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Abstract
Recycling of chemicals from waste plastics is important for the reutilization of resources and the reduction of environmental 
pollution. The phase behaviors of poly (1,4-cyclohexylene dimethylene terephthalate) (PCT) in water at different temperature 
and time were observed in a fused silica capillary reactor (FSCR) with a microscope. The effects of the reaction temperature 
(260−340 °C), the reaction time (30−90 min), and the mass ratio of water/PCT (6:1−14:1) on the degradation of PCT were 
studied in an autoclave reactor on the basis of the results obtained from the FSCR. Under our research conditions, depo-
lymerization of both 1,4-cyclohexanedimethanol and terephthalic acid (TPA) generated mainly phenol, and the maximum 
yield of phenol was obtained at 340 °C after its reaction with a water/PCT mass ratio of 10:1 for 90 min. Moreover, a reac-
tion mechanism of PCT degradation in subcritical water was proposed. Our results suggest that PCT can be depolymerized 
rapidly and completely in subcritical water to produce phenol, and this method is conducive to the recycling of waste PCT.
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Introduction

Poly(1,4-cyclohexylene dimethylene terephthalate) (PCT) 
is a new type of thermoplastic engineering material, which 
was discovered and developed at Tennessee Eastman in 1959 
by Kibler et al. and was produced commercially in 1987 by 
the Eastman Chemical Company of United States [1]. It is 
widely used in automobiles, medical appliances, optical com-
ponents, and other fields because of its better characteristics 
including heat resistance, chemical resistance and mechani-
cal properties than poly(trimethylene terephthalate) (PTT), 

polyethylene terephthalate (PET) and poly(butylene tereph-
thalate) (PBT) [2, 3]. With the rapid increase of PCT usages, 
its waste has caused pollution. Therefore, the treatment of 
PCT has become increasingly important. Gregory and Wat-
son [4] reported the kinetics of the thermal degradation of 
PCT. Wampler and Gregory [5] investigated the effects of 
temperature, time, and moisture content of the polymer on 
thermal and hydrolytic degradation of PCT. In recent years, 
with the increase of the amount of polymer, the effective 
utilization of its waste has been widely concerned [6–8].

At present, chemical recycling is investigated extensively 
because it can meet the needs of sustainable development, 
and it degrades polymers into their corresponding monomers 
or other useful chemicals, which can be re-used, thus reduc-
ing environmental pollution [9–14]. Some studies focusing on 
depolymerization have reported the recovery and utilization 
of monomers or other chemicals produced from polymer in 
some organic solvents, such as methanol [15–18], propanol 
[18], ethanol [18–20], toluene [21, 22], ethylene glycol [23, 
24], n-Butanol [25], decalin [26] and benzene [27]. Goto [10] 
reviewed the chemical recycling of waste polymers in sub- and 
supercritical fluids. Compared with organic solvents, sub- and 
supercritical water has attracted attention recently due to good 
solubility [28–30], oxidability [31–34], catalysis [35, 36] and 
harmless [37]. Decomposition of polymers and recovery of 
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(665 μm OD, 300 μm ID, and about 18−25 mm long) was 
obtained from fused silica capillary (Polymico Technolo-
gies, USA). Ultrapure water was prepared in the laboratory.

Experimental procedures

A FSCR in combination with a heating–cooling stage 
(HCS402, INSTEC, USA) was used for our study of the 
phase behavior of PCT in subcritical water at different tem-
peratures. The detailed descriptions of the sample loading in 
the FSCR and experimental procedures were given by Pan 
et al. [20, 41, 42, 46, 47]. Briefly, a silica capillary about 
2 cm long was cut first, and one end of the capillary was 
sealed and the polyimide protective layer was removed with 
a hydrogen flame, then PCT and ultrapure water was loaded 
into the tube successively and the open end of the FSCR was 
sealed. After this, the FSCR was loaded on the sample cham-
ber of the heating–cooling stage and the temperature was 
measured by a K-type thermocouple (accurate to ± 0.1 °C). 
The phase behavior during PCT depolymerization in the 
FSCR was observed with a microscope and recorded by a 
digital camera (JVC, TK-C1481, Yokohama, Japan).

In addition, the depolymerization of PCT in subcritical 
water was conducted in a stainless-steel autoclave (50 mL), 
in which PCT and water were added in the certain ratio 
(6:1−14:1) before sealing. Subsequently, the autoclave was 
heated to a set temperature using a heating collar with a 
rate of 10 °C/min, and the temperature was measured by a 
K-type thermocouple with an accuracy of ± 1 °C. Finally, 
the autoclave reactor was cooled to room temperature and 
the reaction products were recovered. These experimental 
procedures have been described previously in detail [41, 46].

The conversion yield of PCT and products yields of phe-
nol or TPA were defined as follows:

The theoretical masses of phenol and TPA were cal-
culated as 2 mol of phenol and 1 mol of TPA generated 
from 1 mol of converted 1,4-cyclohexylene dimethylene 
terephthalate.

(1)

Conversion yield of PCT(% )

=
Mass of PCT feed − Mass of unreacted PCT

Mass of PCT feed
× 100%

(2)
Yield of phenol (% )

=
Mass of phenol recovered after reaction

Theoretical mass of phenol in PCT feed
× 100%

(3)
Yield of TPA (% )=

Mass of TPA recovered after reaction

Theoretical mass of TPA in PCT feed
× 100%

monomer in sub- and supercritical water have been reported 
[10, 36, 38–43]. Decomposition of polycarbonate (PC) into 
bisphenol A (BPA) in subcritical water has been reported by 
Watanabe et al. [43], and the maximum yield of BPA was 
about 80% at saturated pressure of 300 °C for about 5 min. 
Our group previously studied the hydrolysis of polymer into 
its monomer [41, 42, 44–47]. Pan et al. [41, 42] investigated 
hydrolysis of PC with and without catalyzer in sub-critical 
water, and found BPA was the main liquid product. Liu et al. 
[47] reported catalytic depolymerization of PET into TPA 
and ethylene glycol (EG) in hot compressed water (HCW). 
Gao et al. [45] studied depolymerization of poly(trimethylene 
terephthalate) (PTT) into TPA and 1,3-propanediol (1,3-PDO) 
in HCW. Huang et al. [46] reported the decomposition of 
polyimide (PI) in subcritical water, and the main monomers 
produced by PI depolymerization were 4,4′-diaminodiphenyl 
ether (ODA) and 4,4′-oxydibenzoic acid (OBBA). In addi-
tion, to the authors’ knowledge, few literatures reported on 
the degradation of PCT in sub-critical water.

Fused silica capillary reactor (FSCR) has the advantages 
of small size, optical visibility, high temperature and high 
pressure resistance. It has been widely used in environment, 
chemical, geology and other fields [20, 28, 41, 42, 48–53]. In 
this work, the phase behaviors of PCT in sub-critical water 
in a FSCR was investigated first, which provides guidance 
in the selection of reaction conditions in a batch autoclave 
reactor. The effects of reaction temperature (260−340 °C) 
and reaction time (30−90 min), as well as the mass ratio 
of water/PCT (6:1−14:1) on the depolymerization of PCT, 
were studied by a batch autoclave reactor. It was found that 
the main product was phenol instead of PCT monomer 
1,4-cyclohexanedimethanol and TPA. Moreover, a depo-
lymerization mechanism of PCT in sub-critical water was 
proposed. This experimental technique has a great advan-
tage in guiding the resource utilization of waste PCT, and it 
reduces environmental pollution effectively.

Experimental

Materials

The PCT (weight average molecular weights 46,000−50,000) 
used in this study was purchased from Eastman Technol-
ogy Development Co., Ltd. (Kingsport, USA). Phenol and 
1,4-cyclohexanedimethanol were obtained both from Alad-
din Chemistry Co., Ltd. (Shanghai, China). Sodium hydrox-
ide and TPA were supplied by Hangzhou Xiaoshan Chemi-
cal Reagent Factory (Hangzhou, China) and Acros Organics 
(Geel, Belglum), respectively. All reagents were used 
without further purification. Fused silica capillary reactor 
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Sample analysis

The solid residue was dissolved in NaOH solution, the pH 
was adjusted to 7.0 using phosphoric acid, and then filtrated. 
The solution was identified by a high performance liquid 
chromatography—mass spectrometer (HPLC–MS, Acquity 
UPLC system, Waters, USA). Fourier-transform infrared 
(FT-IR) spectrometer (AVATAR-370, Thermo Nicolet, 
USA) was used to measure the functional groups of insolu-
ble solid. The liquid products were identified qualitatively 
using the HPLC–MS and a gas chromatograph-mass spec-
trometer (GC–MS) using an Agilent 6890 gas chromato-
graph equipped with a 30 m × 0.25 mm × 0.25 μm TR-5 cap-
illary column and a mass selective detector. Solid product 
which dissolved in NaOH solution and liquid products were 
analyzed by HPLC (Dionex UltiMate 3000, Dionex, USA). 
The HPLC analyses were carried out on a Yilite BDS C8 
column (4.6 mm × 250 mm × 5 μm) and a UV detector, and 
the mobile phase was employed with a methanol/water solu-
tion (6/4 vol.%) at a flow rate of 0.5 mL/min.

Results and discussion

Phase behavior of PCT in FSCR in deionized water

PCT and ultrapure water in the FSCR was heated with a 
rate of 10 °C/min to 340 °C. We observed and recorded the 
phase behaviors of PCT in water using the advantages of 
optical viewing of FSCR. As shown in Fig. 1, there were 
solid PCT, liquid water, and vapor in the FSCR at room tem-
perature. During the heating process, PCT began softening 

and shrinking when the temperature rose to 150 °C. As the 
temperature continues to increase, the PCT melted gradually 
and developed into a liquid spherule at 340 °C. The melted 
PCT and the solution had an obvious interface. The FSCR 
was held at 340 °C for 30 min, and the phase changes of PCT 
was depicted in Fig. 1b, the liquid spherule of PCT dissolved 
gradually in the solution and finally dissolved completely 
in 30 min. Figure 1c shows that the crystal began to pre-
cipitate from solution at 170 °C during the cooling process. 
Subsequently, as the temperature continues to decrease, the 
number of crystals in the FSCR gradually increases. Based 
on the phase behaviors results observed in the FSCR, the 
depolymerization of PCT was further studied in an autoclave 
reactor.

Analysis of the depolymerization products

A series of experiments were carried out in an autoclave 
reactor under the conditions of reaction for 30 min at 300 °C, 
and with water/PCT mass ratio 20.0 g/2.0 g. The solid resi-
due was dissolved in NaOH solution, and the insoluble solid 
was identified by a FT-IR spectrometer. Figure 2 displays 
the FT-IR spectra of the insoluble solid and PCT standard 
sample. The peaks at 3600–3400, 3000–2843, 1750, 1500 
and 1050 cm−1 are assigned to O−H, C–H, C=O, C=C and 
C–O stretching vibrations, respectively. The infrared spec-
tra of the insoluble solid have obvious absorption band at 
3600−3400 cm−1 due to partial hydrolysis of the PCT. The 
similarity of these two spectra indicates that the solids insol-
uble in NaOH solution is actually the residual PCT.

The solid products which dissolved in NaOH solution 
and liquid products were analyzed by LC–MS and GC–MS, 

46 oC 150 oC 200 oC 210 oC 340 oC

(a) Heating

5 min 10 min 15 min 20 min 30 min

(b) Maintaining temperature at 340 oC for 30 min

170 oC 140 oC 100 oC 70 oC 40 oC

(c) Cooling

Fig. 1   Photomicrographs of PCT in water in FSCR during a heating; b reaction at 340 °C and c cooling
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and according to the analysis results, the main composi-
tions of the PCT depolymerization products in sub-critical 
water are given in Table 1. They were composed mainly 
of TPA, phenol, 1,4-cyclohexylene dimethylene tereph-
thalate, 1,4-dimethylene cyclohexane, 4-isopropylphenol 
and 4′-hydroxyacetophenone. 1,4-cylohexanedimetha-
nol and TPA are monomers for the synthesis of PCT, 
but 1,4-cylohexanedimethanol was not detected, and the 
yield of TPA was low. It was unexpectedly that phenol 
was found to be the main depolymerization product at the 
research conditions. Phenol is a useful organic chemical 
raw material, and it has important applications in synthetic 
fiber, plastic, synthetic rubber, medicine and other indus-
tries [54, 55]. Degradation of waste PCT to phenol can not 
only reduce environmental pollution, but also obtain valu-
able and important chemical products. The detailed reac-
tion mechanism will be analyzed in later. The mass spectra 
plots of liquid products and solid product are shown in the 
Supporting Information.

Effects of the mass ratio of water/PCT

The influences of water/PCT mass ratio from 6:1 to 14:1 
on PCT depolymerization were investigated at 300, 320 
and 340 °C for 30 min. Figure 3a shows that the conversion 
yield of PCT increased sharply from 42.3 to 73.4% with 
water/PCT mass ratio from 6:1 to 14:1 at temperature of 
300 °C. At 320 °C and 340 °C, the conversion yields of 
PCT both exceeded 99% with the water/PCT mass ratio of 
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Fig. 2   FT-IR spectra of the insoluble solid (a) and PCT standard sam-
ple (b)

Table 1   Main products of PCT depolymerization in subcritical water

Retention 
time/min

Chemical name Detection 
technol-
ogy

Main solid product 4.15 Terephthalic acid (TPA) LC–MS
Main liquid product 4.619 Phenol GC–MS

6.269 1,4-dimethylene 
cyclohexane

GC–MS

7.738 4-isopropylphenol GC–MS
8.560 4′-hydroxyacetophe-

none
GC–MS

9.458 1,4-cyclohexylene 
dimethylene tereph-
thalate

LC–MS
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Fig. 3   Effects of the mass ratio of water/PCT on the conversion yield 
of PCT (a), yield of phenol (b) and yield of TPA (c) in subcritical 
water
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10:1. Figure 3b, c reveal the relationship between the ratio 
of water/PCT and the yields of phenol and TPA, respec-
tively. Yield of phenol increased with increasing water/
PCT mass ratio and reached the maximum of 49.3%, 69.3% 
and 75.3% under the water/PCT mass ratio 14:1 at 300 °C, 
320 °C and 340 °C, respectively. When the water/PCT mass 
ratio was above 10:1, the phenol yield increased slowly at 
320 °C and 340 °C, and the effect of water/PCT mass ratio 
became weaker. TPA yield decreased with increasing water/
PCT mass ratio and was below 20%, mainly because the 
TPA underwent further hydrolysis to produce phenol under 
high-temperature and high-pressure water.

In addition, the conversion yield of PCT and the yield 
of phenol increased with increasing temperature (300 °C, 
320 °C and 340 °C) under the same water/PCT mass ratio, 
the yield of TPA decreased first and then increased slightly 
with increasing temperature. This is because TPA is gener-
ated and hydrolyzed simultaneously. Considering all of the 
reactions in the conversion yield of PCT and the yield of 
phenol and TPA consumed H2O, a water/PCT mass ratio of 
10:1 was chosen.

Effects of reaction temperature and time

The influences of temperature (260−340  °C) and time 
(30−90 min) on PCT depolymerization were investigated 
with water/PCT mass ratio of 10:1. Figure 4a clearly shows 
that increasing the reaction temperature and prolonging the 
reaction time have a positive influence on the conversion of 
PCT. PCT was barely depolymerized in water at 260 °C, and 
the conversion yield of PCT was only 5.6%, even after the 
reaction of 60 min. However, the ratio increased to 57.3% 
at 280 °C after 60 min. Furthermore, the PCT completely 
depolymerized at 300 °C after 45 min and at 320, 340 °C 
after 30 min. The reason for this result is that PCT is almost 
insoluble in water at lower temperatures and dissolved more 
rapidly in water at higher temperatures, which could be well 
proved by the phenomenon in Fig. 1. Figure 4b shows an 
increase in the yield of phenol when the reaction tempera-
ture increased and the reaction time prolonged. After 90 min 
of reaction, the yield of phenol was less than 7.3% at 260 °C 
and increased to 86.9% at 340 °C. The optimum reaction 
temperature was 340 °C in order to obtain phenol. The yield 
of phenol was 86.9% at 340 °C for 90 min, with water/PCT 
mass ratio of 10:1.

From Fig.  4c, it can be seen that the yield of TPA 
increased first and then decreased with time, and reached 
a maximum after 60 min. When the temperature is below 
320 °C, the yield of TPA decreased with the temperature, 
and the maximum value was 15.8% at 260 °C for 60 min. 
This is different from the conclusions of some articles [45, 
47, 56], which indicated the yield of TPA increased with 
temperature during the depolymerization of PTT or PET. 

The decreased of TPA yield in this study maybe due to 
the instability of TPA at high temperature. Wang et al. 
[57] reported TPA hydrolyzed gradually with an increase 
in the temperature. Sato et al. [58] got the same conclu-
sion. However, the yield of TPA increased slightly from 
320 to 340 °C was due to the greater rate of TPA forma-
tion through PCT degradation than the rate of TPA loss 
through hydrolysis.
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Degradation mechanism of PCT in subcritical water

A mechanism for the depolymerization of PCT (Fig. 5) was 
hypothesized based analysis of the phase behavior and the 
products. It can be seen from the phase behaviors shown 
in Fig. 1, as the temperature increased, the PCT gradu-
ally melted. The intermolecular forces between the PCT 
chains were weakened and their distance was increased. In 
the reaction system, water is both a reaction solvent and a 
reactant in high-temperature [59]. The active ester linkage 
of the PCT was cleaved in high temperature water, caus-
ing the chains of PCT polymer to break and PCT convert 
into 1,4-cyclohexylene dimethylene terephthalate. Then, 
1,4-cyclohexylene dimethylene terephthalate was degraded 
to form TPA and 1,4-cyclohexanedimethanol by further 
hydrolysis. Further reaction of 1,4-cyclohexanedimetha-
nol produced the intermediate product, 1,4-dimethylene 
cyclohexane, which underwent a series of reactions such 
as oxidation, rearrangement and dehydration led to the end 
product, phenol. Dehydration reactions, occurred in the 

environment of huge water excess under pressure, were 
due to the catalytic dehydration of protons produced by 
terephthalic acid and phenol at high temperatures [60]. 
Under high-temperature and high-pressure conditions, 
benzoic acid was formed by decarboxylation of TPA, and 
phenol was formed by further reaction of benzoic acid. 
Some previous studies have reported that benzoic acid 
can generate phenol under hydrothermal conditions [61], 
although the reaction mechanism is not very clear. Other 
side reactions in the system produced 4′-hydroxyacetophe-
none and 4-isopropylphenol. The products that had been 
detected by LC–MS and GC–MS are shown in frame of 
solid line in Fig. 5. The mass spectra plots of products are 
shown in the Supporting Information. No other intermedi-
ates could be detected, which may be because there were 
transition states during the reaction under high tempera-
ture and high pressure system. The reaction pathway in 
frame of dotted line in Fig. 5 is the hypothetical process, it 
is only a surmise based on the product, and we will further 
discuss in our subsequent studies.
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To prove that the 1,4-cyclohexanedimethanol undergoes 
further reaction to produce phenol under high-temperature 
and high-pressure conditions, a set of experiments was con-
ducted to add 2.0 g PCT, 20.0 mL water and with or with-
out 1.0 g 1,4-cyclohexanedimethanol within the temperature 
range of 300−340 °C for 60 min in an autoclave reactor. 
The results are shown in Fig. 6. By comparison, the yield 
of phenol increased when 1.0 g 1,4-cyclohexanedimetha-
nol was added, indicating that further reaction occurred in 
1,4-cyclohexanedimethanol to produce phenol. Zhang et al. 
[62] studied the pyrolysis-GC/MS of PCT and found that 
there is phenol in the product, although the yield of phenol 
is very low.

Conclusions

We used a FSCR and a batch autoclave to study the depo-
lymerization of PCT in subcritical water, and unexpectedly 
found that the main product was phenol rather than mono-
mers. Recycling phenol from waste PCT could realize the 
reutilization of waste resources and the reduction of envi-
ronmental pollution. The phase behavior of PCT in water 
suggested that PCT began to soften and shrink at 150 °C 
and mingled completely with water at 340 °C after 30 min. 
The main solid product and liquid product in the autoclave 
reactor were TPA and phenol, respectively. The conver-
sion yield of PCT and the yield of phenol both increased 
with the increased mass ratio of water/PCT, reaction tem-
perature and time. However, the yield of TPA decreased 
with increasing mass ratio of water/PCT due to the further 
hydrolysis of TPA to produce phenol in subcritical water. 
The optimal reaction condition for the recovery of phenol 
was found with the mass ratio of water/PCT of 10:1 at 
340 °C within 90 min, the yield of phenol reached 86.9% 
and PCT can be depolymerized completely. In addition, 

phenol as the main degradation product indicated that TPA 
and 1,4-cyclohexanedimethanol undergoes further reaction 
to produce phenol in sub-critical water.
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