1275 °C due to the higher heat resistance of kaolinite and 
the lower melting point of TW with  SiO2 predominance in 
the chemical composition.

Linear shrinkage of the developed materials

Linear shrinkage values of all developed ceramics (Table 5) 
enlarged with increasing sintering temperature due to the 
chemical interaction processes between the components, 
melting some of them with compacting the pore volumes 
and shrinkage during the cooling.

Composition ceramics 8 showed the highest shrinkage 
values after sintering at all temperatures, followed by kaolin 
clay (composite 1). When studying the kaolin’s interaction 
process with car paint waste, Mymrin et al. [14] obtained the 
opposite result—ceramics without industrial waste additives 
had the maximum shrinkage. This variance in results can 

be justified by the high content of carbonates and vegeta-
ble remains in the kaolin clay used in the aforementioned 
research. The inclusion of 30–42% foundry sand drastically 
reduced (up to 2 times) the samples’ shrinkage. Due to its 
relatively low chemical activity, the quartz sand presented 
in these mixtures played the role of a skeleton-forming com-
ponent with low linear shrinkage at high temperatures in all 
composites (2–7 and 9), despite the high content of other 
components relatively active in them (TW, GW, and KC).

Water absorption of the developed materials

The water absorption values of the samples of all composi-
tions (Table 6) decreased with the increase in the ceramic 
firing temperature and completely coincided with the change 
in flexural resistance and shrinkage of the samples (Tables 4 
and 5). Shrinkage of samples with increasing temperature 
led to their compaction, decreased water absorption, and 
increased resistance. Therefore, the minimum water absorp-
tion (10.85%) and the maximum strength (12.29 MPa) after 
firing at 1275 °C were exhibited by ceramics 8. Ceramics 
of composition 1 had the second-lowest water absorption 
(11.38%) and very low resistance value (2.95 MPa) after 
firing at 1275 °C (Table 3).

Physical–chemical processes of the developed 
materials’ structure formation

The study of the developed ceramic materials’ structure for-
mation processes was carried out on composition 5 because 
of their highest (7%) toner waste, almost highest (40%) FS 
and (23%) GW and the lowest (30%) kaolin clay content.

Changes in mineral composition of composite 5’s samples 
during sintering

The comparison of the three diffractograms in Fig. 3 showed 
the complete change in the mineral composition of the ini-
tial mixture after firing at 1150 °C. Instead of the two clay 

Table 5  Linear shrinkage of the 
test samples

Nº Composition, wt.% Linear shrinkage (%) after sintering at T°C

TW FS GW KC 1100 1150 1200 1250 1275

1 0 0 0 100 4.28 4.33 7.01 7.22 7.24
2 5 40 20 35 3.24 4.89 5.42 5.98 6.14
3 3 40 20 37 2.99 4.26 5.10 6.01 6.55
4 3 42 25 30 3.15 4.01 4.99 5.87 6.96
5 7 40 23 30 3.56 4.03 4.37 5.10 6.28
6 7 30 23 40 4.10 5.11 5.77 6.24 6.86
7 5 35 15 45 3.75 4.11 4.76 5.84 6.04
8 7 0 0 93 6.2 6.98 8.12 10.45 11.20
9 7 30 0 63 4.17 4.85 5.10 5.28 5.54
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minerals (kaolinite and illite) and titanium dioxide  TiO2 
(rutile and anatase), mullite was synthesized, and quartz 
was transformed into its high-temperature modification 
cristobalite. The intensity of the highest peak in the initial 
mix (Fig. 3a) slightly exceeded 100 cps (counts per second), 
while the remaining peaks of the crystalline phase of the ini-
tial mixture were slightly higher than the X-ray background 
of the amorphous phase.

After firing at 1150 °C (Fig. 3b), the mullite peak at 
2Θ° = 25° almost reached a height of 1000 cps, and the 
cristobalite peak at 2Θ° = 22° achieved 500 cps. In this 
case, the X-ray background intensity also increased sig-
nificantly, indicating a partial transition from the crystal-
line phase of the initial mixture to the amorphous state, 
apparently due to the melting at a temperature of 1150 °C.

Table 6  Water absorption of the 
ceramics after sintering

Nº Composition, wt.% Water absorption (wt.%) after T°C

TW FS GW KC 1100 1150 1200 1250 1275

1 0 0 0 100 16.33 15.01 14.48 12.10 11.38
2 5 40 20 35 17.31 16.46 15.35 15.87 14.52
3 3 40 20 37 18.65 17.10 16.17 15.23 14.27
4 3 42 25 30 18.12 17.16 16.48 14.07 13.81
5 7 40 23 30 19.90 18.94 17.87 16.94 14.41
6 7 30 23 40 19.63 18.37 17.45 16.11 14.84
7 5 35 15 45 19.16 16.63 16.07 14.50 12.53
8 7 0 0 93 17.42 16.15 15.01 13.90 10.85
9 7 30 0 63 18.01 17.86 16.00 15.23 15.31

Fig. 3  XRD patterns of the 
composite 5: a initial dry mix; b 
ceramics sintered at 1150° and 
c—at 1275 °C

a - initial mix

b – after 1,150°C

c – after 1,275°C
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When the ceramics were fired at 1275  °C (Fig.  3c), 
the opposite process occurred—the intensity of all peaks 
of the crystalline phase fell sharply and barely exceeded 
the X-ray background of the amorphous phase. This fact 
explains the reason for the almost end of the increase in 
flexural resistance of the test samples in this temperature 
range of 1250°–1275 °C (Table 4) from 7.14 to 6.73 MPa, 
which usually coincides the onset of excessive melting with 
a sudden drop in resistance. In the same temperature range, 
there was a very sharp decrease in the water absorption value 
(Table 6) from 16.94 to 14.41%, which also coincides with 
the increase in the amount of the amorphous melted phase 
filling the samples’ pore space.

Changes in micromorphology of the test samples 
of composite 5

The analysis of the three micro-images of composition 
5’s structure at the same 5000-time magnification (Fig. 4) 
showed the transition stages from separate particles of dif-
ferent sizes and configurations of the initial dry mixture 
(Fig. 4a) to separate areas of fused and intergrown parti-
cles as a result of the firing at 1150 °C (Fig. 4b). Simul-
taneously, a large number of non-melted particles with 
large pores and cracks between them were still visible. 
Nevertheless, after firing at 1275 °C (Fig. 4c), almost the 
entire surface of the specimen was covered with a layer of 
new glassy formations, a large number of particles with a 

diameter of 1 µm or less, similar to domes of non-emitted 
gases, and even smaller pores—gas exit channels were 
seen.

Large bumps and depressions between them indicate 
that the initial mixture’s particles melted only superficially 
but not entirely throughout their volumes, explaining the 
sharp slowdown in the resistance increase (Table 4, com-
position 5). However, a further increase in the firing tem-
perature 1275 °C inevitably led to the test samples’ final 
melting.

Chemical composition of new formations by the EDS 
and LAMMA methods

The chemical composition of the new formations (Table 7) 
by the EDS method (Fig. 4c) demonstrated a very high 
heterogeneity of new formations’ compositions, includ-
ing the nearest points 1–3. The high carbon C content at 
all points can be attributed to vegetable residues in the 
clay and the high organic content in toner waste, such as 
styrene copolymer and acrylate, polyester resin, among 
others.

Similar results were obtained by the laser micro-mass 
spectroscopy (LAMMA) method (Fig. 5). All the closest 
points analyzed in ceramics 5 showed a significant differ-
ence from each other, both in terms of isotope set as their 
quantitative ratio.

Fig. 4  SEM micrographs from 
composite 5: a initial dry mix; b 
ceramics sintered at 1150° and 
c—at 1275 °C

x5,000 20µm  b x5,000 20µm   c x5,000 20µm

+12+
33++

+4

++55

++66

++77

a

Table 7  Chemical compositions 
of the new formations of 
ceramics 5 (by the EDS method, 
Fig. 4c) after sintering at 
1275 °C

Chemical ele-
ments

Chemical elements contents (wt.%) of the points

1 2 3 4 5 6 7

C 24.58 36.92 25.94 38.72 23.87 26.81 28.84
Al 39.74 27.77 18.88 40.19 24.49 32.35 27.83
Si 26.66 24.56 43.28 19.79 51.64 29.97 34.99
Fe 3.88 6.90 5.47 0 0 10.71 0
Ti 5.14 3.85 6.13 10.30 0 0 8.34
Ca 0 0 0.30 0 0 0.16 0
Ʃ 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Environmental properties of the developed 
materials

Leaching and solubility of the developed materials in acid 
solutions

The chemical composition of the toner waste (TW), 
determined by the AAS method (Table  3), indicated 
the presence of hazardous oxides such as PbO—3.30%, 
 Cr2O3—0.90%, ZnO—0.08%, BaO—0.60%, and CuO—
0.50%, and with 1% of  ZrO2, NiO,  MoO3,  Co3O4, and 
SrO in TW. The results obtained by the LAMMA method 
(Fig. 5) also confirmed the presence of heavy metals (Cr, 
Cu, and Zn) in the ceramics. Therefore, it became neces-
sary to investigate the developed materials’ environmental 
properties and the gases formed during their firing.

The maximum of hazardous TW content is 7% in com-
positions 5 and 6 (Table 4), but the composition 5 was 
chosen to study the developed ceramic’s environmental 
characteristics due to its higher (40%) hazardous FS and 
30% ecologically pure KC contents; composition 6 has 
30% FS and 40% KC. The obtained results demonstrate 
(Table 3) full compliance of leaching and solubility tests 
of ceramics 5 with the Brazilian sanitary standards [26].

Gas emission during ceramics sintering

Samples of the heat gases were collected during ceram-
ics’ sintering at 1275 °C in the glass filter (Fig. 6) with a 
thickness of 0.45 µm. The separation of the solid particles 
deposited on the filter was performed by ultrasound (for 

Fig. 5  Isotope’s composition of 
the new formations of ceramics 
5 (by the LAMMA method) 
after sintering at 1275 °C

Fig. 6  Electric oven with gas filter
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three hours in an acidic medium) and determined by the 
AAS method (Table 8). The washing of all glassware and 
vitreous filters (Fig. 6) with heavy metals (Cr, Zn, and Pb), 
Sn, Ni and others (Fe, Al, etc.) was carried out by soaking 
them for a minimum of 24 h in nitric acid  (HNO3) with 
concentration 10%. The concentration of heavy metals of 
the resulting solution was analyzed with the  4100 Perkin 
Elmer spectrometer.

Comparison of the values of leaching and solubility tests 
of the ceramics Comp. 5 with toner waste shows their leach-
ing reduction after firing at 1275 °C compared to the Brazil-
ian HBP standards by 700 times for Ba, 200 times for Se and 
100 times for Cd, Cr and Hg, indicating their strong bonding 
with glassy new formations.

Comparison of the output values of heavy metals with hot 
gases during sintering of the ceramics shows much worse 
performance compared to the standard norms of Brazil. For 
example, the output of Cu with gas is only 2.4 times lower 
than the permissible norm, the output of Cd is 2.7 times, Pb 
is 48.5 times, Cr is 31.4 times, Ni is 16.4 times, and Zn is 
3.5 times. Obviously, this difference compared to the values 
of leaching and solubility of heavy metals from the ceramics 
in acid solutions (Table 3) is due to the increased carryover 
of heavy metals at low temperatures since the beginning 
of sintering. Industrial firing of ceramics is carried out by 
continuous movement of a conveyor with materials into a 
high-temperature kiln. Therefore, in the production process 
of firing, the removal of heavy metals should be noticeably 
lower than laboratory conditions with slow (5 °C per minute) 
heating of the furnace.

Conclusions

1. The feasibility of using hazardous toner dust waste in 
compositions with spent foundry sand, glass waste, 
and kaolin clay for the production of environmentally 
friendly ceramic materials has been experimentally 
proven. The scientific novelty of this paper is develop-
ment of new sustainable ceramics composites from 3 to 
7 wt.% of hazardous toner waste, 15–25% of galvanic 

glass waste, 30–40% of spent foundry sand, and 35–45% 
kaolin clay.

2. Flexural resistance of the developed materials reached 
up to 12.29 MPa, linear shrinkage varied between 2.99 
and 11.20%; water absorption—between 19.90 and 
10.85%.

3. The investigation of the physicochemical processes 
of the developed materials’ structure formation by the 
XRD, SEM with EDS, LAMMA, and AAS methods 
showed complete decomposition of initial crystal struc-
tures of the initial components (kaolinite, illite, rutile, 
anatase, sodium–barium borate and quartz) and synthe-
sis of the predominantly amorphous glassy structures 
with the inclusion of small quantities of mullite and 
cristobalite.

4. Environmental properties of the developed ceramics 
were controlled by the gases emitted during the ceram-
ics firing study and by solubility and leaching of metals 
in acid solutions. The results obtained by both methods 
confirmed their sustainability during production and 
application as construction materials. Therefore, their 
life cycle can be prolonged as environmentally clean raw 
materials to produce new construction materials.
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