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Abstract
Recirculation of the leachate using bioreactor technology for in-situ treatment of leachate is an efficient method for reducing 
the contaminants and cost of ex-situ treatment as well. The current study was performed to evaluate the impact of leachate 
recirculation in anaerobic bioreactor on leachate treatment as well as municipal solid waste stabilization. The reactor was 
loaded with properly mixed 23.79 kg of solid waste with compaction of waste and total 20 L leachate was prepared in the 
bioreactor by adding water. Physico–chemical characteristics of leachate were estimated by using standards methods. The 
result reveals that the pH, alkalinity and VFA/ alkalinity were varied from 5.56 to 7.58, 7650 to 1875 mg/L and 1.44 to 0.44 
which were within the optimal range of anaerobic digestion. Chemical oxygen demand is an indication of organic pollutants 
and 97% of COD removal was observed after leachate recirculation study. Quadric model was employed to investigate the 
behavior of operational parameters over time scale. Model indicated the highest phosphate decline (5.3%) with time but 
highest increase was observed for total kjeldhal nitrogen (4.3%). After completion of leachate treatment study, a 26.09% 
reduction in volume of MSW was found.

Keywords Municipal solid waste · Leachate recirculation bioreactor · Anaerobic degradation · MSW stabilization · Quadric 
model

Introduction

Appropriate management of solid waste has become a chal-
lenging task particularly in developing countries due to 
urbanization and industrialization [1]. Foremost, munici-
pal solid waste (MSW) management possibilities involve 
composting, incineration and landfilling. Landfilling is a 
dominant approach used for disposal of MSW in develop-
ing countries due to its technological and economic aspects 
[2, 3]. In a traditional anaerobic landfill, adequate measures 
are required to avoid migration of leachate to groundwater 
and inflowing of peripheral water to the landfill [4]. The 
prospect of anaerobic energy generation is more ecofriendly 
and efficient than another [5–7]. Anaerobic degradation is 
a biological process that can be employed to treat organic 
portion of solid wastes. The extent of digestion process i.e. 

reduction of organic pollution load, biogas production and 
MSW stabilization is highly dependent on the operational 
setup, operating parameters, MSW composition, existing 
microbial population and reactor type [8, 9]. Recent investi-
gations have revealed that the anaerobic decomposition pro-
cess could be designed for municipal solid waste treatment 
and biogas production [10–12].

The large fraction of MSW consists of organic matter and 
when discarded in landfill, it undergoes conversions causing 
formation of leachate, an extremely contaminating discharge 
due to the complexity of its constituents, which contains 
huge quantities of organic pollutants estimated as chemi-
cal oxygen demand, suspended solids, nitrogenous com-
pounds, heavy metals and significant amount of inorganic 
salts [13–17]. Hence, leachate must be treated or managed 
cautiously to decrease the adverse impact on environment, 
for instance stubborn organics can combine with organic 
compounds or heavy metals and transfer contaminants into 
the environment [18–20]. Based on the principle of anaero-
bic landfill, the bioreactor technology was developed for 
the reduction of leachate pollution load and fast solid waste 
stabilization [21–23]. The main purpose of an anaerobic 
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bioreactor landfill is to increase microbial activities by lea-
chate recirculation which accelerates the conversion and 
degradation of organic portion of solid waste [23–27].

Leachate recirculation improves the moisture content 
which in turn provides conditions for the effective trans-
mission of substrates and nutrients for microbes, redistribu-
tion of enzymes and microorganisms throughout the waste 
mass and dilution of higher concentration of contaminants 
[28–31]. The rates of leachate recirculation maintain the 
stability among hydrological and biological processes of 
solid waste decomposition. In the initial phase of study, the 
higher rate of leachate recirculation should be implemented 
to increase dissolution of waste content and establishment 
of higher population of methanogens [32, 33]. Hussain et al. 
[34] proposed that initially increased leachate recirculation 
enhanced hydrolysis, decomposition efficacy and produc-
tion of volatile fatty acid during acidogenic phase of organic 
waste. The rate of leachate recirculation is determined on 
the basis of the volume of MSW bed in a bioreactor. The 
leachate volume to be recirculated is calculated under differ-
ent conditions i.e. 2%, 10%, 13% and 30% of MSW volume 
loaded in the reactor [35, 36]. The intensive rate of recircula-
tion is where a larger volume (≥ 30% of the waste volume) 
of leachate recirculated through the waste bed. The intensive 
recirculation rate formed channels through the waste which 
increase the leachate flow and decrease the retention time 
of the leachate in the bioreactor [35]. The moderate rate 
of recirculation, where sufficient volume (10–20% of the 
waste volume) of leachate recirculated through MSW filled 
in bioreactor. The lower recirculation rate is where small 
volume (2% of the waste volume) of leachate recirculated 
through the waste. San and Onay [37], studied the impact 
of the leachate recirculation rate and recirculation approach 
on the anaerobic decomposition of MSW. The recirculated 
leachate volume of 2 L and recirculation approach of four 
times in a week were provided the maximum stabilization of 
MSW. Chugh et al. [35] stated that the methane generation 
rate and COD were dropped considerably when the leachate 
recirculated volume was 30% of the volume of MSW filled 
the bioreactor. Sponza et al. [36] reported that the increase in 
leachate recirculation rate from 9 L/day (13% of the reactor 
volume) to 21 L/day (30% of the reactor volume) influences 
the production of methane. The three times surge in recircu-
lation rate caused reduction in cumulative methane produc-
tion and increment in volatile fatty acid and COD concen-
trations were observed. The findings of this investigation 
indicated that the recirculation rate of 9 L/day enhances the 
biodegradation of MSW in anaerobic bioreactors. Accord-
ing to Li et al. [38] moderate leachate recirculation intensi-
ties contribute to reducing microbial consortium disruption, 
which enhances biogas production but intensive leachate 
recirculation provokes rapid vertical flow of leachate along 
preferential flow routes, causing insufficient consumption of 

existing moisture storage. Therefore, the leachate recircula-
tion rates should be carefully chosen and optimized to mini-
mize the disturbance and wash-out of the viable microbial 
consortium. In addition to this, other operational and design 
problems are at risk of environmental exposure if leachate is 
applied to the surface and requirement of liner, leachate and 
gas collection of management facilities. However, the study 
on effects of leachate recirculation on anaerobic degradation 
of MSW requires further investigation, particularly focused 
on continuous recirculation.

The present research aimed to observe the effect of lea-
chate recirculation on MSW stabilization in cylindrical 
shaped anaerobic bioreactor. The physico–chemical char-
acteristics of leachate from bioreactor were also investigated 
during leachate recirculation. Quadric model was applied to 
analyze the mode of operating parameters over time scale.

Material and methods

Characteristics of MSW

MSW samples were collected from the main dumping site 
of Hisar city. 2 kg of this mixed sample was collected in 
polyethylene bags, brought to the laboratory, and analyzed 
for moisture content immediately. The remaining samples 
were stored and analyzed for other important parameters.

The characteristics of MSW samples like moisture con-
tent (MC) and volatile contents (VC) were analysis accord-
ing to ASTM standards [39, 40]. The total organic carbon 
(TOC) of the sample was analyzed with the help of TOC-V 
analyzer (Shimadzu) using zero air as a carrier gas. The 
other parameters i.e. total kjeldahl nitrogen (TKN), sulphur 
and phosphorus were analyzed in laboratory by using stand-
ard methods [41]. All the above physico–chemical charac-
teristics of MSW were also analyzed after completion of 
leachate recirculation study.

Bioreactor set‑up and operation

The Leachate Recirculation Bioreactor setup and dimensions 
are given in Fig. 1 and the composition of MSW used in 
bioreactor is shown in Table 1. The properly mixed 23.79 kg 
of MSW having volume 0.046  m3 was added by compaction 
to the bioreactor and total 20 L leachate was prepared in the 
bioreactor by adding fresh water. The bioreactor and leachate 
collection container were sealed air tight. The bioreactor was 
kept at steady state conditions for 15 days, afterwards the 
recirculation of the leachate was started and the bioreactor 
was operated under anaerobic conditions for 270 days. Lea-
chate recirculation was done at moderate leachate recircula-
tion rates @ 28 mL/min for 12 h daily in such a way that the 
20 L collected leachate was completely recirculated because 
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moderate leachate recirculation intensities contribute to 
reducing microbial consortium disruption, which enhances 
biogas production. Therefore, in order to achieve the purpose 
of continuous recirculation this moderate rate was preferred 
after reviewing literature. The 50 mL leachate samples were 
collected on weekly basis for first 5 months and per 2 weeks 
in last four months from the outlet port and analyzed for 
various physico–chemical parameters. The leachate volume 

was made up by adding distilled water equal to the volume 
of leachate samples collected and accordingly dilution factor 
was incorporated in the equation used for the calculations. 
The leachate collected in the vessel was recirculated into 
the reactor from the top with the help of peristaltic pump.

Analytical procedures for leachate samples

The physico–chemical characteristics of leachate i.e. pH, 
electrical conductivity (EC), alkalinity, chloride, calcium, 
magnesium, sodium, potassium, sulphate, phosphate, total 
Kjeldahl nitrogen (TKN) and chemical oxygen demand were 
analyzed using “Standard Methods of Analysis of Water and 
Wastewater” [41].

The volatile fatty acid (VFA) was analyzed with the help 
of Gas Chromatograph (PerkinElmer 680) using flame ioni-
zation detector (FID) and capillary column (Elite-WAX) 
having length 30 m and inner diameter (ID) 0.32 mm. The 
pH of samples maintained to 2–3 using ortho-phosphoric 
acid. The samples were filtered through a membrane hav-
ing pore size 0.2 µm and dia. 25 mm using a syringe filter. 
A small amount (0.5 µl) of prepared sample was injected 
through an auto-injector for estimation [42].

Gas analysis

The composition of gases was analyzed with the help of 
Gas Chromatograph (PerkinElmer Clarus 680) using 

Fig. 1  Lab-scale leachate recirculation bioreactor

Table 1  Composition of MSW used in bioreactor

S. no Component Weight (g) Fraction (%)

1 Food 13,485 56.70
2 Papers 1538 6.47
3 Cardboard 1225 5.15
4 Plastic/rubber 386 1.62
5 Polythene 880 3.70
6 Textile 1366 5.74
7 Sanitary waste 345 1.45
8 Leather 26 0.11
9 Crockery 247 1.04
10 Yard waste 1265 5.32
11 Wood 184 0.77
12 Aluminium foil 149 0.63
13 Metal 156 0.66
14 Glass 353 1.47
15 Inert 2180 9.17
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thermal conductivity detector (TCD) and Elite-Plot Q col-
umn (30.0 m length × 80.53 mm ID). Nitrogen was used as 
a carrier gas at a flow rate of 4.0 mL/min. The fraction of 
the gases was calculated using standard plots containing a 
mixture of  CH4 and  CO2 [42].

Quadric model

To capture the behaviour of different variables related to 
operating parameters (physico–chemical properties of lea-
chate) of the study in relation to time, regression growth 
model was employed using SPSS 16 software. The data of 
physico–chemical properties of leachate collected on daily 
and weekly basis was converted to log scale and used for 
statistical analysis. Based on the results, quadric model was 
found best fit to evaluate the change in operational param-
eters over time scale. The quadric model determines the 
relationship between dependent variable Y and independent 
variable X.

The quadric model equation as below:

whereas, Y is the variable (operating parameter i.e. param-
eter of physico–chemical properties); X is the time; α inter-
cept; β shows the change in Y with time (negative value 
means Y decreases with time and positive value means Y 
increases with time). ϒ shows the acceleration of change in 
Y with time (negative value means rate of change of Y dimin-
ishes with time and positive value means rate of change of Y 
increases i.e. accelerates with time); U is error term.

Results and discussion

The MSW stabilization through leachate recirculation was 
studied at lab scale in bioreactor operated under anaerobic 
condition. The results of change in leachate quality with time 
are shown in Table 2.

Characteristics of leachate

Initial phase of leachate recirculation determines the modi-
fication and acclimatization of MSW decomposition from 
aerobic to anaerobic phase. After initial adjustment and 
acclimatization the pH became near to neutral i.e. optimum. 
Optimum pH ranged from 6.5 to 7.5 for anaerobic degrada-
tion [43]. Up to 6th week of leachate recirculation study, the 
pH of the reactor was decreased from 6.45 to 5.56. It may 
be due to acidogenesis and formation of volatile fatty acids 
[44]. After initial decrease, an increase in pH was observed. 
This increase in pH may be due to onset of methanogenic 
activity. It results in increased methane production and 

Y = � + �X
i
+ ΥX

2

i
+ U

i
,

decreased carbon dioxide, hydrogen and volatile fatty acid 
production [45, 46]. The pH value varied from 5.56 to 7.92 
and ultimately remained at around 7.4. pH of the reactor 
shows the reactor was working effectively during the study 
period and anaerobic conditions were maintained properly 
in the reactor.

The leachate conductivity reflects total ionic concentra-
tion of solutes and is an extent of capacity of solution to 
conduct an electric current [47]. The value of leachate con-
ductivity was 9.52 mS/cm in 1st week of recirculation, after 
that it increased upto 11.32 mS/cm till 9th week and further 
then it started to decrease with time. At the end of study, the 
minimum value of EC had observed and it was 5.35mS/cm. 
It might be due to formation of metal hydroxides which are 
insoluble [48].

Chloride is non-degradable in leachate and variation in its 
concentration is mainly used to estimate the leachate quality 
[49]. Decline in chloride concentration may be because it 
was chemically precipitated by their interaction with other 
substances present inside the bioreactor at suitable condi-
tions of pH and other parameter. Decline in its concentra-
tion might be caused by the dilution effect of distilled water 
used to maintain total makeup of leachate [47]. The initial 
chloride concentration was observed 2627 mg/L and then it 
reduced to 1065 mg/L by the end of study period. Erses et al. 
[47] observed the dilution and washout effect on chloride 
and they observed 79% removal for chloride during anaero-
bic degradation of MSW in bioreactor landfill.

Hardness in form of  CaCO3 was analyzed in the leachate 
sample. The hardness decreases with increased leachate 
recirculation [50]. Ca and Mg contents of the leachate sam-
ples showed variability due to more chemically reactive in 
nature and both are available as significant precipitants. Dur-
ing the leachate treatment period, initially hardness, calcium 
and magnesium increased and then decreased. This may be 
due to formation of  CaCO3 and Mg(OH)2 precipitation and 
consumption of calcium and magnesium by the microorgan-
isms [47]. Lohchab and Sigh [51] and Snehlata et al. [52] 
were also observed similar decreasing trend of hardness, Ca 
and Mg during leachate recirculation study.

The inorganic elements like Na and K act as nutrients for 
microbes. Potassium is the chief cellular inorganic cation 
and co-factor for certain enzymes whereas sodium main-
tains the osmotic regulation within microbial cells [13]. The 
results showed a decreasing trend of sodium and potassium 
concentration during the leachate recirculation period in 
anaerobic bioreactor. The initial sodium concentration in the 
leachate sample collected from the reactor was 529 mg/L, 
after that it tends to increase till 675 mg/L up to 5th week 
and at last it started to decrease with time and reached to 
118 mg/L. The potassium in the leachate sample collected 
from bioreactor was reduced from 1050 to 195 mg/L at the 
end of recirculation study. The results of the present study 
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corresponded with the finding of Reddy et al. [53]. They 
observed 66% reduction for sodium and 81% reduction for 
potassium.

During study period, value of phosphate in leachate sam-
ple was 33.48 mg/L in 1st week, after that it increased to 
43.37 mg/L till 4th week and then, it started to decrease 
with time. At the end of study, phosphate concentration 
reduced to 9.11 mg/L. The phosphate concentration may 
be decreases due to its assimilation by microorganisms in 
the bioreactor. The similar investigation of leachate recir-
culation in anaerobic bioreactor showed similar decreasing 
trend of phosphate concentration [51]. Sulphate is used as 
micro nutrient for microbes but its higher concentration is 
inhibitor for the anaerobic digestion [13]. The initial value 
sulphate content in leachate sample was 284 mg/L which 
increased up to 435 mg/L and then, sulphate concentration 
started to decrease and reduced to 162 mg/L at the end of 
leachate recirculation study. In addition to it, most of the 
sulfur compounds were converted into the  H2S gas, which 
cause decrease in the sulphate content of the reactor [54].

Most of nitrogen in the bioreactor is ammonia produced 
during degradation of protein [55]. Initial concentration of 
TKN in leachate sample was 645 mg/L, which increased 
to maximum (1050 mg/L) on  8th week of recirculation. 
After that there was a gradual decrease to minimum level 
of 192 mg/L at the end of study. Initially increase in nitro-
gen may be due to liberation of organically bound nitrogen 
during decomposition of waste. Nain and Lohchab [56] 
observed the similar decreasing trend of TKN in anaerobic 
bioreactor study.

The variation in concentration of volatile fatty acid with 
time seems to be a significant parameter for estimation of 
MSW decomposition [57]. Initially, the concentration of 
VFA was increased from 3400 to 7960 mg/L upto 7th week 
of recirculation. It may be due to accumulation of organic 
acids by hydrolysis and acidogenesis. Acidogens are most 
effective at pH 5.5–6.5. Their concentration grows quickly 
by conversion of complex organic compounds into VFAs 
[58]. The result was consistent with other studies that in a 
conventional landfill, VFA contents reached to its highest 
level before decreasing due to the establishment of metha-
nogenic phase [20, 59]. After that VFA shows the decreasing 
trend and reached minimum level of 970 mg/L at the end of 
study. The VFA concentration reduced as the daily biogas 
production increased, this may be due to utilization of VFA 
by methanogenic bacteria as a substrate to produce biogas 
and new cells.

Alkalinity is essential to maintain optimum pH for max-
imum microbial activity [60]. The initial value of alkalin-
ity in leachate sample was 7650 mg/L and at the end of 
study it gets reduced to 1925 mg/L. The value of alkalin-
ity in leachate sample collected from reactor shows the 
decreasing trends during treatment. Alkalinity greater than 

2000 mg/L in the reactor indicated adequate alkalinity to 
maintain optimum condition for methanogenesis [61]. 
After 32th weeks of recirculation, the reactor alkalinity 
was less than 2000 mg/L. This may be due to dissolution 
and precipitation of metals carbonates [62].

The VFA/Alkalinity is a measure of buffering capacity 
which reflects stability of bioreactor. The lower ratio usu-
ally imitates higher efficiency of anaerobic degradation 
[63]. Initially, VFA/Alkalinity was increased from 0.44 to 
1.40 due to increase in VFA concentration during acido-
genic phase, then it was gradually decrease and reached a 
minimum to 0.50 (Fig. 2). The ratio was observed within 
the limits of operational condition during the methano-
genic phase i.e. less than 0.8 [64]. Result clearly shows 
that performance of the reactor was excellent as VFA/
Alkalinity was in optimum range with maximum biogas 
yield during the methanogenic phase.

After slight decline, the COD in the bioreactor 
increased significantly at the beginning i.e. reached 
33,312 mg/L till 6th week. This is due to hydrolysis and 
leaching of soluble organic and inorganic compound from 
solid waste into leachate. After initial increase it started 
to decrease with minimum value 1025 mg/L at the end of 
leachate recirculation. This decrease in COD may be due 
to fast decomposition of solid wastes under anaerobic con-
dition resulting in conversion of VFA into  CH4,  CO2, and 
 H2S etc. [36]. These results are similar to the outcomes of 
Han et al. [23], they reported 93.01%, 96.85% and 95.74% 
of COD removal. The similar trends of reduction were also 
observed in the other investigations [52, 57, 66–68].
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Quadric model discussion

To capture the change in operating parameters over time, 
by using regression analysis, the quadric regression model 
was identified/ selected on the basis goodness of fit crite-
ria. The correlation coefficient (R2) value of 0.696 or more 
and p value (significance F) close to 0 of the quadric model 
showed that model was best fit. The observed values and 
predicted values were compared for each case to check the 
model suitability and Fig. 3 shows that the variance pat-
terns of the observed values and the predicted values are 
similar for every case. The estimated results of the model 
are presented in Table 3. The term ‘Y’ is a variable which 
denotes different operating parameters i.e. parameters of 
physico-chemical properties. ‘β’ shows the change in oper-
ating parameters with time. The negative value of β means 
the operating parameter (Y) decreases with time and positive 
value means parameter increases with time. ‘ϒ’ denotes the 
rate of change of operating parameters. The negative value 
of ϒ means rate of change of parameter (Y) decreases with 
time and positive value of ϒ means rate of change of Y 
increases with time i.e. accelerates with time.

The positive value of β (0.029) in result shows that pH 
was increased with time. The rate of increase of pH with 
time was 2.9%. The value of ϒ (0.00) denotes that the rate 
of pH increment does not increase or decrease with time, 
though the change of acceleration was zero. The alkalinity 
has negative value of β (− 0.015) which shows decline in 
alkalinity was 1.5% with per unit time. The negative value 
of ϒ (− 0.001) shows that the rate of reduction in alkalinity 
content decreases with time with a rate of 0.1%. The nega-
tive values of β for chloride (− 0.010) and sulphate (− 0.046) 
represent the decreasing trends in their contents with per unit 
time, but acceleration of change are zero because the value 
of ϒ is 0.00. The amount of decline per unit of time was 1% 
for chloride and 4.6% for sulphate, respectively. The rate of 
reduction of magnesium and sodium with time was 1.5% 
and 0.9%. The negative value of ϒ exhibits that the rates of 
decline in magnesium and sodium quantity was decreased 
with time at a rate 0.2%. The result also reveals that the 
phosphate was decreased with time at a rate 5.3% and rate 
of reduction of phosphate has been decreased with time at 
a rate 0.008%. The phosphate has shown highest amount 
(5.3%) of decline with time but decrease in acceleration 
was lowest. This decrease in phosphate may be due to its 
uptake by microbes for their growth and multiplication. The 
quadric model showed that with time electric conductive 
increase was 2.8% with diminishing rate 0.2%, total hard-
ness increase was 0.9% with diminishing rate 0.3%, total 
kjeldahl nitrogen increase was 4.3% with diminishing rate 
0.3%, potassium increase was 0.7% with diminishing rate 
0.3%, volatile fatty acid increase was 1.3% with diminishing 
rate 0.6% and chemical oxygen demand increase was 3.4% 

with diminishing rate 0.5%. The amount of increase was 
highest in case of total kjeldahl nitrogen 4.3% with highest 
diminishing rate of 0.3%. These trends of quadric modelling 
are similar with trends of observed values.

Above trends of quadric modelling as well as observed 
values of most parameters of leachate during their recircu-
lation indicate that the organic and inorganic contaminants 
levels of leachate were increased initially during hydrolysis 
and solubilisation of MSW but as MSW degradation/stabi-
lization progressed with time they had decreased.

Biogas production

Biogas production rate and cumulative biogas production 
during leachate recirculation study are presented in Fig. 4. 
The changes in composition of methane and carbon diox-
ide in biogas during study period are shown in Fig. 5. The 
biogas generation in bioreactor was started from 2nd week 
of recirculation and it was exponentially increase from 6th 
week. The highest biogas production rate of 18 L/day was 
observed on the 18th week of leachate recirculation (Fig. 4). 
The methane percentage of biogas was also highest during 
this week and it was about 67.8% (Fig. 5). The methane 
peak percentage was noted 69.50% in anaerobic bioreac-
tor [68]. Xu et al. [21] also noticed methane content about 
68% during the anaerobic phase. The major gases formed 
during anaerobic degradation of MSW were methane and 
CO2. Initially methane content was lower up to 6th week and 
after that a gradual increase in  CH4 contents was observed 
with progress of MSW degradation. The average composi-
tion of biogas in bioreactor during the study period was 50% 
 CH4 and 30.8%  CO2. During methanogenic phase, methane 
(40–70%) and carbon dioxide (30–60%) are two major con-
stituents of landfill gas [69]. The maximum methane produc-
tion rate of 12 L/day was observed in 18th week. The result 
is consistent with the outcomes of San and Onay [37] and 
Erses et al. [47]. The cumulative biogas and methane pro-
ductions were 1876 L and 938 L during the leachate recircu-
lation study period. Erses et al. [47] determined maximum 
yield of methane as 158 L/kg dry refuse. Other studies have 
reported methane generation in the range of 20–170 L  CH4/
kg-dry waste [21, 65, 66, 68–71].

Stabilization of MSW

The characteristics of MSW before and after anaerobic treat-
ment in bioreactor are shown in Table 4. The most crucial 
parameter enhancing waste degradation is the moisture con-
tent of the waste. Leachate recirculation provides necessary 
moisture content in the reactor which enhances the treatment 
of MSW as well as leachate recirculating through bioreac-
tor. After leachate recirculation study, volatile contents were 
reduced to 45%. The total organic carbon and TKN were 
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reduced to 40% and 29% which may be discharged into lea-
chate or gaseous phase. Similar study showed 30% reduction 
in carbon and 10% reduction in nitrogen [72]. Moreover, 

43% and 27% reduction in phosphorus and sulphur contents 
were observed. The depth of MSW used in bioreactor was 
reduced from 65.5 cm to 25.8 at the end of study. Initially, 
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the stabilization of solid waste in bioreactor was observed 
5–8% that may be due to the self-weight of MSW. The solid 
waste will also undergo fast and composite settlements as the 
result of self-weight and biological degradation when lea-
chate recirculation is implemented along with a bioreactor 
technology [27, 73, 74]. At the end of leachate recirculation 
study, 25.8% settlement was observed in anaerobic bioreac-
tor (Fig. 6). The MSW settlement provides more space for 
solid waste reached at the dumping site which increases the 
closure period of the site. The similar observations were 
observed in the investigations performed by [66, 67, 75].

Solid waste management system is very poor in India and 
requires research in this field according to local conditions. 
Large part of MSW in Hisar and other cities of India remain 

unattended due to lack of information of the waste genera-
tion and their management technologies. This research pro-
vides the base for proper utilization of MSW according to 
local need and resources in eco-friendly manner with gen-
eration biogas as an energy source. Leachate recirculation 
bio-landfill can reduce the long-term risk in addition to sev-
eral other advantages. The biogas and leachate analysis is 
performed on the weekly leachate recirculation basis at lab 
scale; though data of precise estimation of this process with 
field study is unavailable and impacts of individual operating 
parameters are to be investigated separately. The anaerobic 
bioreactor at different scales shows similar performances 

Table 3  Quadric model showing change in variables with time

Variable (Y)  ∝ Β ϒ R2 F P

pH 1.686 (42.274) 0.029 (4.768) 0.000 (− 3.161) 0.696 29.779 0.000
Electric conductive (EC) 2.265 (85.654) 0.028 (6.878)  − 0.002 (− 12.797) 0.964 344.756 0.000
Alkalinity (Alkal) 8.825 (148.729)  − 0.015 (− 1.645)  − 0.001 (− 3.963) 0.953 266.061 0.000
Chloride  (Cl−) 8.011 (226.785)  − 0.010 (− 1.754) 0.000 (− 5.375) 0.971 430.510 0.000
Total hardness (TH) 8.781 (164.479) 0.009 (1.045)  − 0.003 (− 11.252) 0.986 898.376 0.000
Calcium (Ca) 7.412 (238.276) 0.024 (5.014)  − 0.004 (− 23.898) 0.996 3.115E3 0.000
Magnesium (Mg) 6.332 (48.306)  − 0.015 (− 0.744)  − 0.002 (− 2.944) 0.899 115.341 0.000
Sodium (Na) 6.492 (135.663)  − 0.009 (− 1.235)  − 0.002 (− 8.044) 0.981 732.409 0.000
Potassium (K) 7.098 (128.680) 0.007 (0.852)  − 0.003 (− 9.824) 0.982 693.713 0.000
Phosphate  (PO4

3−) 3.826 (65.015)  − 0.053 (− 5.811)  − 8.394E−5 (− 0.287) 0.961 317.589 0.000
Sulphate  (SO4

2−) 6.065 (84.674)  − 0.046 (− 4.208) 0.000 (1.133) 0.865 83.391 0.000
Total kjeldhal nitrogen (TKN) 6.545 (66.126) 0.043 (2.842)  − 0.003 (− 6.835) 0.918 146.399 0.000
Volatile fatty acid (VFA) 8.253 (114.006) 0.113 (10.129)  − 0.006 (− 15.559) 0.962 332.530 0.000
Chemical oxygen demand (COD) 10.200 (115.596) 0.034 (2.543)  − 0.005 (− 11.784) 0.983 746.528 0.000
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and demonstrates better efficiency in eliminating leachate 

contamination in terms COD, alkalinity, VFA, TKN etc. 
Leachate recirculation bioreactor landfill is one of the most 
significant and cost-effective technique for enhanced biodeg-
radation and MSW stabilization (Table 5). Therefore, this 
cost effective and environmentally sound technology can be 
adopted after suspicious research and precautions.

Conclusion

After initial increase, a decreasing trend was observed in 
most of the physico–chemical parameters during the leachate 
treatment period. Removal of chloride, calcium, magnesium, 
sodium, potassium, phosphate, sulphate and TKN were 66%, 
92%, 82%, 83%, 84%, 79%, 63% and 82%, respectively. The 
cations and anions present in leachate were used as a source 
of nutrients by the microbes, therefore their concentration 
were reduced due to their consumption by the microbes dur-
ing anaerobic digestion of leachate in bioreactor.

The quadric model indicated that phosphate had high-
est amount of decline with time but sodium has lowest. 
Whereas, TKN has shown highest amount of increase with 
time but potassium has lowest. Subsequently, quadric mod-
elling represented that the organic and inorganic pollutants 
of leachate were decreased and pH was increased with time.

The pH, alkalinity and VFA are important parameters 
which govern the working of bioreactors under anaerobic 
conditions and all these parameters were within optimum 
range of anaerobic treatment. The COD is the best indicator 
of pollution load of the leachate and the maximum COD 
reduction was 97%, whereas the reduction in the VFA was 
88%. High reduction of COD and VFA indicate that the 
reactor working efficiency was very high. Therefore, the bio-
reactor landfill is another suitable option for disposal of the 
solid waste. One of the most significant and cost-effective 
technique for enhancing biodegradation in a bioreactor land-
fill is the leachate recirculation.

Table 4  Characteristics of MSW before and after anaerobic treatment 
in bioreactor

Parameters Before treatment After treatment

Waste depth in bioreactor 65.5 cm 48.6 cm
Mass of waste 23.79 kg 11.54 kg
Volume of waste 0.046  m3 0.034  m3

Moisture content (%) 28.76 46.82
Volatile content (%) 45.38 25.17
Total organic carbon (%) 26.32 15.91
Total nitrogen (%) 1.27 0.9
Phosphate (%) 0.84 0.48
Sulphate (%) 0.49 0.36
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