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Abstract
This study, aimed at maximizing the biogas yield from the co-digestion of food waste (FW) and cymbopogon citratus (CC) 
was done in reactors (Rs) I–V at temperature of 36 ± 2 °C. Rs I, II, III, IV and V with respective FW: CC of 100:0; 80:20; 
60:40; 40:60; 0:100 had mean biogas yield of 0.41 ± 0.02, 0.68 ± 0.05, 0.49 ± 0.02, 0.29 ± 0.01, and 0.22 ± 0.03 L/gVS, 
respectively. From the modeling result, while R I had the least latency (λ) of 3.9, RV had the highest value of 11.2 days. RII 
also had a reasonably low latency (λ) of 5.2 days. Top maximum specific biogas yield (Rm) of 0.48 L/gVS/day and maximum 
biogas production potential (A) of 19.9 L/gVS were obtained from RII. The high R2 values of 0.99–0.89 obtained from the 
simulation analysis showed a good fit with the modified Gompertz model. The study has revealed that FW: CC of 80: 20% 
could be most appropriate for optimal biogas production.
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Introduction

The importance of energy in the growth and development 
of a country’s economy cannot be overemphasized. Until 
recently, the world had majorly relied on fossil fuels for 
industrial, transportation, and domestic needs [1]. These 
are, however, non-renewable and their consumption leads 
to the disruption of the environment. The use of fossil fuels 
is also heavily linked to greenhouse gas emission such as 
carbon (IV) oxide [2]. Research has shown that current 
energy production matrix comprises 85% fossil fuels [3–5]. 
Furthermore, excessive and continuing use of fossil fuel has 
been predicted to cause energy crisis sooner or later. Its era 
is also speculated to end in about five decades to come due 
to non-renewability of sources [6–8]. Resolving these chal-
lenges requires the adoption of  CO2 neutral fuel systems [9].

These, coupled with unsteady price of crude and over 
dependence on oil import have led to prolific research into 

renewable energy sources most especially, biogas produc-
tion from anaerobic digestion [10]. In anaerobic digestion, 
an array of microorganisms breaks down organic substances 
to generate biogas (methane and carbon (IV) oxide). These 
microbes depending on their metabolic pathways could be 
hydrolytic, acidogenic, acetogenic, or methanogenic [11, 
12]. In a developing country like Nigeria, bioenergy could 
serve as useful renewable energy alternative with little or no 
economic and environmental burdens. Studies have shown 
that mono-anaerobic digestion of many degradable sub-
strates is easily inhibited as a result of poor C/N ratio, quick 
acidification of reactors due to the presence of long chain 
fatty acids etc. [13, 14]. This inhibition leads to poor biogas 
yield and sometimes complete process failure in the absence 
of external source of pH and nutrient [15]. Co-digestion, 
which is the anaerobic digestion of two or more substrates in 
a reactor at the same time has been proven to be a remedy to 
the challenges of mono-digestion [16]. The last few decades 
have witnessed a growing interest in anaerobic co-digestion 
studies. Literature has copious documentation of enhanced 
biogas yield arising from co-digestion of substrates. Exam-
ples are meat residues, vegetable and fruit waste [17]; 
kitchen waste, cow dung and water hyacinth [18]; food waste 
and maize husk waste [10] etc. This notwithstanding, opti-
mal combination of the numerous available substrates for 
maximum biogas production is still an enormous challenge.
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As Nigeria is an agrarian nation, it has in abundance 
assorted biomass for biogas production. Examples are cym-
bopogum citratus (CC), food waste, agro-wastes, kitchen 
wastes etc. CC, though produced extensively in Nigeria due 
to its medicinal value is slowly biodegradable due to its high 
lignin and high nitrogen content [19]. However, co-digesting 
it with an appropriate substrate can enhance its biogas yield 
potential. Cymbopogon citratus (lemon grass) is an aromatic 
perennial plant of Grami-neae family, commonly found in 
temperate and tropical parts of the globe. Its maximum 
height at maturity is approximately 1 m. CC grows well on 
many soils and climates but better on properly drained fertile 
sandy loam soil with exposure to sunlight [19]. Though it 
is medicinally and industrially useful as a result of its citral 
content and important oil [20], many a time, after usage, it 
gets thrown away as waste in large quantity. Presently, not 
much has been reported about the reuse of C. citratus waste 
outside a few studies [19]. Indeed, scientific information on 
the anaerobic co-digestion of CC with food waste (FW) for 
biogas production is scanty or non-existent in the literature.

On the other hand, about 1.3 × 103 billion of FW is gener-
ated annually in the world. This implies that more than 30% 
of all food processed/produced for consumption usually ends 
up as waste on a global basis [21]. FW generation has also 
been predicted to increase globally by 44% in 2025 [22]. 
This huge quantity of FW is more worrisome in developing 
countries like Nigeria with no improved waste management 
systems. FW is easily biodegradable and has low nitrogen 
content. This makes its mono-digestion prone to acidifica-
tion and system instability. Co-digesting with less biode-
gradable but high nitrogen content plant residue like CC can 
improve its biogas yield and reactor stability [18]. This study 
was, therefore, aimed at establishing the optimal percent-
age combination of FW and CC for maximization of biogas 
yield. Furthermore, the modified Gompertz model was used 
for the estimation of relevant bio-kinetic parameters for a 
deeper understanding of the performance of the reactors. 
The modified Gompertz model has been found most suitable 
for simulation of experimental data from anaerobic digestion 
of food waste [23, 24].

Methodology

Substrates collection and preparation

The C. citratus was obtained from gardens around some 
houses in Omu-Aran community, Kwara State and stored 
dry in a bucket for 40 days for the grasses to degrade. Using 
a local hammer mill, the grasses were crushed to about 2-in. 
size or less and stored in a clean air-tight container in the 
laboratory before the start of the anaerobic digestion experi-
ments [10]. Food waste (FW) was collected from cafeteria 

waste bins at Landmark University, Kwara State, Nigeria 
every day for five working days. In line with [10], bones 
and inorganic substances in the FW were removed almost 
immediately. Through the use of a small electric blender, 
the food waste was crushed and homogenized. The resulting 
substrate was stored in a freezer at 4 °C prior to the begin-
ning of experiments.

Substrate characterization

Prior to mixing the FW and CC substrates for digestion, 
important chemical parameters of the substrates were deter-
mined. Following procedures in [25], the measurement of 
total solids (TS) and volatile solids (VS) were done three 
times with an oven (DHG-9053A, Controls, Italy). Methods 
in [25] were equally followed in the determination of sub-
strates’  NH4+-N, Na, Ca, Mg TKN, Cl, P, K, S with a pho-
tometer (Palintest Photometer, model 7100 England). Meas-
urement of carbon content also followed standard methods 
[25]. Measurement of pH of the FW and CC substrates was 
done with pH meter (PHS-3C, SEARCH TECH, UK). The 
obtained chemical parameters and their values are presented 
in Table 1.

Batch anaerobic digestion

Batch anaerobic digestion experiment was done in five (5) 
similar computer-controlled 10 L reactors with five (5 L) 
working volume (model PDANC, EDIBON, Spain). The 
reactors were tagged I, II, III, IV, and V. Prior to putting 
the substrates into the reactors, VS of the feeding substrates 
was determined. In line with the split plot approach, five (5) 
treatments of various mixture of FW and CC were utilized 

Table 1  Chemical properties of the substrates

Measurement was on wet basis; results are indicated as aver-
age ± standard deviation (n = 3)

Parameter FW CC

TS (%) 24.3 ± 0.1 9.3 ± 0.9
VS (%) 15.2 ± 0.9 7.9 ± 0.6
NH4

+–N (%) 1.4 ± 0.3 2.7 ± 0.1
TKN (%) 11.5 ± 0.3 16.1 ± 0.3
Cl (%) 1.7 ± 0.1 6.8 ± 0.7
P (%) 3.1 ± 0.2 3.2 ± 0.2
Ca (%) 2.9 ± 0.1 10.2 ± 0.4
Mg (%) 1.9 ± 0.3 1.7 ± 0.2
K (%) 3.2 ± 0.2 1.9 ± 0.2
S (%) 3.8 ± 0.1 5.3 ± 0.8
Na (%) 3.1 ± 0.4 3.1 ± 0.6
pH 4.2 ± 0.3 6.5 ± 1.1
C/N ratio 28.8 ± 2.5 12.6 ± 0.6
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for the experiment (Table 2). The reactors were set up and 
ran following the manufacturer’s (EDIBON, Spain) instruc-
tion manual. The initial TS of substrates in the reactors was 
8% [26].

The experiments ran mesophilically at 36 ± 2 °C and 
stopped after 40 days when no reasonable biogas yield was 
obtained again. In line with the procedure in [27], daily 
biogas yield was obtained by water displacement approach 
through the reactors’ volumetric tanks graduated in millim-
eter. As stipulated in the EDIBON manual, actual volume 
of biogas yield was gotten by a conversion factor of 0.01628 
L per millimeter.

In accordance with [27], the displaced water was first 
acidified to pH 3 to prevent the dissolution of  CO2 into 
water. Digestion temperature and pH were regularly meas-
ured online with inbuilt sensors. The experiments were ran 
twice and average values of daily biogas yield recorded. 
With a gas chromatograph (GC), model GC122, BUCK, 
China, equipped with a Stabilwax-DA column (3 m × 0.32 
m × 0.5 µm) and flame ionization detector, biogas methane 
content was analyzed two times every week. The carrier 
gas (nitrogen) was set at 5.2 mL/min. While the column 

temperature was set at 40 °C, the detector temperature was 
kept at 200 °C. The experiment and analyses were all car-
ried out in the Environmental Engineering Laboratory of 
Landmark University. The picture of the reactor is shown 
in Fig. 1.

Modified Gompertz modelling

Equation (1) shows the modified Gompertz model used by 
lots of researchers for estimation of relevant anaerobic diges-
tion bio-kinetics [24].

where in A (L/gVS) = maximum biogas yield poten-
tial; Rm (L/gVS/day) = maximum specific biogas yield; 
� (days) = latency (days) = time of biogas yield; At (L/
gVS) = cumulative biogas production. Equation  (1) was 
solved using solver optimization tools in Microsoft Excel 
(2010 version). Adopting a 5% significant level, a two-way 

(1)A
t
= A exp

{

− exp

[

Rm × e

A
(� − t) + 1

]}

Table 2  Influent substrate 
properties

Measurement was on wet basis; food waste (FW); Cymbopogon citratus (CC)

Parameters RI RII RIII RIV RV

FW: CC (%) (w/w) based on 
total weight (g)

100:0 80:20 60:40 40:60 0:100

Total weight of sample (g) 45 45 45 45 45
VS (g/L) 4.2 3.9 3.8 4.1 3.5
C/N ratio 28.8 ± 2.5 23.5 ± 1.2 20.6 ± 0.8 19.2 ± 1.1 12.6 ± 0.6
pH 6.8 7.1 7.2 6.9 6.0

Fig. 1  Picture of the computer-
controlled anaerobic digester 
(PDANC model) utilized for the 
experiment
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analysis of variance (ANOVA) was applied to statistically 
interpret yields from each of the reactors.

Results and discussion

Characterization of substrates

The characteristics of individual FW and CC and the various 
mixtures are shown in Tables 1 and 2, respectively. While 
the concentration of total solids (TS) was 24.3% for FW, 
it was 9.3% for CC. FW and CC also had a volatile solid 
concentration of 15.2% and 7.9%, respectively. The high TS 
and VS concentrations of FW indicate that microbes were 
abundantly available in the FW sample [28, 29]. Gener-
ally, CC contains carbohydrates, lignin and hemicellulose, 
whereas FW contains a sufficient amount of anaerobic bac-
teria, and a wide range of important nutrients for maximum 
microbial growth. RI in the first 16 days of digestion had pH 
close to 6.2. It, however, reduced as digestion progressed to 
about 5.4 signifying signs of acidification. The mean diges-
tion pH in Rs I–V ranged from 6.0 to 7.2 (Table 2) which 
is conducive for the activities of anaerobic bacteria [10]. 
Table 1 shows that the value of  NH4

+–N was greater in CC. 
 NH4

+–N enhances process equilibrium during anaerobic 
digestion. Recently, [28] reported higher ammoniacal nitro-
gen content in cattle manure (CM) than in palm oil mill 

effluent (POME) and concluded that the higher ammonia 
from the CM enhanced system stability during the anaerobic 
co-digestion of CM and POME for biogas production. In a 
study on the anaerobic digestion of fruit, vegetable, and yard 
wastes by [30], pH and  NH4

+–N were, respectively, found to 
increase from 6.9 to 7.3 and 765–955 mg/L. From Table 2, 
Rs I–V had C/N ratio of 28.8 ± 2.5, 23.5 ± 1.2, 20.6 ± 0.8, 
19.2 ± 1.1 and 12.6 ± 0.6, respectively. For optimum biogas 
production, anaerobic microorganisms require balanced 
proportion of carbon for energy and nitrogen for protein. 
Studies have shown that one of the ways to enhance biogas 
production from substrates is to keep C:N ratio within the 
neighborhood of 25–35 [30, 31]. While very high C:N ratio 
(excess carbon) slows down anaerobic digestion, very low 
C:N ratio (excess nitrogen) limits biogas yield and makes 
the entire process end up with a stinky pile. Bardi and Rad 
[31] have also reported that nitrogen deficiency in a substrate 
limits microbial activity. Generally, results obtained from 
this study as displayed in Fig. 2 shows that reactors with C/N 
ratios between 20 and 30 achieved better yield than those 
outside the range.

Biogas production performance of the reactors

Mean biogas yield of 0.50 ± 0.04, 0.71 ± 0.07, 0.54 ± 0.05, 
0.30 ± 0.03, and 0.24 ± 0.02 L/gVS was, respectively, pro-
duced in Rs I–V. RII, followed by RIII, had the highest 
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Fig. 2  Daily biogas yield for RI–RV
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biogas yield (Fig. 2). The observed poorest performance 
from RV with 100% CC could be attributed to the low 
C/N ratio against the prescribed range of 20–35 [10, 29] 
and higher lignin content [26]. According to [30], low ratio 
of C/N causes acidification and, therefore, inhibits metha-
nogenesis. Lignin has also been reported to inhibit initial 
hydrolysis in anaerobic digestion [26]. As shown in Fig. 3, 
total biogas yield for Rs I, II, III, IV and V was, respec-
tively, 10.39, 12.64, 11.84, 5.65, and 5.23 L/gVS. ANOVA at 
p < 0.05 for the five reactors (Table 3) indicates a significant 
difference in the biogas yield across the reactors. Rs IV and 
V were noted to have similar low biogas yield. This could 
be linked to having the largest quantities of CC. The low 
yield in RIV implies that though CC can improve biogas 
yield when co-digested with FW, excessive amount of CC 
relative to FW can cause inhibition. This corroborates the 
finding of [26] for the co-digestion of cow dung, water hya-
cinth, and waste paper in which optimal yield decreased with 
increase in paper quantity beyond the optimal mix ratio. The 
authors attributed the decrease to decreased hydrolysis with 

increased quantity of wastepaper. In line with [32], over 70% 
of the cumulative biogas yield occurred in the first 18 days 
of digestion. Maragkaki et al. [33] in their study on biogas 
production from co-digestion of sewage sludge (SS), FW, 
cheese whey (CW) and olive mill wastewater (OMW) found 
that co-digesting 3% of food, cheese and olive mill waste-
water (FCO) with sludge increased daily biogas yield from 
437 ± 132 to 533 ± 160 mL/Lreactor/day. 

Other than RII with peak biogas yield of 1.21 L/gVS on 
the 26th day, the peak yield of Rs I, III, IV, and V of 0.78, 
0.72, 0.49 and 0.33 L/gVS, respectively, occurred between 
the 19th and 22nd day. Performance of RII could be linked 
to the synergy of microorganisms due to the availability of 
some limited amount of CC and the resultant C/N ratio of 
23.5 ± 1.2 [16–20]. When FW and pretreated yard waste 
were anaerobic digested at the F/M ratio of 2.0, two biogas 
yield peaks were observed on the 7th day and 20th day [32]. 
While the peak of the 7th day was attributed to high sCOD 
content (3780 ± 180 mg/L) and fast degradation to methane, 
the peak that occurred on the 20th day was attributed to 

Fig. 3  Cumulative Biogas yield 
for RI–RV
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Table 3  Two-way ANOVA with 
no replication

Source of Variation SS df MS F p value F crit

Rows (yields across the reactors) 3.41 21 0.22 7.62 4.43E−08 2.83
Columns (yield from each reactor) 4.24 3 1.05 62.78 8.27E−17 3.86
Error 0.83 63 0.83
Total 7.65 87
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macromolecules degradation and crude protein [32]. The 
mean methane content of biogas from the various reactors is 
shown in Fig. 4. RII was again found to have cleaner biogas 
with respect to methane content showing that co-digestion 
of FW and CC for bioenergy is best at 80% FW and 20% 
CC. This can, therefore, be a way of treating the respective 
wastes with additional huge benefit of bioenergy generation. 
In a recent study in which food waste was co-digested with 

sewage sludge, biogas with methane content of 71%, 68%, 
68%, 66%, 67%, 67%, and 59% were, respectively, obtained 
in Reactors 1–7 used for the experiment.

Output from modified Gompertz modelling

Plots arising from the modified Gompertz modelling are 
shown in Fig. 5. Result from the modelling (Table 4) reveals 
that excessive increase in the quantity of CC increased 
latency. Latency (λ) is described as the least time needed 
for initiation of effective methanogenesis in a reactor. The 
minimum values of λ were obtained as 3.9 days for RI and 
4.6 days for RII. These two reactors contained the lowest 
quantity of CC substrate. A good R2 range of 0.89–0.99 was 
obtained (Table 4) and indicates good fit. FW contains large 
quantity of highly degradable matter and indigenous bacteria 
and hence starts generating biogas not long after the com-
mencement of digestion [23]. This notwithstanding, because 
of its high C/N ratio, it often undergoes acidification due to 
excessive production of intermediate products like volatile 
fatty acids [34]. The intermediate product inhibit further 
biogas yield as anaerobic digestion progresses making it 
essential to co-digest FW with agro-waste matters like CC 
for C/N adjustment [34].

Table 4 reveals that 20% CC addition led to increase 
in the maximum specific biogas production (Rm). Sub-
sequent addition of CC to become 40% and 60% of the 
substrate reduced Rm. While RI with only FW had Rm of 
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Fig. 5  Plot of modified 
Gompertz modelling for RI–RV
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0.41 L/gVS/day, R II had Rm of 0.49 L/gVS/day. Addi-
tional increase in CC quantity as found in RIII, IV and V 
reduced Rm indicating that for profitable running of large 
plants, the optimal combination of FW and CC should, 
respectively, be within the neighborhood of 80% and 20%. 
Since Rm relates to the quantity of methanogens present 
in a reactor and their activities, RII could be said to have 
had a better activity of methanogens and thus improved 
biogas yield [21]. Deepanraj et al. [23] obtained Rm of 
712.6 mL/day using the modified Gompertz model to 
describe experimental data from the anaerobic digestion 
of untreated food waste. This is higher than the value of 
0.41 L/gVS/day obtained in this study and could be attrib-
uted to the difference in the composition of food waste 
digested in both studies.

Table 4 also shows that R I with only FW had a maxi-
mum biogas production potential (A) of 10.53 L/gVS. 
However, a reasonable improvement to 19.62 L/gVS was 
gotten in RII with 20% CC. When the quantity of CC went 
up to 50%, the value of A (L/gVS) started to decrease. 
The reduction in value of A (L/gVS) in RIV was 45.3%, 
while the improvement in A (L/gVS) gotten in RII, and 
III was 59.2% and 19.2%, respectively, in relation to RI. 
The increase in biogas yield in RII indicates that a dif-
ferent metabolic pathway must have occurred with bet-
ter degradation as a result of the adjustment in substrate 
characteristics, brought about by the addition of limited 
amount of CC [24]. The reduction in Rs III and IV could 
be because agro-waste materials have large amount of 
lignin which makes hydrolysis a limiting reaction pathway 
[21]. Panigrahi et al. [32] in a recent study on co-digestion 
of food waste with pretreated yard waste applied three dif-
ferent models for the simulation of the experimental data 
obtained. The study reported that the smallest difference 
between experimental and predicted methane yield was 
observed with the modified Gompertz model (3.7–15.4%). 
Yoon et al. [24] also used the first-order kinetic model and 
modified Gompertz model to describe the co-digestion of 
wastewater sludge and food waste. Result obtained showed 
a higher correlation value ranging from 0.92 to 0.99 for the 
modified Gompertz model [24].

Conclusion

The study evaluated the optimal combination of C. citra-
tus (CC) and food waste (FW) for enhanced biogas yield. 
Maximum mean biogas production of 0.69 ± 0.05 L/gVS was 
gotten in RII. The modelling result showed that the highest A 
and Rm values were also gotten in RII with 80% FW and 20% 
CC. The study further revealed that when CC was increased 
to above 20%, A and Rm decreased while � increased indicat-
ing inhibition/reactor failure as noted in Rs IV and V. The 
research concludes that the co-digestion of 80% FW and 
20% CC could be suitable for optimum production of biogas 
on industrial scale.
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