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Abstract
Increasing concern about the air pollution caused by sulfur dioxide (SO2) from diesel exhaust has resulted in the improve-
ment of low-temperature desulfurization materials for the combined SO2 trap. In this study, coconut shell activated carbon 
(AC) is pretreated by nitric acid to prepare MnO2-based activated carbon materials for SO2 removal. The prepared materials 
are characterized intensively by SEM, TEM, BET, XRD, FTIR, and XPS. The SO2 capture capacity of these materials are 
measured at low temperature by thermogravimetry, and the SO2 equilibrium adsorption characteristic is also investigated. 
The results show that the concentrations of nitric acid do not significantly change the textural properties of MnO2-based 
AC materials. The content of surface-oxygenated groups (carbonyl carbon and transition) initially increases with the HNO3 
concentration rising and reaches the maximum value when the HNO3 concentration is 10 mol/L, resulting in the enhancement 
of the SO2 capture capacity. SO2 capture capacity of MnO2-based activated carbon decreases after regeneration and keeps 
stable after several cycles of thermal regeneration. The experimental data for SO2 adsorption on MnO2-based AC composite 
can fit the Freundlich model well in comparison with Langmuir model.
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Introduction

Sulfur dioxide (SO2) from diesel engine exhaust is a serious 
threat to the environment and human health, because SO2 
has the major role in generating acid rain and deactivating 
the NOx removal catalysts [1–3]. Many technologies have 

been proposed to remove SO2 from diesel engine exhaust. 
Among these, the compact SO2 trap device upstream of NOx 
conversion device has been used successfully for the removal 
of SO2 to improve the longevity of NOx removal catalysts 
against SO2 poisoning [4–6].

As the temperature of diesel engine exhaust is in a 
wide region from 50 to 650 °C, a combined SO2 trap is 
proposed to completely capture the SO2 in this tempera-
ture region [7]. The combined SO2 trap has three parts: 
high temperature materials, middle temperature materials 
and low-temperature materials. The desulfurization mate-
rial is an important factor for designing the combined SO2 
trap device. The carbonates exhibits good reactivity with 
SO2 at the reaction temperature range from 400 to 650 °C, 
and the desulfurization rate declines below 400 °C for the 
reason that the reaction activity is limited by decarbona-
tion [8]. Metal oxides (such as MgO [9], V2O5 [10] and 
hydrotalcite-like compounds [11]) with sulfate reaction path 
(

MxOy + ySO2 + 0.5yO2 → Mx(SO4)y
)

 have good SO2 cap-
ture performance over the temperature range from 200 to 
450 °C. Based on these fundamental studies, it has been 
found that most desulfurization materials are focused on the 
desulfurization performance from 200 to 650 °C for SO2 
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traps, and limited studies on the desulfurization performance 
from 50 to 200 °C desulfurization materials for the com-
bined SO2 trap have been reported.

For developing the desulfurization performance of the 
combined SO2 trap, the improvement of low-temperature 
desulfurization activity of materials for the combined SO2 
trap is needed. Rubio [12] investigated the SO2 capture per-
formance of coal fly ash based on carbon materials at flue 
gas desulfurization conditions. Tseng [13] studied the desul-
furization activity of copper oxide (CuO) supported on acti-
vated carbon over the low-temperature range. In the previous 
studies [14, 15], MnO2 has been found to exhibit remarkable 
sulfur dioxide capture capacity. MnO2 supported on AC have 
a promising prospect used as low-temperature desulfuriza-
tion materials for the combined SO2 trap [7]. Manganese 
supported on activated carbon treated by HNO3 exhibited 
high SO2 removal capacity [16]. However, the relationship 
between the amount of surface-oxygenated groups and SO2 
removal capacity of MnO2-based AC has not been reported 
yet.

In the present work, the high-specific-surface-area coco-
nut shell AC is pretreated by nitric acid to modify the sur-
face functional groups and used as a support to prepare 
MnO2-based AC composite by situ deposition method. 
Effects of the surface-oxygenated groups of MnO2-based 
AC composite by nitric acid treatment on the SO2 capture 
capacity are studied. The SO2 adsorption characteristics and 
regeneration performance of MnO2-based activated carbon 
composite at low-temperature range are also investigated.

Experimental section

Materials

The activated carbon (BET surface area of 1250 m2/g) made 
from waste coconut shells was supplied by Xinsen Chemical 
Industry Co. Ltd. Potassium permanganate and manganese 
acetate tetrahydrate were purchased from Beijing Chemical 
Co., Ltd., People’s Republic of China and were of analytical 
reagent grade.

The MnO2-based AC composites were prepared by situ 
deposition method, the formation procedures as shown in 
Fig. 1. The activated carbon was pretreated with different 
concentrations of HNO3 (from 0 to 15 mol/L) at 80 °C for 
6 h, then washed with a lot of distilled water, and dried 

in a vacuum at 110 °C overnight. 2 g pretreated AC was 
added to 0.03 mol/L 100 mL KMnO4 solution and stirred 
at room temperature condition for 2 h, then gradually added 
0.045 mol/L 100 ml Mn(CH3COO)2 solution and stirred at 
room temperature condition for 5 h, then washed with a lot 
of distilled water, and eventually dried in air dry oven at 
110 °C overnight. The product is denoted as MnO2–ACx, 
where x represents the concentration of HNO3.

Characterization

In this study, the textural properties of the samples 
were analyzed by N2 adsorption–desorption isotherms 
using Micromeritics ASAP 2020 apparatus. The spe-
cific surface area of these samples was measured by the 
Brunauer–Emmett–Teller (BET) with the nitrogen adsorp-
tion uptake at the boiling point of nitrogen of 77 K using a 
capacitive measurement method. The pore volumes were 
measured by nitrogen physisorption under normal relative 
pressure of 0.1–1.0 using the Barrett–Joyner–Halenda (BJH) 
method. Surface observation of the samples was conducted 
by scanning electron microscopy (SEM, Hitachi S-4800). 
Before SEM experiment, the sample was pretreated by gold-
sputtering. Transmission electron microscopy (TEM) images 
were recorded on a JEOL JEM-2100F electron microscope. 
The powder sample was ultrasonically dispersed in acetone 
for 30 min at room temperature and dipped onto a carbon-
coated copper grid. The crystal structures were further 
determined by X-ray diffraction (XRD, X’Pert Pro MPD, 
Cu Kα radiation). Fourier transform infrared (FTIR) spec-
tra were recorded using a Tensor 27 spectrometer with KBr 
pellet method. X-ray photoelectron spectroscopy (XPS) was 
conducted to determine the chemical composition and func-
tional groups using an XSAM-800 spectrometer (Kratos, 
UK) with Al (1486.6 eV) under ultrahigh vacuum (UHV) 
at 12 kV and 15 mA. Energy calibration was performed by 
recording the core level spectra of Au 4f7/2 (84.0 eV) and 
Ag 3d5/2 (368.30 eV).

SEM and TEM analyses are employed to visualize the 
morphology and structure of AC and MnO2–AC10, as 
shown in Fig. 2. It can be seen that AC is a planar archi-
tecture with a well-defined pores (Fig. 2a). This planar-
architecture structure of AC facilitates the adsorption of 
reagents and exposes more active sites for SO2 removal. 
After deposition, a large number of nano-flake MnO2 par-
ticles are only formed and highly dispersed on the surface 

Fig. 1   Illustration of the forma-
tion procedures of MnO2-based 
AC composite
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of AC and no free nanoparticles are formed outside the 
AC nanosheets (Fig. 2b, d). The MnO2 nanoparticles are 
confirmed by XRD analysis (Fig. 3). The diffraction peaks 
of as-prepared MnO2–AC10 are similar to those of hex-
agonal MnO2 (JCPDS 30-0820) and the reflection peaks 
of layered AC become much lower, which also indicating 
that nano-flake MnO2 particles are homogeneously formed 
on the AC surface.

Desulfurization performance evaluation

Thermogravimetry (TG) was used in this study to meas-
ure the SO2 capture performance of the prepared materi-
als. Figure 4 shows a schematic drawing of the TG analysis 
experiment. The amount 50 mg of a sample on a quartz cru-
cible was slowly (5 K/min) heated to the target temperature 
in the atmosphere of nitrogen, and maintained this condi-
tion for about 2 h. Reactant gas flow (500 ppm SO2 in base 
N2) was controlled by mass flow controller. The total flow 
gas rate was 2 Ls/min. The reaction temperature of the TG 
experiment ranged from 50 to 200 °C for 40 min. The used 
MnO2–AC were regenerated in N2 atmosphere at a flow rate 
of 500 mL/min and at 360 °C for 1 h. Then the regenerated 

Fig. 2   SEM and TEM images of 
AC (a, c) and MnO2–AC (b, d)
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Fig. 3   XRD patterns of AC and MnO2–AC10 (filled circle) reflec-
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Fig. 4   Schematic drawing of TG analysis
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sample was cooled to reaction temperature under pure N2 
steam. After that, a 2 Ls/min gas mixture (500 ppm SO2 in 
base N2) was controlled by mass flow controller and added 
into the reactor for further desulfurization–regeneration 
testing.

The SO2 capture performance of samples was measured. 
The SO2 capture performance per unit mass P is expressed 
by the following equation:

where P is the SO2 capture performance per unit mass 
[gSO2/gMaterial], s0 is the initial weight [mg], and st is the 
weight after t seconds [mg].

Results and discussion

SO2 capture performance of the prepared materials

The SO2 capture performance of the prepared MnO2-based 
activated carbon composites (MnO2–AC0, MnO2–AC5, 
MnO2–AC10 and MnO2–AC15) was measured at the fol-
lowing conditions: 100 °C and 500 ppm SO2 in base N2 
for 40 min. Figure 5 shows the SO2 capture capacity of 
the prepared materials. The SO2 capture performance of 
MnO2–AC0 was 26 mg/g. The SO2 capture performance 
of MnO2-based activated carbon composite increased after 

(1)P =
st − s0

s0

[

gSO2
∕gMaterial

]

nitric acid pretreatment. When the acid concentration is 
below 10 mol/L, the SO2 capture capacity has improved 
with the increase of treatment concentration, and the SO2 
capture capacity has attained the highest as the treatment 
concentration is 10 mol/L. The SO2 capture capacity of 
MnO2–AC10 is 44 mg/g, which is significantly higher than 
the low-temperature desulfurization material, such as coal 
fly ash (13 mg/g) [12] and CuO/AC (below 10 mg/g) [13]. 
However, when the pretreatment concentration is above 
10 mol/L, the SO2 capture capacity has reduced with the 
increase of treatment concentration. The SO2 capture capac-
ity of MnO2–AC15 has decreased to 28 mg/g. It is reported 
that the content of the surface-oxygenated groups of acti-
vated carbon increases with the increase of the acid treat-
ment concentration [17], and the surface functional groups 
are the important factors for the SO2 removal [16].

Textural characteristic analysis of MnO2‑based AC 
materials

The textual properties of the prepared MnO2-based activated 
carbon are characterized by N2 adsorption–desorption instru-
ments apparatus and are shown in Table 1. The BET surface 
area and pore volume of the MnO2–AC0 are 1012 m2/g and 
0.17 cm3/g, respectively. After pretreated by HNO3, the 
pore volume and average pore diameter of MnO2-based 
activated carbon are in the range of 0.17–0.20 cm3/g and 
3.12–3.15 nm, respectively. It has been reported in many 
works that the liquid phase oxidation by HNO3 may not 
significantly change the textural properties of AC [18, 19]. 
The BET surface areas of the MnO2-based activated car-
bon are slightly reduced from 1012 to 918 m2/g after nitric 
acid treatment. The slight decrease in the surface area of 
MnO2-based AC may be due to the abundant presence of 
oxygenated groups introduced on the surface of the AC by 
the pretreatment with HNO3, which possibly block the entry 
of N2 inside the small pores [17, 20].

Surface functional groups on MnO2‑based AC 
samples

The FTIR was carried out to determine the functional groups 
on the prepared MnO2-based activated carbon composites. 
The FTIR spectrum of the prepared materials (MnO2–AC0, 
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Fig. 5   SO2 capture performance of the prepared samples (experimen-
tal conditions: 100 °C, 500 ppm SO2 in base N2)

Table 1   Textural properties of 
MnO2-based AC materials

Samples Treated concentration of 
HNO3 (mol/L)

BET surface area 
(m2/g)

Pore volume 
(cm3/g)

Average pore 
diameter (nm)

MnO2–AC0 0 1012 0.17 3.13
MnO2–AC5 5 992 0.17 3.12
MnO2–AC10 10 971 0.20 3.13
MnO2–AC15 15 918 0.19 3.15
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MnO2–AC5, MnO2–AC10, and MnO2–AC15) is illustrated 
in Fig. 6. From the FTIR spectrum of the prepared materi-
als shown in Fig. 6, the peaks around 3430 cm−1 should 
be attributed to the O–H stretching vibration [21], and the 
bands around 1623 cm−1 are normally attributed to O–H-
bending vibrations combined with Mn atoms [22]. The rela-
tively sharp peaks around 1395 cm−1 should be ascribed to 

C=O stretch from carboxylic groups [23]. The C=O stretch 
peaks of MnO2–AC10 are highest than the other prepared 
samples. The bands around 448 and 650 cm−1 should be 
ascribed to the Mn–O and Mn–O–Mn vibrations in octahe-
dral MnO2 [22, 24–26], which further confirms the success-
ful integration of MnO2 on the surface of activated carbon.

Surface functional groups on the prepared samples were 
further investigated by XPS analyses. Figure 7 shows the 
XPS spectrum of the prepared materials (MnO2–AC0, 
MnO2–AC5, MnO2–AC10, and MnO2–AC15). The C 1 s 
pattern of the prepared samples included four peaks with 
binding energy at around 284.5, 286, 288, and 290 eV. 
These peaks correspond to graphitizing carbon (C–C), phe-
nolic (C–O), carbonyl carbon (C=O) and transition (π–π*), 
respectively [27, 28]. The corresponding binding energy 
and relative content of the samples are listed in Table 2. 
As shown in Table 2, compared with that in MnO2–AC0, 
the content of graphitizing carbon (C–C) in MnO2–AC5, 
MnO2–AC10 decreases, while the content of transition 
(π–π*) slightly increases. After acid pretreatment of AC, the 
content of carbonyl carbon (C=O) initially increases with 
the HNO3 concentration rising and reaches the maximum 
value when the HNO3 concentration is 10 mol/L. The maxi-
mum content of carbonyl carbon (C=O) of the as-prepared 
MnO2–AC10 was 16.55%. However, when the HNO3 con-
centration further increases, the content of carbonyl carbon 
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Fig. 6   FTIR spectrum of MnO2–AC0 (a), MnO2–AC5 (b), MnO2–
AC10 (c), and MnO2–AC15 (d)

Fig. 7   C 1 s patterns of XPS 
spectra: MnO2–AC0 (a), 
MnO2–AC5 (b), MnO2–AC10 
(c), and MnO2–AC15 (d)
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(C=O) is decreased instead. This result showed a similar 
change trend with that of FTIR spectra for the prepared sam-
ples (shown in Fig. 5).

It is reported that the oxygenated groups of carbonyl 
carbon (C=O) and transition (π–π*) with the basic nature 
are more favorable for SO2 capture [28–31]. Therefore, 
the change of surface-oxygenated groups, carbonyl carbon 
(C=O), and transition (π–π*), was responsible for the better 
SO2 capture capacity of acid-pretreatment MnO2/AC com-
posite. Thus, MnO2–AC10 with the maximum contents of 
carbonyl carbon (C=O) and transition (π–π*) exhibits the 
best SO2 capture capacity among all the prepared materials.

SO2 capture performance of fresh and regenerated 
MnO2‑based AC composite

MnO2–AC10 was chosen to investigate the SO2 capture 
performance in low-temperature region due to its superior 
SO2 capture performance. The SO2 capture performance 
of MnO2–AC10 is measured by a thermogravimetry (TG) 
device at various temperatures (50, 100, 150, and 200 °C) 
for 40 min with a 2 L/min flow gas containing 500 ppm 
SO2 in nitrogen, and the results are shown in Fig. 8. From 
the results shown in Fig. 8, the SO2 capture performance of 
MnO2–AC10 increases with the experimental temperature 
rising. The prepared MnO2–AC10 has good SO2 capture 
performance with absorbance about 78.3, 59.2, 44.0, and 
30.8 mg/g at 200, 150, 100, and 50 °C, respectively.

To investigate the thermal regeneration of MnO2-based 
activated carbon composites, the SO2 capture performance 
of MnO2–AC10 sample is studied at 200 and 50 °C with 
consecutive desulfurization regeneration cycles, and the 
results are shown in Fig. 9. The SO2 capture performance 
of MnO2–AC10 decreases after thermal regeneration and 
the decrease trend is more evident at 200 °C. At 50 °C, 
MnO2–AC10 has relatively stable regeneration performance 
with the increase of regeneration cycles, and the SO2 cap-
ture performance of MnO2–AC10 is about 18 mg/g after 
two cycles of thermal regeneration. It is reported that SO2 
capture performance of the Mn-modified activated coke 
decreases after regeneration in N2 steam, and the desulfuri-
zation capacity keeps stable after several cycles of thermal 
regeneration [28].

Adsorption mechanism

Langmuir and Freundlich models are the most conventional 
equilibrium adsorption isotherm models to represent the 
obtained equilibrium data for heterogeneous adsorption 
on the surface of materials with a chemisorption process. 

Table 2   Binding energy (BE) 
and relative content (RC) of C 
1 s for MnO2/AC samples

Sample MnO2–AC0 MnO2–AC5 MnO2–AC10 MnO2–AC15

BE(eV) RC(%) BE(eV) RC(%) BE(eV) RC(%) BE(eV) RC(%)

Graphitic carbon 284.3 65.27 284.53 63.10 284.38 60.33 284.35 64.44
Phenolic 285.72 16.93 285.92 17.77 285.52 15.46 285.68 18.08
Carbonyl carbon 288.01 11.28 288.34 11.61 287.52 16.55 288.03 9.15
Transition (π–π*) 290.51 6.52 290.74 7.52 290.51 7.66 290.66 8.33
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In this study, the values of the constants for Langmuir and 
Freundlich models obtained from the experimental equi-
librium data of MnO2-based activated carbon composite 
(MnO2–AC10) at a reaction temperature of 100 °C are dis-
played in Table 3. It is seen that Freundlich model fit the 
data reasonably well and the value of R-square is as high 
as 0.998. Freundlich constant (Kf) related to the adsorption 
capacity of 1.43 was calculated from the intercept of the 
linear form of the Freundlich model. Freundlich constant 
(n) related to the adsorption intensity of 2.03 was calculated 
from the slope of the linear form of Freundlich model. In 
comparison with the value of Freundlich constant n (1.059) 
of zeolitic tuff calculated by Al-Harahsheh [32], it is evi-
denced that the MnO2-based activated carbon composite 
exhibits high activity for SO2 adsorption.

Furthermore, the thermodynamic parameters, such as 
heat of adsorption (ΔH0), entropy (ΔS0) changes, and free 
energy of the process (ΔG0) are determined by the following 
equations (2) and (3):

 where R is the gas constant [8.314 J/(mol K)] and T is the 
temperature (K), and Kf is the Freundlich constant (L/mg). 
ΔH0 and ΔS0 can be obtained from the slope and intercept 
of the linear plot of lnKf versus 1/T, respectively.

The decrease in negative values of the free energy (ΔG0) 
from − 1.11 kJ/mol at 100 °C to − 3.67 kJ/mol at 200 °C 
suggests that the SO2 adsorption on MnO2-based activated 
carbon composite is a more favorable adsorption process 
at elevated temperature [32]. The calculated values of ΔH0 
and ΔS0 are 13.36 kJ/mol and 48.45 J/(mol K), respectively. 
The positive ΔS0 and ΔH0 values indicate that the degrees 
of freedom increased at the solid–gas interface during the 
sulfur dioxide capture process [33].

Conclusions

In this study, a series of MnO2-based AC materials are 
successfully prepared by deposition method with various 
concentration of nitric acid treatment to study the influence 

(2)ΔG0 = −RT lnKf

(3)lnKf =
ΔS0

R
−

ΔH0

RT

of surface-oxygenated groups on the SO2 capture capacity. 
After preparation, nanoneedle MnO2 particles are formed 
and homogeneously dispersed on the AC surface. The SO2 
capture performance of MnO2-based activated carbon com-
posite initially increases with the HNO3 concentration rising 
and reaches the maximum value when the HNO3 concentra-
tion is 10 mol/L because the as-prepared MnO2–AC10 has 
the maximum content of surface-oxygenated groups (car-
bonyl carbon and transition) for capturing SO2 more favora-
bly. The maximum SO2-capture capacity of MnO2–AC10 
is 44 mg/g. The SO2-capture performance of MnO2–AC10 
decreases after regeneration, and the decrease trend is more 
evident at higher temperature. Furthermore, compared with 
Langmuir model the experimental data for SO2 adsorption 
on MnO2–AC10 fits the Freundlich model better. The calcu-
lated values of ΔH0 and ΔS0 were 13.36 kJ/mol and 48.45 J/
(mol K), respectively, indicating that the SO2 adsorption on 
MnO2-based activated carbon is a spontaneous process.
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