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53.40 million tons out of which only 23.32 million tons were 
used. Hence, the total consumption accounts only to 43.67% 
and the rest is being dumped in landfills or open lands, caus-
ing severe financial and environmental problems [2, 3].

Fly ash is composed of fine-grained particles having vari-
able morphology [4, 5]. The major part of fly ash consisted 
of (1) inorganic portion which includes amorphous (glassy) 
and crystalline matter. Other minor constituents include 
(2) organic matter which is composed of char material and 
organic minerals and (3) fluid portion comprising moisture, 
gas and gas–liquid phases that might also have inorganic 
and inorganic constituents in them [1]. Fly ash is generally 
classified according to ASTM C-618, as C-type and F-type 
based on the amount of the primary components present, 
which are silica, alumina and iron oxides with ashes 50–70% 
and >70%, respectively [6, 7]. Several other approaches 
were also researched to characterize fly ash based on differ-
ent parameters like availability of glassy phases [6], origin, 
phase, behaviour, composition, properties [1], particle size 
[8], etc. Some famous classification systems in use are based 
on (1) SiO2/Al2O3 ratio, CaO and SO3 percentage catego-
rizing fly ash into Group I, II, III and IV. (2) Granulometry 
and Baline-specific surface area that group fly ash into fine, 
medium and coarse grained. (3) Free CaO contents with 
classification as inactive, active and very active. (4) Con-
tents of SiO2, Al2O3, TiO2; Fe2O3, SO3 or Fe2O3, MnO, SO3, 
P2O5; CaO, MgO, Na2O, K2O; pH of leachate and particle 
size distribution when taken as classification parameters 
resulted in 7 classes (Sialic, Modic, Fersic, Calsialic, Fer-
ric, Fercalsic and Calcic) [1].

Thus, in addition to the primary inorganic components 
(Al2O3, SiO2, Fe2O3) and other minor constituents like car-
bon, calcium, magnesium, sulphur, sodium, and potassium 
[7] that form the basis of fly ash classification, a consider-
able amount of heavy metals like arsenic, chromium, lead, 
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Introduction

Fly ash is the major combustion residue of different pro-
cesses like municipal solid waste incarnation, coal burning, 
etc. [1] which is produced in massive amounts as a waste 
material. According to American Coal Ash Association 
(ACAA), the total amount of fly ash produced in 2013 is 
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mercury, etc. is also present in it [9–11] that can account for 
2000–20,000 mg kg−1 [12]. Another major type of fly ash 
is produced in addition to coal one in municipal solid waste 
incinerator (MSWI) fly ash, though the process of its forma-
tion is different resulting in small variations in the composi-
tion but with similar properties [13, 14]. Thus, the mineral 
composition of fly ash depends on the relevant composi-
tion in feed materials and may consist of alumino-silicates, 
oxides, sulphides, etc. [15–18]. These elements being the 
leachable component often leach out of the disposed fly 
ash waste and accumulate into sediments and soils, thereby 
degrading the soil quality and aggravating the air and water 
pollution [4, 19] which led to serious health hazards. Dust 
containing fly ashes result in allergic reactions and harm 
the natural ecology, particularly flora by blocking their sto-
matal openings and consequently hindering photosynthesis. 
Hence, there is a need to treat fly ash before its disposal, 
but in the majority of cases this results in the production of 
additional waste streams [20, 21].

So, enhancement in utilization rate of fly ash becomes 
the matter of primary concern, but this requires removal of 
heavy metals prior to utilization [7, 22–27] through endors-
ing suitable technologies for their ultimate safe disposal/
utilization [28–32]. Also with the exhaustion of natural min-
eral resources, there is a need to extract, recover and reclaim 
these metals from the waste produced [33]. Hence, this 
review article focuses on the different approaches accord-
ing to the nature of the processes used for the removal and 
recovery of heavy metals from different types of fly ash. 
Generally, all these processes are based on two-step meth-
odology, i.e. removal of heavy metals followed by their col-
lection or recovery [34].

Heavy metal removal techniques

There are many techniques researched and practiced for the 
removal of heavy metals, but the ones that are most promis-
ingly used include biological processes which make use of 
bacteria or fungi; chemical leaching using organic acids, 
inorganic acids, alkaline lixiviants and chelating agents; 
electroplating processes making use of ac/dc current setups 
and thermal processes consisting of combustion, smelting 
and amalgamation techniques. A comprehensive comparison 
of these techniques is discussed below and a detailed over-
view is given in Tables 1, 2, 3 and 4.

Biological processes

Biological processes involve several techniques amongst 
which bioleaching (BL) has been successful so far to 
remove heavy metals from fly ash owing to its less resource 
demanding and green nature [12, 35]. The process involves 
microbial conversion of solid compounds into soluble form, 

making their extraction and recovery easy [35]. Many micro-
organisms (MO) are known to facilitate the BL of metals 
from solid materials [35–38] by the formation of organic and 
inorganic acids as by-products, such as acid, citric acid (CA), 
gluconic acid (GA), H2SO4 [35] but in case of fly ash the 
MO that is mostly used by researchers is fungus Aspergillus 
niger [12, 39–41]. Few other microbes that were explored 
include Acidithiobacillus [41–43], Pseudomonas spp. [36, 
43], Thiobacillus ferrooxidans [36, 38] and Thiobacillus 
thiooxidans [36, 38, 44]. All these microbes belong to three 
main groups, i.e. (1) autotrophic bacteria (e.g. Thiobacilli 
spp.), (2) heterotrophic bacteria (e.g. Pseudomonas spp., 
Bacillus spp.) and (3) heterotrophic fungi (e.g. Aspergillus 
spp., Penicillium spp.) [12]. Irrespective of which microbe is 
used, several mechanisms like redoxolysis (redox reactions), 
acidolysis (formation of organic/inorganic acids), complex-
olysis (generation of complexing agents), and bioaccumula-
tion [12, 35, 45] are involved in BL and the overall process’ 
efficacy was determined by various factors like nutrient, oxy-
gen availability, composition of leaching substrate, sensitiv-
ity of microbes to metals, pH, temperature, inoculum used, 
pre-culture period, BL period and state of solid residue [38, 
46]. Only few BL systems were discussed in detail.

Aspergillus niger

Two methodologies were reported in the said process of 
BL using A. niger, i.e. one-step and two-step. In one-step 
process, the fungus was incubated with ash with no pre-
culturing time while in two-step procedure pre-culturing of 
fungus was performed for different periods of time prior to 
incubation with fly ash [12, 40]. In general, two-step pro-
cess resulted in better bioleaching as compared to one-step 
owing to higher spore germination and higher optimized 
pulp densities [12]. Further, easy handling and better control 
of optimization parameters in both the steps also make two-
step approach a preferred choice [40]. But a comparison of 
parameters, i.e. pH variation, organic acids, and metals con-
centrations, metals extraction yield of these two processes 
showed the suitability of one-step bioleaching for treatment 
of low concentrations of fly ash (10–20 g L−1) while for 
higher concentrations (40–50 g L−1) two-step bioleaching 
was appropriate [47]. Pre-treatment like water washing 
(WW) can enhance the effectiveness of the BL process by 
removing all the water-soluble salts, i.e. alkali chlorides that 
are known to bond the heavy metals together, hence reducing 
the lag phase and BL period to a considerable extent [39, 40, 
48]. In addition to that, optimization of various parameters 
like pH, fly ash pulp density (FAD), solid to liquid ratio 
(S/L), sucrose concentration, inoculum spore concentration, 
shaking speed and the time of addition of fly ash to the fun-
gus when carried out at appropriate temperature (30 °C) and 
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Table 1   Comparison of different bioleaching systems used for removal of heavy metals from fly ash

Method Approach MO FA type Reaction conditions Metals recovered Metal removal (%) References

BL 1-step & 2-step A. niger MSWI FAD (1% w/v); 
100 mL sucrose; 
14 days, 30 °C, 
120 rpm

Al, Mn, Zn; Cu, 
Pb; Fe

80–100; 60–70; 30 [12]

WW + BL 1-step A. niger MSWI FAD (1% w/v); 
100 mL sucrose; 
30 °C, 140 rpm

Cd; Mn; Pb; Zn; 
Cr; Fe

99; 50; 28; 61; 18; 
10

[39]

2-step Cd; Mn; Pb; Zn; 
Cr; Fe

96; 91; 73; 68; 35; 
30

WW + BL 1-step A. niger MSWI FAD (5% w/v); 
100 mL sucrose 
medium; 22 days, 
30 °C, 110 rpm

Cd; Pb, Zn; Mn; Cu; 
Al; Fe; Cr, Ni

57; 52; 41; 33; 30; 
12; <10

[40]

2-step FAD (5% w/v); 
100 mL sucrose 
medium; 1 day, 
30 °C, 110 rpm

Cd; Zn; Cu; Pb; Mn; 
Al; Cr, Fe, Ni

81; 66; 57; 52; 32; 
27; <10

BL 2-step A. niger MSWI FAD (2.7% w/v); 
150 g L−1 sucrose; 
1.6 × 107 mL−1 
spore conc.; 
8.5 days pre-
culturing

Al – [46]

FAD (2.7% w/v); 
146 g L−1 sucrose; 
0.3–2.3 × 107 
mL−1 spore conc.; 
6.6 days pre-
culturing

Fe –

FAD (2.7% w/v); 
153 g L−1 sucrose; 
1.8 × 107 mL−1 
spore conc.; 
9.3 days pre-
culturing

Zn –

BL 1-step A. niger metal resist-
ant strain

MSWI FAD (20 g L−1); 
100 mL sucrose 
medium; 216 h, 
30 °C, 140 rpm

Cd; Cr; Cu; Fe; Mn; 
Pb; Zn

87.6; 42.1; 69.7; 
36.7; 98.7; 36.5; 
68.5

[47]

2-step FAD (20 g L−1); 
100 mL sucrose 
medium; 2 days 
pre-culturing; 
216 h, 30 °C, 
140 rpm

Cd; Cr; Cu; Fe; Mn; 
Pb; Zn

32; 25; 61; 25; 75; 
2; 45

WW + BL 2-step A. niger TPP S/L (1 g 100 mL−1); 
10 days pre-cul-
turing; 6 h, 30 °C, 
50 rpm

Cd, Co, Se, Ca, Cu, 
Mn, Fe, Al, Zn, Ti, 
V, B, K, Mg; Cr; 
Ni; As; Pb

100; 93; 83; 78; 70 [48]

BL 1-step A. niger MSWI FAD (40 g 
L−1);100 mL 
sucrose medium; 
3 days, 30 °C, 
140 rpm; pH 6.5

Al; Fe; Pb; Zn 78.7; 81.7; 76; 73.8 [49]
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rmp (100–140) can help in increasing the efficacy of the BL 
process [12, 39, 40, 44, 46, 48–52].

pH, an important growth parameter, was observed to 
decline slowly with the increase in FAD [12, 39, 40, 44, 
49–52] owing to the formation of different acids (leaching 
agents) with varying concentrations. The concentration 
of these acids increases with increase in FAD in both 
approaches [12]. Wu et al. detected the formation of GA 
in addition to oxalic acid (OA) and CA in the presence 
of fly ash [12]. On the contrary, the studies conducted 
by Bosshard et al. showed GA to be the sole leaching 
agent generated in the presence of fly ash and CA in its 
absence [40]. The reason of contradiction in studies can 

be attributed to the dependence of CA production solely 
on FAD while that of GA on other factors as well like 
sucrose concentration, spores concentration, time of addi-
tion [46] and the presence of Mn in fly ash [40]. Few 
studies claimed GA to be the main leaching agent in both 
the approaches [46, 47], while others designated it as a 
key factor only in one-step approach and CA in two-step 
approach [40, 48, 51].

Bioleaching of Al, Fe and Zn from MSWI fly ash fol-
lowed pseudo-first-order kinetic model while that of Pb 
obeys second-order kinetic model [49]. A broad range of 
metals, i.e. Al, As, B, Cd, Co, Ca, Cu, Cr, Fe, K, Mn, Mg, 
V, Ti, Zn, Se, Ni, Pb, etc. (Table 1) were extracted using 

Table 1   (continued)

Method Approach MO FA type Reaction conditions Metals recovered Metal removal (%) References

BL 2-step A. niger metal resist-
ant strain

MSWI FAD (70 g L−1); 
100 mL sucrose 
medium; 2 days 
pre-culturing; 
288 h, 30 °C, 
140 rpm; pH 
6.6–7.8

Cd; Mn; Zn; Pb; 
Cr; Fe

87.3; 45.9; 49.4; 
45.9; 21.5; 17.7

[50]

BL 2-step A. niger MSWI FAD (1% w/v); 
100 mL sucrose 
medium; 2 days 
pre-culturing; 
30 °C, 120 rpm; 
pH 2.5–5.8

Fe; Al; Zn 56; 97; 98 [51]

BL 1-step A. niger CFA 
(lime 
calci-
fied)

FAD (5% w/v); 
35 °C, 250 rpm

Al ~60 [93]

BL SOB MSWI FAD (1% w/v); 
100 mL medium; 
30 °C, 110 rpm

Cd, Cu, Zn; Al; 
Fe, Ni

>80; 60; 30 [44]

WW + BL SOB + IOB MSWI S/L (50 g L−1); 
6 days; 140 rpm

Zn; Al; Cd; Cu; Ni; 
Cr; Pb

81; 52; 100; 89; 64; 
12; <1

[45]

BL SOB MSWI FAD (1% w/v); 
100 mL medium; 
5 day pre-
culturing; 28 °C, 
120 rpm; pH 1.7

Cr; Cu; Zn; Cd; As 96; 73; 59; 100; 42 [53]

BL IOB MSWI FAD (1% w/v); 
100 mL medium; 
5 day pre-
culturing; 28 °C, 
120 rpm; pH 1.7

Cr; Cu; Zn; Cd; As 100; 77; 100; 100; 
49

[53]

BL SOB + IOB MSWI FAD (1% w/v); 
100 mL medium; 
5 day pre-
culturing; 28 °C, 
120 rpm; pH 1.7

Cr; Cu; Zn; Cd; As 100; 67; 78; 100; 36 [53]

BL SOB CFA FAD (10% w/v); 
1 week pre-
culturing; 28 °C, 
200 rpm

Al; Fe 25; 15–22 [54]

BL bioleaching; WW water washing as pre-treatment, MO micro-organism, FA fly ash
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Table 2   Comparison of metal leaching from fly ash using inorganic acids: chemical processes

FA type Particle size (µm) Leachate (conc.) Reaction conditions Metals recovered Metal removal (%) References

H2SO4

MSWI 0.04–100 H2SO4 (0.5 M) S/L (1% w/v) Al; Cu; Fe; Mn; 
Pb; Zn

80; 82; 30; 58; 10; 
50

[12]

CFA 38–75 H2SO4 (6.12 M) S/L (100 g 400 mL−1); 
6 h; reflux

Al2O3 20 [61]

OFF <500 H2SO4 (0.5 M) L/S (4 mL g−1); 25 °C; 
24 h;

V; Al; Fe; Ni; Si 98; 68; 42; 12; 4 [62]

MSWI-SFA 0.25–4.97 H2SO4 (5 wt%) L/S (7 mL g−1); 5 min, 
30 °C

Zn; Fe; Mg; Ca; Na; 
K; Al

90; 85; 75; 3; 40; 
30; 3

[63]

OFF – H2SO4 (0.5 M) L/S (500 mL 100 g−1); 
30 °C; 2 h; 400 rpm

V; Ni; Fe 65; 60; 42 [67]

MSWI 20–40 H2SO4 (1.5 M) L/S (10); 24 h Al; Ca; Fe; K; Mg; 
Na; Si; Cu; Mn; 
Pb; Zn

60; 2; 81; 100; 82; 
67; 58; 100; 98; 
5; 100

[70]

MSWI – H2SO4 (0.1 M) L/S (40 mL g−1); 
60 min; 25 °C; pH 3

Al; Ca; Fe; Cu; 
Zn; Pb

44.2; 100; 5.8; 52.4; 
57.9; 28.3

[74]

MSWI-ESP 30 H2SO4 (48%) L/S (500 mL 20 g−1); 
10 h; 25 °C

K; Na; Ca; Mg; Zn; 
Pb; Al; Fe; Cu; 
Sn; Cd; Mn; As; 
Cr; Ni; Hg

Total leaching 
71.5%

[80]

CFA 0.5–10 H2SO4 S/L (0.1% w/v); 48 h; 
25–28 °C

Al, Fe 30 [81]

CFA – H2SO4 (0.1 N) 10 g; lixiviant flow 
rate 230 mL/day/col-
umn; pH 1.2; 81 d

Hg 0.0013 [82]

TPF 10–90 H2SO4 (0.5 M) L/S (200 mL 100 g−1); 
150–200 °C; 4 h

Al 84 [83]

CFA 74 H2SO4 (50%) 180 °C; 4 h; high 
pressure

Al 82.4 [84]

CFA – H2SO4 L/S (5:1); 200–210 °C; 
80 min; 300 rpm

Al 87 [85]

PPF 75 H2SO4 (19.47% v/v) S/L (1.5 wt%); 80 °C; 
2 h

V; Ni 94; 81 [87]

CFA (2 types) – H2SO4 (0.1 M) L/S (80–100 mL g−1); 
24 °C; 20 h;

As 88–94 [86]

HNO3

MSWI 0.04–100 HNO3 (0.5 M) S/L (1% w/v) Al; Cu; Fe; Mn; 
Pb; Zn

90; 100; 30; 60; 
60; 58

[12]

MFA (4-types) 0.3–1300 HNO3 (4 mol/L) L/S (3–10 L kg−1); 
5 min, 25 °C

Pb; Zn 7.8–10.6; 23.9–42.4 [68]

MSWI 20–40 HNO3 (3 M) L/S (5); 24 h Al; Ca; Fe; K; Mg; 
Na; Si; Cu; Mn; 
Pb; Zn

67; 61; 48; 82; 58; 
55; 36; 100; 66; 
96; 72

[70]

MSWI – HNO3 (0.1 M) L/S (40 mL g−1); 
60 min; 25 °C; pH 3

Al; Ca; Fe; Cu; 
Zn; Pb

41.6; 100; 2.2; 52.8; 
56.9; 25.3

[74]

MSWI-ESP 30 HNO3 (63%) L/S (500 mL 20 g−1); 
10 h; 25 °C

K; Na; Ca; Mg; Zn; 
Pb; Al; Fe; Cu; 
Sn; Cd; Mn; As; 
Cr; Ni; Hg

Total leaching 
84.3%

[80]

CFA (2-types) – HNO3 (0.1 M) L/S (80–100 mL g−1); 
24 °C; 20 h

As 83–90 [86]

HCl
MSWI – HCl (50 mmol/L) S/L (10 g L−1); 30 °C Cd; Cr; Cu; Fe; Mn; 

Pb; Zn
98; 3; 85; 1; 35; 

20; 55
[47]
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both one-step and two-step techniques, but one-step leach-
ing resulted in higher removal of metals [47].

Sulphur and iron oxidizing bacteria

Chemolithotropic bacteria, i.e. T. thiooxidans (sulphur oxi-
dizing bacteria, SOB) and T. ferrooxidans (iron oxidizing 
bacteria, IOB) [38] have also been used for fly ash BL either 
as pure or mixed cultures [45]. These bacteria convert insol-
uble metal sulphides to soluble metal sulphates [38]. H2SO4 
is the main leaching agent in case of SOB [53, 54] and its 
attachment to sulphide or solid particles was mediated by 

excretion of extracellular polymeric substances (EPS) [54]. 
In case of IOB, redox reactions are responsible for the mobi-
lization of metals from solids. The electron transfer from 
metal to MO can occur by two processes, i.e. direct transfer 
involving physical contact between bacteria and fly ash or 
by biotic oxidation of Fe to III from II state resulting in 
solubilization of metals in solid [38, 45].

SOB is famous for its high tolerance to ash content, i.e. the 
media are able to resume pH and growth along with enhanced 
excretion of EPS with ash content as high as 10% [53, 54]. But 
studies had revealed that when high fly ash content (8%) was 
used only Zn (65%) and Cd (40%) were extracted significantly 

Table 2   (continued)

FA type Particle size (µm) Leachate (conc.) Reaction conditions Metals recovered Metal removal (%) References

MSWI-PFA 0.3–2.6 HCl (10 wt%) L/S (7 mL g−1); 5 min, 
30 °C

Zn; Pb; Fe; Mg; Ca, 
Na; K

63; 40; 20; 58; 45; 
10; 10

[63]

MSWI-SFA 0.25–4.97 HCl (10 wt%) L/S (7 mL g−1); 5 min, 
30 °C

Zn; Pb; Fe; Mg; Ca, 
Na; K

94; 77; 100; 40; 15; 
20; 5

[63]

MSWI <125 HCl (1.0 M) S/L (5 g L−1); 3 h, 
30 °C

Cd; Pb; Zn – [64]

MSWI 20–40 HCl (3 M) L/S (5); 24 h Al; Ca; Fe; K; Mg; 
Na; Si; Cu; Mn; 
Pb; Zn

76; 63; 63; 86; 64; 
58; 44; 100; 71; 
100; 77

[70]

MSWI – HCl L/S 
(30 mL g−1);15 min; 
30 °C; pH 1

Pb; Zn; Fe; Cd; 
Cu; Al

86; 98; 82; 96; 62; 
80

[73]

MSWI – HCl (0.1 M) L/S (40 mL g−1); 
60 min; 25 °C; pH 3

Al; Ca; Fe; Cu; 
Zn; Pb

42.5; 100; 2.9; 50.2; 
54.3; 14.8

[74]

MSWI-ESP 30 HCl (35%) L/S (500 mL 20 g−1); 
10 h; 25 °C

K; Na; Ca; Mg; Zn; 
Pb; Al; Fe; Cu; 
Sn; Cd; Mn; As; 
Cr; Ni; Hg

Total leaching 85% [80]

CFA (2-types) – HCl (0.1 M) L/S (80–100 mL g−1); 
24 °C; 20 h

As 81–91 [86]

CFA 2.3 HCl (0.5 M) S/L (1 g 100 mL−1); 
7 days; pH 7.4

Fe; Al; Mn; V; Cu; 
Ni; Zn; Cr; Ca; K

16010; 46700; 108; 
174; 52; 34; 154; 
40; 11400; 2290

[101]

Fly ashes from fos-
sil fuel combus-
tion (7 types)

1.5–22 HCl (0.5 M) S/L (300 mg 
30 mL−1); 24 h

Al; Ca; Co; Cr; Cu; 
Fe; Mn; Ni; Pb; 
Si; V; Zn

11–95; 75–104; 
26–69; 21–67; 
37–104; 8–80; 
46–110; 44–64; 
34–89; 1–66; 
51–165; 43–95

[88]

HF
CFA (2-types) – HF (0.1 M) L/S (80–100 mL/g); 

24 °C; 20 h;
As 100 [86]

Others
MSWI 20–40 Acidic Soln. from 

flue gas (0.2 M)
L/S (5); 24 h Al; Ca; Fe; K; Mg; 

Na; Si; Cu; Mn; 
Pb; Zn

<1; 19; <1; 92; <1; 
53; <1; <1; <1; 1; 
<1; <1; 1; <1

[70]

CFA – H2SO4: HNO3 (3:2) L/S (1:20); 60 °C; 48 h Al; As; Ba; Ca; Cr; 
Co; Cu; Fe; Pb; 
Mg; Mn; Ni; Se; 
Sr; V; Zn

165; 0.6; 46.5; 0.1; 
1.35; 0.3; 0.7; 6.3; 
0.5; 57.9; 11.4; 
0.9; 1.5; 5.8; 0.3; 
2.3

[88]
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Table 3   Comparison of metal leaching from fly ash using organic acids: chemical processes

FA type Particle 
size (µm)

Leachate (conc.) Reaction conditions Metals recovered Metal removal (%) References

CA
MSWI 0.04–100 CA (0.5 M) S/L (1% w/v); 30 °C Al; Cu; Fe; Mn; Pb; Zn 80; 100; 50; 30; 70 [12]
MSWI – CA (50 mmol/L) S/L (10 g L−1); 30 °C Cd; Cr; Cu; Fe; Mn; 

Pb; Zn
85; 30; 82; 25; 60; 

60; 60
[47]

CFA (calcined) <45 CA PD (5%); 3 h; Al 45 [93]
MSWI – CA (0.1 M) L/S (40 mL g−1); 

20 min; 25 °C; pH 3
Al; Ca; Fe; Cu; Zn; Pb 100; 93.1; 67; 100; 

100; 96.6
[74]

CFA <74 CA (0.3 M) L/S (5 mL g−1); 
30 °C; 24 h; 
220 rpm

Cr 27.6 [92]

CFA – CA (1 mol/L) L/S (1/50 mL g−1); 
25 °C; 16 min; 
30 rpm; pH 5

Sb 22–36 [94]

Smelter FA – CA (500 µM) L/S (10 L kg−1); 
25 °C; 14 h

Cd; Pb; Zn – [95]

OA
MSWI 0.04–100 OA (0.5 M) S/L (1% w/v); 30 °C Al; Cu; Fe; Mn; Pb; Zn 85; 100; 60; 10; 68 [12]
MSWI – OA (50 mmol/L) S/L (10 g L−1); 30 °C Cd; Cr; Cu; Fe; Mn; 

Pb; Zn
10; 35; 79; 38; 72; 

2; 57
[47]

CFA (calcined) <45 OA PD (5%); 3 h Al 18 [93]
MSWI 20–40 OA (0.1 M) L/S (5); 24 h Al; Ca; Fe; K; Mg; Na; 

Si; Cu; Mn; Pb; Zn
<4; 31; <1; 100; 

<1; 53; <1; 1; 
<1; 1; <1

[70]

MSWI – OA (0.1 M) L/S (40 mL g−1); 
20 min; 25 °C; pH 3

Al; Ca; Fe; Cu; Zn; Pb 43.3; 0.4; 46.5; 
45.8; 44.9; 2.7

[74]

CFA <74 OA (0.3 M) L/S (5 mL g−1); 
30 °C; 24 h; 
220 rpm

8.6 [92]

Smelter FA – OA (500 µM) L/S (10 L kg−1); 
25 °C; 14 h

Cd; Pb; Zn – [95]

AA
MSWI-PFA 0.25–

4.97 µm
AA (20 wt%) L/S (7 mL g−1); 

60 min, 30 °C
Zn; Pb; Fe; Mg; Ca; Na; 

K; Al
62; 94; 8; 45; 47; 5; 

5; 18
[63]

MSWI-SFA 0.3–
2.6 µm

AA (20 wt%) L/S (7 mL g−1); 
60 min, 30 °C

Zn; Pb; Fe; Mg; Ca, Na; 
K; Al

97; 98; 45; 25; 20; 
20; 3; 8

[63]

MSWI 20–40 AA (0.1 M) L/S (5); 24 h Al; Ca; Fe; K; Mg; Na; 
Si; Cu; Mn; Pb; Zn

<4; 17; < 1; 
70; < 1; 52; 
2; < 1; < 1; < 1

[70]

MSWI – AA (0.1 M) L/S (40 mL g−1); 
20 min; 25 °C; pH 3

Al; Ca; Fe; Cu; Zn; Pb 88.4; 100; 23.2; 
100; 100; 70.1

[74]

Smelter FA – AA (500 µM) L/S (10 L kg−1); 
25 °C; 14 h

Cd; Pb; Zn – [95]

GA
MSWI 0.04–100 GA (0.5 M) S/L (1% w/v); 30 °C Al; Cu; Fe; Mn; Pb; Zn 95; 100; 80; 50; 72 [12]
MSWI – GA (50 mmol/L) S/L (10 g L−1); 30 °C Cd; Cr; Cu; Fe; Mn; 

Pb; Zn
80; 23; 78; 15; 30; 

57; 50
[47]

MSWI – GA (100 mmol/L) S/L (40 g L−1); 30 °C; 
24 h; 140 rpm

Al; Fe; Zn; Pb 211.3; 81.4; 64.8; 
40.91a

[49]

CFA <74 GA (0.3 M) L/S (5 mL g−1); 
30 °C; 24 h; 
220 rpm

10.3 [92]

MSWI GA (5%) S/L (10 g 100 mL−1); 
24 h

Cd; Cr; Cu; Ni; Pb; Zn 2.6; 1.6; 10.7; 0; 
39.3; 54.7

[105]



710	 J Mater Cycles Waste Manag (2018) 20:703–722

1 3

while at low fly ash concentration (0.5–4%) most of the met-
als like Cd, Cu, Zn, Al and Ni are mobilized in appreciable 
amounts and only few (i.e. Cr and Pb) are solubilized in neg-
ligible amounts, i.e. 10 and 5%, respectively [44]. The initial 
addition of fly ash is known to halt the pH decrease and bac-
terial growth owing to its alkaline nature, presence of toxic 
metals and dilution effect [44, 54]. Therefore, pre-treatment 
of ash with HCl solution had shown enhanced growth rates 
[54]. Growth is further assisted by the use of co-cultures, sew-
age sludge as nutrient [44] and excretion of EPS that in turn 
is facilitated by the presence of Ba and Ca salts that provide 
solid surfaces to bacteria for attachment and growth [54]. 
Sulphur, being the main metabolic media, appreciably affects 
leachability of the system [44, 53]. BL of Pb by SOB is not 
a favourable process because of its conversion to PbSO4 and 
hence immobilization [45].

In comparison to pure cultures, mixed cultures of SOB and 
IOB resulted in better extraction yield of the metals owing to 
the formation of both sulphate and ferric ions [45, 53]. Fur-
ther in mixed cultures, consolidated effects of both the bac-
teria are able to overcome the disadvantages that independ-
ent strains have like poor tolerability of IOB to the high ash 
content and low metal leachability of SOB, hence imparting 
enhanced leachability and high tolerance to the system. Addi-
tionally, the buffering ability of mixed cultures impedes the 
drastic changes in pH as was the case in pure cultures. Also 
the decrease in concentrations of Fe3+ and SO4

2− was observed 
with increasing ash concentration in pure cultures along with 
co-precipitation which was not observed in the case of mixed 

cultures, thereby enhancing fly ash detoxification [53]. The 
release of Cu, in mixed cultures, was found to be dependent 
on IOB’s metabolic activity and metals like Al, Cd, Cr, Ni, and 
Zn were extracted by the H2SO4 formed by SOB [45] while Cr 
was leached as a result of the combined effects of sulphate and 
iron [53]. The addition of FeSO4, a substrate only for IOB, in 
mixed cultures impacts positively on the leaching of Cr, As and 
Cu but has no effect on Cd and Zn leaching. Moreover, addi-
tion of sulphur, a substrate for both SOB and IOB, increased 
Zn, Cd, As and Cr extractability when used at its optimum 
concentrations, i.e. 10, <5, 5 and 2 g L−1, respectively. Factors 
like initial bacterial density and organic matter concentration 
have limiting impact on leaching of only a few metals; majority 
of metals extraction remain non-effected [53].

In addition to the famous combination of SOB and IOB, 
the inoculation of SOB with other Thiobacillus strains, i.e. T. 
neapolitanus, T. acidophilus, etc. had facilitated in attaining 
rapid and high percentage extraction of metals like Cd, Cu, 
Zn, Al, Fe and Ni [44].

Other microbial strains

Other strains like Acidithiobacilli sp., Pseudomonas putida, 
Bacillus megaterium were also used as bioleachates to 
extract metals from MSWI fly ash. All the three strains 
showed poor extractability of Cr metal (2–11%) while Ni 
was extracted in the range of 15–30%. For Pb, the extrac-
tion efficacy is very low except for P. putida which is around 
30%. Independent studies have shown that Acidithiobacilli 

Table 3   (continued)

FA type Particle 
size (µm)

Leachate (conc.) Reaction conditions Metals recovered Metal removal (%) References

Others
MSWI 20–40 FA (0.1 M) L/S (5); 24 h Al; Ca; Fe; K; Mg; Na; 

Si; Cu; Mn; Pb; Zn
<4; 19; <1; 83; 

<1; 54; 3; <1; 
<1; 1; <1

[70]

MSWI 20–40 LA (1.0 M) L/S (5); 24 h Al; Ca; Fe; K; Mg; Na; 
Si; Cu; Mn; Pb; Zn

<4; 37; <1; 100; 
<1; 66; 1; <1; 
<1; 43; <1

[70]

MSWI – LA (0.1 M) L/S (40 mL g−1); 
20 min; 25 °C; pH 3

Al; Ca; Fe; Cu; Zn; Pb 92.2; 100; 40.7; 
100; 100; 62

[74]

MSWI – MA (0.1 M) L/S (40 mL g−1); 
20 min; 25 °C; pH 3

Al; Ca; Fe; Cu; Zn; Pb 99.7; 100; 80.2; 
100; 100; 97

[74]

MSWI – TA (0.1 M) L/S (40 mL g−1); 
20 min; 25 °C; pH 3

Al; Ca; Fe; Cu; Zn; Pb 30.3; 6.7; 24.4; 
32.7; 35.7; 4

[74]

Mix
MSWI – CA + OA + GA 

(0.1 + 7.2 + 28.4 mmol/L)
S/L (10 g L−1); 30 °C Cd; Cr; Cu; Fe; Mn; 

Pb; Zn
60; 25; 68; 18; 30; 

20; 50
[47]

CFA (calcined) <45 OA + CA (0.5 + 0.5 M) PD (5%); 90 °C; 3 h; Al 93.5 [93]
CFA <74 CA + OA + GA 

(0.0317 + 0.0266 + 
 0.0625 M)

L/S (5 mL g−1); 
30 °C; 24 h; 
220 rpm

Cr 8.6 [92]

a  mg L−1
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is able to extract >80% Cd, Cu and Zn, whereas high Cd 
leaching rates were noticed for P. putida [43]. A different 
type of bioleaching of MSWI fly ash was performed using 
thermophilic archaean Acidianus brierleyi grown on elemen-
tal sulphur which produces H2SO4 as a byproduct and able to 
leach 90% Zn within 9 days [33]. Another route based on uti-
lization of 11 consortia derived from combination of 4 bac-
terial strains (Micrococcus roseus, Bacillus endophyticus, 
Paenibacillus macerans and Bacillus pumilus) for leaching 
of Fe, Cu, Ni and Zn from coal fly ash (CFA) showed that 
highest metal leaching occurred in consortia derived from 
the combination of last three MO [52].

Comparison of biological processes

Considering the alkaline nature of fly ash, fungal leach-
ing seems to be a better option as compared to bacterial 
leaching owing to the ability of fungus to grow at high pH. 
Under similar conditions, bacterial growth is retarded, hence 
inhibiting their proper functioning. Further, the formation of 
organic acids that can undergo complexation with metal ions 

had resulted in higher extractability of metals resulting in 
considerable reduction in fly ash’s toxicity. In spite of these 
advantages, the trade-off between process efficacy and cost 
in both the cases has to be considered. Subject to bacterial 
leaching i.e. SOB and IOB, the main energy sources are S 
and Fe which necessarily are not always present in required 
amounts in fly ash and hence have to be provided by exter-
nal sources which increase the cost of process. But in case 
of fungal bioleaching systems, the operating cost is much 
higher than the bacterial leaching system, because the need 
of proper bioreactors, good aeration, carbon source, organic 
acid excretion, etc. makes it a less preferred choice [12, 41, 
55, 56].

Physical process

Carrier-in-Pulp method (CIP) is employed for recovering 
heavy metals from Molten Fly Ash (MFA) while using 
adsorbent made up of activated carbon or other materials, 
e.g. Fe in a powder form [57, 58]. NaCl was employed as a 
leaching agent to facilitate the process followed by physical 

Table 4   Comparison of metal leaching from fly ash using alkaline leachates: chemical processes

FA type Particle size (µm) Leachate (conc.) Reaction conditions Metals recovered Metal removal (%) References

NaOH
OFF <500 NaOH (2 M) L/S (4 mL/g); 25 °C; 

24 h;
V; Al; Fe; Ni; Si 90; 54; 0; 0; 8.5 [62]

MSWI-PFA 0.3–2.6 NaOH (3 M) L/S (7 mL/g); 5 min, 
30 °C

Zn; Pb 26; 84.3 [63]

MSWI-SFA 0.25–4.97 NaOH (3 M) L/S (7 mL/g); 5 min, 
30 °C

Zn; Pb 29; 45.7 [63]

OFF-EP
OFF-CY

– NaOH (2N) L/S (500 mL/100 g); 
30 °C; 2 h; 400 rpm

V; Ni, Fe 88; 0
78; 0

[67]

MFA (4-types) 0.3–1300 NaOH (3 mol/L) L/S (5–30 L/kg); 
30 min, 90 °C

Pb; Zn 15.0–18.7; 36.5–51.8 [68]

CFA (2-types) – NaOH (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 35–65 [86]

Na2CO3

OFF <500 Na2CO3 (0.66 M) L/S (4 mL/g); 25 °C; 
24 h;

V; Al; Fe; Ni; Si 80; 0; 0; 0; 0; 2.8 [62]

NHs and its salts
OFF-EP
OFF-CY

– NH3 (4N) L/S (500 mL/100 g); 
30 °C; 2 h; 400 rpm

V; Ni, Fe 10; 59; 0
50; 55; 0

[67]

CFA – NH3 (1000 mg/L) 20–25 °C; 24 h; 
130 rpm

Cu; Cd 0.5; 0.1 [97]

CFA 2.3 NH3 (10 mM) S/L (1 g/100 mL); 
7 days; pH 7.4

Fe; Al; Mn; V; Cu; Ni; 
Zn; Cr; Ca; K

13; 5240; 0; 44; 7; 5; 8; 
7; 1510; 277

[101]

MSWI 20–40 NH4Cl (0.1 M) L/S (5); 24 h Al; Ca; Fe; K; Mg; Na; 
Si; Cu; Mn; Pb; Zn

<4; 21; <1; 89; <1; 54; 
2; <1; <1; 27; <1

[70]

MSWI 20–40 NH4NO3 (3.0 M) L/S (5); 24 h Al; Ca; Fe; K; Mg; Na; 
Si; Cu; Mn; Pb; Zn

<4; 53; <1; 77; 16; 41; 
4; 100; <1; 1; 29

[70]

Mix
MFA (4-types) 0.3–1300 (NH4)2SO4 + NaCl 

(1 + 5 mol/L)
L/S (5–30 L/kg); 

60 min, 25 °C
Pb; Zn 14.0–17.3; 36.4–58.3 [68]
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separation techniques to recover the carrier from the lea-
chate. Good to moderate recoveries in range of 50–90% were 
achieved by use activated carbon as sequenchor for metals 
Zn, Pb, Cu and Cd [57] while very high leaching rate i.e. 
97–99% was attained for Pb, Zn, Cd, and Cu when Fe pow-
der was used [58]. The CIP methodology is very effective in 
inhibiting the heavy metals’ solubility far below the disposal 
guidelines and hence ensuring safe landfill dumping [57]. 
Similarly, a melting approach was designed to extract Zn 
from fly ash by partitioning it into the gas phase [59].

Chemical process

Hydrometallurgical process owing to its simplicity and cost-
effectiveness is also used for detoxification of fly ash [57]. 
Targeted metal extraction is usually conducted using this 
method for metals like Ga [60], Al [61], V [62], Pb, Zn [63], 
etc. Simple to complicated approaches were used involving 
special reactors, fusion, extractions, precipitation or crystal-
lization independently or in combination with each other or 
other methods [60–66]. Various factors like acid or alkali 
molar concentration, pH, liquid/solid (L/S) ratio, leaching 
time and temperature, particle size, presence of impurities, 
retention time, type of leaching agent, type of fly ash have 
considerable effect on the leaching efficacy of hydrometal-
lurgical process [60–63, 66].

Lixiviants like acids [63, 64], base [62, 67] or a combina-
tion of acid–base [63, 66] or acid–salt [64] for removal of 
metals were researched and it was observed that the type and 
concentration of leaching agents used affected the leaching 
efficiency to considerable levels and can alter the selectivity 
of metal leaching and the speciation of the metals [62–64, 
66]. The type of fly ash had also shown to impact the effi-
cacy of the leaching process and lixiviants’ selection [68]. 
Moreover, the phases in which metals are present at various 
experimental pH also impact the extractability as also simu-
lated by the MINTEQA2 [69]. Overall the leaching using 
different lixiviants had resulted in increase in particle size 
of fly ash except deionized water [70].

Leaching with water

Leaching using either acids or bases is usually a two-step 
process, initiated by preliminary WW followed by acid or 
base washing. Simple WW can be used to remove the sur-
face metals leading to exposing the nucleation elements 
which can then be removed by further WW leaving insoluble 
metals behind [65] and, hence, accompanied by a reduction 
in particle size [70, 71]. This not only avoids the extra proto-
cols that may be required to leach metals by other methods, 
but it also saves the considerable amount of acid/base that 
otherwise may be required to leach simple metals like Na, 
K, Mg and Ca [63, 72–75] that can be water extracted from 

fly ash in just 5 min [73, 74]. Some other metals also gets 
washed away with water like Zn, Cd, Pb, Al [20, 64, 73–76], 
Mo, Se [77], Mn, Co, Fe [20, 75], As, Sr [78], etc. The 
leaching rate of water soluble metals is B > Mo > Se > Li 
> Sr > Cr > As ~ Ba ~ Cd ~ V > Sn > Rb ~ Zn > Cu ~ Ni 
~ Pb > U > Co > Mn. Heating has a positive impact on the 
leaching of metals like Al, Si, K, Na, Ba, Cr, Rb, Sr, and V, 
while Ca and Fe leaching remained constant [71]. Leach-
ing of metals, especially Ca from fly ash, can further be 
enhanced using a series of extraction steps using deionized 
water and heating [74, 75]. On the other hand, treatment of 
medical waste incinerator fly ash (MWIFA) with supercriti-
cal water (SW) and combination of SW + H2O2 resulted in 
stabilization of heavy metals except Cd and As that showed 
enhanced leaching after treatment [79].

Leaching from inorganic acids

Simple stirring of fly ash with varying molar concentrations 
of acids followed by washing of residue was used to access 
the leaching potential of the acids used. The detailed view 
of reaction conditions and acids used in this regard is given 
in Table 2. Acid leachability depends on the type of fly ash 
and acid used [68]; overall the order of total metal solubility 
for treatment of fly ash with different acid combinations is 
as follows: aqua regia > HCl > HNO3 > H2SO4 [80]. H2SO4 
is not considered the best choice because of its poor ability 
as a dissolving agent as well as the formation of insoluble 
sulphates that can coat on the surface of fly ash making it 
insoluble [81].

Poor extractability of Pb is shown in H2SO4 [12, 68, 
73, 74] as well as in dilute HNO3 and HCl [74], while 
good leaching was observed in concentrated solutions of 
HNO3 [12, 80] and HCl [63, 64, 73, 80]. The formation 
of PbCl4

2− is known to favour the leaching process in later 
cases as against the formation of PbCl2 insoluble salt [73]. 
Almost negligible leachability of Hg was also observed 
in dilute and concentrated H2SO4 [80, 82]. Experiments 
conducted for other metals using 0.5 M H2SO4 and HNO3 
showed that metals extractability is almost same in both 
the acids for MSWI fly ash with order: Cu (100%) > Al 
(80–90%) > Mn (60–65%) > Zn (50–60%) > Fe (30%) [12]. 
Same molar solution of H2SO4 also facilitated the leaching 
of valuable metals like V, Ni, Ti and Al from oil-fried fly 
ash (OFF) and thermal power station fly ash (TPF) [62, 67, 
83]. Efficacy of Al extraction in H2SO4 can be enhanced 
by carrying out the reaction in high-pressure vessel [84] or 
high temperature [62, 85] which facilitates phase change 
and hence increasing solubility [84]. In case of Fe, almost 
negligible leaching (2–6%) is reported in 0.1 M H2SO4, HCl 
and HNO3 [74] which enhance considerably (82–100%) at 
very low pH by use of concentrated acid solutions [63, 70, 
73]. Similar behaviour was also observed for Mn and Si 
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[70]. Complete removal of As has been achieved from two 
different types of CFA using 0.1 M HF (100%), while equi-
molar concentrations of other acids like H2SO4, HNO3 and 
HCl had been able to leach 80–94% As which is present in 
the form of either As2O5 or Ca(AsO4)2 [86]. Simple 19% 
v/v H2SO4 extraction of power plant fly ash (PPF) leads to 
simultaneous recovery of 94% V and 81% Ni at 80 °C [87]. 
Combination of H2SO4 and HNO3 (3:2) was used to leach a 
range of metals including Al, As, Ba, Ca, Cr, Co, Cu, Fe, Pb, 
Mg, Mn, Ni, Se, Sr, V and Zn in significant amounts [88].

Different factors affect the efficacy of process depending 
on the type of metal in concern. Extraction of Zn and Cd is 
highly dependent on the concentration of acid rather than the 
type of acid used [63, 64]. Leaching of Pb decreases with 
increase in extraction time while that of Cd and Cr remains 
same in all the three acids except that Cr showed that 45% 
decreases leaching in HNO3 [89]. Further, extraction efficacy 
was found to be temperature independent of Pb and tem-
perature dependent for Zn [63], Al [83, 85], Ni and V [87]. 
Using low L/S ratio facilitates fast (15 min) and 100% leach-
ability of Cd and Zn and 80–90% extraction of Fe, Pb and 
Al owing to the formation of Ca2PbO4, CaSi2O5, Pb5SiO7, 
Ca3Al2Si3O12 and SiO2 in leachate [73]. In case of Al, acid 
leaching process efficiency is dependent on the formation of 
glassy phase and is inhibited with increase in S/L ratio and 
acid concentration owing to mass transfer and self-inhibition 
effects imparted by the presence of Ca in the fly ash; on the 
other hand, stirring time and temperature have a positive 
effect on leaching efficiency [90]. Particle size of fly ash also 
impacts the leachability of metals to a minor extent [76].

Studies had also shown that acid extraction if facilitated 
by microwave can result in better leachability of the metals 
and in shorter time span [91]. High extractability, i.e. >90%) 
of metals like Pb and Zn and >80% of Ni and Cd can be car-
ried out in just 7 min [91].

Leaching from organic acids

Organic acids like oxalic acid (OA), citric acid (CA), glu-
conic acid (GA), lactic acid (LA), acetic acid (AA), oxalic 
acid (OA), tartaric acid (TA), formic acid (FA) and malic 
acid (MA) either independently or in combination are used 
to leach metals like Cd, Al, Cu, Fe, etc. [12, 47, 70, 74, 92]. 
In case of coal fly ash, Cr forms the most stable complex 
with CA resulting in the highest leaching among the set of 
three, i.e. CA, GA and OA; the order of percentage leaching 
was CA > GA > mixed acids > OA [92] while Al showed 
an increase in leachability, i.e. ~93% in combined 0.5 M 
OA-CA (1:1) solution as compared to when independent 
acids were used [93]. Similar order of leaching as for Cr in 
the previous case was observed for other metals in case of 
MSWI fly ash [47] but for Cu leaching was same in all the 
three acids with almost 100% leaching, irrespective of their 

concentration used [12]. In case of Al, Fe, Mn, Pb and Zn, 
the amounts of metal leached depends on the concentration 
of acids employed; the order of leaching observed with 0.5 M 
acid concentration is: GA > OA > CA for Al (80–100%) 
and Mn (60–80%); OA  >  GA  >  CA for Fe (20–50%); 
GA > CA > OA for Pb (10–50%) and OA ~ GA ~ CA for 
Zn (50–70%) [12]. On the contrary, the leaching of Mn, Cd, 
Cr and Cu was almost negligible from high metal content fly 
ash when 100 mmol L−1 GA was used for extraction which 
might be attributed to the very high levels of toxic metals 
present in the ash [49]. The leaching of Al, Ca, Fe, Cu, Zn, 
Pb was nearly same in LA and AA; OA and TA; MA and 
CA the highest being observed for Ca. Considering the fact 
that oxalates and tartrates of respective metals are sparingly 
soluble in water, minimum leaching was recorded with OA 
and TA while nearly 100% leaching of all the metals except 
Fe (80 and 67%) was achieved in MA and CA [74]. Low con-
centrations of AA, FA, OA and LA are able to leach Na and 
K effectively, while Fe, Mn and Si are poorly soluble [70]. 
A strong relationship was observed between the concentra-
tion of acid, pH, time of extraction and extraction yield for 
MSWI fly ash. The yield increased from 40 to 90 in case of 
Zn and 50–90 for Pb when AA concentration changes from 5 
to 20 wt% [63]. Good extractability of Cd and Pb in AA was 
achieved within 10 min but the extraction percentage of Pb 
decreased with increase in extraction time [89].

Hg is highly extractable in AA as opposed to H2SO4 
and Na2CO3 [82] while only 22–36% Sb is leached in CA; 
the rest being bound in coal fly ash [94]. Another study on 
smelter fly ash claimed extraction of metals like Pb, Cd and 
Zn in organic acids (CA, AA, OA) to be more dependent on 
pH rather than the type of acid used [95].

An interesting phenomenon regarding organic acids was 
discovered by Huang et al., who found out that these acids act 
in pairs with respect to leaching behaviour towards metals; 
the order of extraction is CA ~ MA > AA ~ LA > OA ~ TA 
[74].

Leaching with alkaline leachates

Considering the cost-effectiveness, alkaline leaching is con-
sidered a better choice as compared to acid leaching [68]. As 
in case of acid leaching, concentration of alkaline leachates 
also has a considerable effect on the extraction process [67]. 
Among NaOH, NH3 and Na2CO3 solutions (Table 4), NaOH 
was found better lixiviant for V (80–90%) [62, 67] as well 
as for Al (54%) [62] while the rest of the two (NH3 and 
Na2CO3) showed better extractability just for Ni (60%) [67] 
and V (80%) [62], respectively. On other hand, none of these 
led to promising Fe extraction owing to its occurrence as 
base insoluble FeSO4·7H2O [67]. Arsenic also showed poor 
extractability in alkaline solutions [86].
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Low solubility of Zn (~30%) and enhanced Pb extractions 
(80%) were achieved in high normality NaOH (3N) but this 
was accompanied by the formation of gelatinous precipitates 
that hinder the filtration process [63]. The process showed 
dependency on temperature for Pb and independency for Zn 
[63]. 100% extraction of Cu was achieved in NH4NO3 while 
NH4Cl is able to leach 89% K [70].

The leaching behaviour of different metals with alkaline 
leachates is defined by the nature of metals and their forms 
available in the fly ash [63, 66]. Leachates hydroxides react 
with divalent metals to form simple M(OH)2 [66], while the 
metals having the amphoteric nature like Pd, Zn and vana-
dium oxides result in the formation of complex ion species 
like Pb(OH)3

−, Zn(OH)3
−,HV2O5

−, H2VO4
−, VO3OH2− and 

V2O7
4− which are responsible for high extraction rates [66, 

67, 96]. In case of Pb, poor extractability was observed in 
alkaline media if forms other than oxide are present [63]. 
NH3 is also known to favour extraction of Cu and Cd in 
addition to Ni owing to the formation of metal-ammonium 
complexes like (Ni(NH3)x)2−, (Cu(NH3)x)2+ [67, 97].

Leaching with chelating agents

Selection of chelating agents (Table 5) plays a very impor-
tant role in controlling efficacy and cost of the leaching pro-
cess [30]; also the leaching in this case is independent of 
pH [98]. Ethylenediaminetetraacetic acid (EDTA) is used 
in the majority of cases to leach the metals [70, 86, 98–100] 
and found to have good lixiviant for most of the metals like 
Mg, Ca, Al [99], Se, Mo [77] and V in high yields but is not 
a good extractant for potassium containing aluminosilicates 
core metals [101] and Fe, Al and Si [70] with process highly 
dependent on pHs.

Good extractability of EDTA and diethylenetriamine-
pentaacetate (DTPA) in contrast to Nitrilotriacetic acid 
(NTA) was observed for Cr (20–50%), Cu (60–95%), Pb 
(60–100%) and Zn (50–100%) in a pH range of 3–9 [98]. 
Leaching of As from CFA was carried out using various 
chelating agents [ammonium acetate (NH4OAc), sodium 
gluconate (SG), EDTA, iminodiacetic acid (IA), trisodium 
citrate dehydrate (TSC), potassium dihydrogen citrate 
(PDC), disodium hydrogen phosphate (DSHP), potassium 
dihydrogen phosphate (PDP), glucose and sucrose] and 
shown to depend strongly on the rate of dissolution of Fe 
and Al. Reasonable leachability of As hence was observed 
only in case of TSC (68%), EDTA (70%), IA (78%) and PDC 
(83%) while glucose and sucrose showed very poor extract-
ability (4%) [86]. The presence of Fe and Al in the fly ash is 
known to favour the complex formation of As by the forma-
tion of some intermediate complexes [86]. Ge (98.8%) from 
CFA can be isolated first by leaching with catechol (CAT) 
followed by precipitation with CAT and cetyl trimethyl 
ammonium bromide (CTAB), but the process is hindered 

by the presence of other metals [102]. Three types of IA 
containing chelating resins, i.e. Lewatit TP-207, Purolite 
S-930 and Amberlite IRC-748 were used in the presence of 
sulphate solution for leaching of Ni from Orimulsion fly ash 
(OFA) which is rich in Ni and V; after preliminary leach-
ing of V and Fe, the best results were obtained for TP-207 
[103]. Another set of chelating leaching agents employed 
obeyed the leaching order of: EDTA ~ citric acid > histi-
dine > glycine for a range of metals. Cysteine on the other 
hand resulted in formation of cystine precipitates and hence 
proved to be quite ineffective for leaching of metals [101].

Though the high percentage of metal extraction was 
achieved by chelating agents, but their use for detoxifica-
tion of fly ash is hampered because of high cost and also 
due to difficulty in heavy metals’ recovery from the chelated 
complex. For that purpose, certain green methods were also 
adopted for the extraction of heavy metals from fly ash. Sap-
onin, a plant-derived chemical, is used by several researchers 
for the heavy metals’ leaching [99, 104] and is found to be 
equally effective as that of EDTA [99]. The method efficacy 
depends to larger extent on pH, S/L ratio and ionic strength 
while minor contributors are saponin concentration, temper-
ature and extraction time [104]. The method is able to extract 
20–45% Cr; 50–60% Cu; 100% Pb; 40–50% Zn; 50–100% 
Mg; 60–70% Ca and 10% Al. Sequential extraction using 
three different triterpene-glycoside types of saponins was 
also used for extraction of Cr, Cu, Pb and Zn [99]. Another 
environmental friendly approach employed for heavy met-
als (Cd, Cr, Cu, Ni, Pb and Zn) leaching from fly ash makes 
use of molasses hydrolyste which acts as a strong chelating 
agent. This hydrolyste is able to extract large amount of met-
als as it is workable at pH at which incinerator fly ash are 
collected [105]. Use of canine serum is also helped in the 
extraction of Co, Ni, Cu and Zn from 7 different types of 
ashes with leaching efficiency of 40–90% [106] and is also 
able to leach other metals like Al, Fe, Ca, K, V, Mn, Ni and 
Cr in percentages much better than simulated serum solution 
[101]. On the contrary, poor extractability of Ca, Mg, Al, Fe, 
Ti, etc. was observed in humic acid [100].

Leaching using a combination of different leachates

To enhance the efficacy of extraction process, researchers 
tried various combinations of leachates. Fusion of CFA with 
NaOH at temperatures ranging between 300 and 800 °C fol-
lowed by WW resulted in only 35% Al extraction [107]. 
100% leaching of Al along with the recovery of Si in forms 
of sodium silicate and amorphous SiO2 was achieved using 
a two-step approach: employing simple treatment of CFA 
with hot H2SO4 in a first step and a combination of Na2CO3, 
H2O and H2SO4 in a second step [108].

Reasonable absorption of Pb, Cd and Zn, i.e. 85, 83, and 
65% was accomplished with use of binary mixture of 1 M 
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Table 5   Comparison of metal leaching from fly ash using chelating agents: chemical processes

FA type Particle size (µm) Leachate (conc.) Reaction conditions Metals recovered Metal removal (%) References

MSWI 20–40 EDTA (0.1 M) (pH 
adjusted)

L/S (5); 24 h Al; Ca; Fe; K; Mg; 
Na; Si; Cu; Mn; 
Pb; Zn

<4; 65; <1; 97; 40; 
40; 5; 100; 25; 
94; 40

[70]

MSWI 20–40 EDTA (0.1 M) (pH 
not adjusted)

L/S (5); 24 h Al; Ca; Fe; K; Mg; 
Na; Si; Cu; Mn; 
Pb; Zn

<4; 19; < 1; 
82; < 1; 35; 
2; < 1; < 1; 34; 1

[70]

Fly ash (2-types) – EDTA (0.1 mol/L) S/L (5 g/50 mL) Ca; Al; Fe; As; K; 
Mg; Ba; Ti; Mn; 
Cu

1000; 1800; 1500; 
100; 100; 120; 20; 
120; 6; 0

[100]

CFA (2 types) – EDTA (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 70 [86]

MSWI (5 types) – EDTA (3%) 20 °C; 24 h; Cr; Cu; Pb; Zn 20–50; 60–90; 
60–100; 50–100

[98]

MSWI (2 types) EDTA (3%) – Cr; Cu; Pb; Zn 20–35; 60–70; 
80–90; 60–90

[99]

CFA 2.3 EDTA (10 mM) S/L (1 g/100 mL); 
7 days; pH 7.4

Fe; Al; Mn; V; Cu; 
Ni; Zn; Cr; Ca; K

2030; 4050; 23; 
108; 15; 6; 20; 28; 
1630; 175

[101]

CFA (2 types) – Glucose (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 4 [86]

CFA (2 types) – Sucrose (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 4 [86]

CFA (2 types) – Na2HPO4 (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 5–9 [86]

CFA (2 types) – NH4OAc (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 6–8 [86]

CFA (2 types) – PDP (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 36 [86]

CFA (2 types) – SG (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 61–71 [86]

CFA (2 types) – TSC (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 55–68 [86]

CFA (2 types) – PDC (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 83 [86]

CFA (2 types) – IA (0.1 M) L/S (80–100 mL/g); 
24 °C; 20 h;

As 78 [86]

OFA IA–Lewatit TP-207 Ni [103]
MSWI (5 types) – DTPA (3%) 20 °C; 24 h; Cr; Cu; Pb; Zn 20–50; 60–90; 

60–100; 50–100
[98]

MSWI (5 types) – NTA (3%)s 20 °C; 24 h; pH 3–9 Cr; Cu; Pb; Zn 20–50; 60–90; 5–10; 
20–50

[98]

CFA – CAT–CTAB CAT/Ge (8.4); 
CTAB/Ge (5.1)

Ge 95 [102]

OFA Purolite S-930 Ni [103]
OFA Amberlite IRC-748 Ni [103]
CFA 2.3 Histidine (10 mM) S/L (1 g/100 mL); 

7 days; pH 7.4
Fe; Al; Mn; V; Cu; 

Ni; Zn; Cr; Ca; K
340; 0; 15; 31; 7; 4; 

18; 5; 230; 69
[101]

CFA 2.3 Glycine (10 mM) S/L (1 g/100 mL); 
7 days; pH 7.4

Fe; Al; Mn; V; Cu; 
Ni; Zn; Cr; Ca; K

35; 0; 12; 16; 6; 4; 
4; 1; 3180; 114

[101]

CFA 2.3 Na-Citrate (10 mM) S/L (1 g/100 mL); 
7 days; pH 7.4

Fe; Al; Mn; V; Cu; 
Ni; Zn; Cr; Ca; K

1860; 3100; 22; 
114; 12; 7; 19; 22; 
5280; 87

[101]

MSWI (2 types) Saponins (3%) 4 
types

S/L (0.5 g/25 mL); 
20 °C; 24 h; pH 4

Cr; Cu; Pb; Zn 20–45; 50–60; 
80–100; 50–80

[99]
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HC1 + 1 M NaCl solution [64]. Equally good results were 
observed for the three metals when serial batch test employ-
ing HNO3 and slaked lime was carried out but the process is 
highly pH dependent [66]. Comparatively higher extractions 
of Pb (97%) as well as Fe (100%) and nearly same leaching 
of Zn (68%) were achieved using simple acid–base coupled 
extraction, i.e. NaOH leaching followed by HCl leaching 
[63]. The process is observed to be dependent on pH, L/S 
ratio and concentration of acids and alkali used [63, 66]. 
Positive correlation was observed in the percentage extrac-
tion of Zn, Fe and Pb with an increase in HCl concentra-
tion [63, 64]. A three-step process was adopted for recovery 
of high purity Ga and V from CFA by treating the H2SO4 
leachate first with imminodiacetic acid containing chelat-
ing resin and then with either di(2-ethylhexyl)phosphoric 
acid (D2EHPA) or tri-n-octylmethylammonium chloride 
(TOMAC) [109].

A range of metals (Cd, Cr, Cu, Mo, Pb, Zn, As, Co, V, 
Ni, Ba) was also extracted using 24−1 fractional factorial 
design consisting of 5 step sequential extractions using (1) 
HNO3 acidified distilled water, (2) AA, (3) NH2OH-HCl, 
(4) H2O2 + CH3COONH4 and (5) HF + HNO3 + HCl. 
These were able to extract metal chlorides and sulphates; 
metal carbonates; oxides of Mn and Fe; metal sulphides 
and crystallized oxides, respectively [110]. Similar sequen-
tial extraction when performed for the removal of heavy 
metals, i.e. Cd, Co, Cu, Ni, Pb, Sb, and Zn resulted in 
1.5–36.4% of the total element content from six different 
types of coal-fired power plant fly ashes [111]. Cr and Cu 
are also extracted using same approach [112]. The same 
setup when used microwave heating resulted in much higher 
removal efficacies of the metals like Zn, Pb, Cu, and Cr 
within 2–6 min while for Cd the leaching efficiency was 

comparable to that of traditional HCl extraction method 
[113]. Recirculation loop experiment, consisting of 10 
loops, was designed based on closed circuit of alkaline 
washing, acid washing and precipitation, is able to remove 
21% Cd, 99% Pb, 100% Al and 63% Zn [114]. Use of 7-step 
sequential extraction employing water, MgCl2, NaOAc, 
NH2OH·sHCl, NH4OCOCOONH4·H2O, NaOCl and micro-
wave digestion with HNO3 resulted in the removal of As, 
Cr, Cu, Fe, Pb and Zn from CFA [115].

Electrochemical processes

Electrolysis processes like electrodialytic remediation 
(EDR), cyclic voltammetry (CV), etc. have been studied 
by various researchers as alternate to already existing tech-
niques for removal and recovery of metals from fly ash. The 
technique is good for those fly ashes which are chloride-
rich making majority of metals to be available in the water-
soluble chloride form [116].

EDR detoxifies the fly ash by separation of metals from 
fly ash by dissolution, acidification and membrane separa-
tion [32]. Factors like current density, remediation time, 
L/S ratio, and assisting agent were assessed as contributors 
towards the efficacy of the process [32, 117–119]. A 3-com-
partment cell with applied current of 50 mA was found 
effective in removing Cd (60%) and Zn (45%) from MSWI 
fly ash while for rest of metals (Al, As, Ba, Cr, Cu, Mn, 
Ni, Pb) <20% removal was achieved [32]. An even lower 
applied current 40 mA when employed in 5-compartment 
cell at pH 2 led to very high removal of Cd (85–120%) from 
power plant fly ash [118], whereas 5.6 mA cm−2 constant 
current supply and use of 4-compartment cell resulted in 
97% Cd removal from Electrostatic precipitator fly ash (ESP 

Table 5   (continued)

FA type Particle size (µm) Leachate (conc.) Reaction conditions Metals recovered Metal removal (%) References

Fly ash (2-types) 20; 30 Humic acid S/L (5 g/50 mL) Ca; Al; Fe; As; K; 
Mg; Ba; Ti; Mn; 
Cu

300; 0; 200; 50; 0; 
40; 10; 15; 5; 7

[100]

MSWI Molasses hydro-
lysate (1.8%)

S/L (10 g/100 mL); 
24 h

Cd; Cr; Cu; Ni; Pb; 
Zn

2.5; 3.1; 23.1; 0.3; 
60.1; 353.3

[105]

CFA 2.3 Synthetic serum 
(10 mM)

S/L (1 g/100 mL); 
7 days; pH 7.4

Fe; Al; Mn; V; Cu; 
Ni; Zn; Cr; Ca; K

82; 370; 14; 31; 9; 
12; 8; 6; 2960; 77

[101]

CFA 2.3 Dog serum (10 mM) S/L (1 g/100 mL); 
72 h; pH 7.4

Fe; Al; Mn; V; Cu; 
Ni; Zn; Cr

515; 1124; 10; 61; 
43; 6; 236; 12

[101]

MSWI – Serum (41.2 g/L) S/L (1%); 13.54 h; 
23.4 °C

Cu; Zn; Pb; Cd 55.1; 6.2; 17.8; 78.1 [104]

Fly ashes from fossil 
fuel combustion (7 
types)

1.5–22 Canine serum S/L 
(300 mg/30 mL); 
24 h

Al; Ca; Co; Cr; Cu; 
Fe; Mn; Ni; Pb; Si; 
V; Zn

83.5–7000; 
7.8–42.3; 855–3.6; 
2.6–197; 312–
13200; 8.7–225; 
10.2–24500; 0.2–
274; 21.5–1850; 
132–1860

[106]
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ash) after 36 days [120]. The change in current density does 
not show the strong impact on percentage of Cd extracted 
when the sequential extraction process is used [119]. To 
assist the EDR process, the role of assisting agents was 
also researched and it was suggested that best results can be 
obtained for the ones that form stable complexes but the type 
of metal and nature of fly ash do play their role [117]. Use 
of ammonium citrate as assisting agent helped in increased 
removal of Cu (~70%) and almost same Cd (>70%) recov-
ery within 3 weeks that increased to >80% for both metals 
in 70 days along with appreciable separation of other met-
als (Pb, Zn, and Cr) [121]. But studies have shown that the 
best choice for combined removal of metals is solution of 
0.25 M ammonium citrate and 1.25% NH3 [117]. Almost 
100% Cd removal was achieved when 2.5% NH3 was chosen 
as assisting agent. On the other hand, the addition of sodium 
and ammonium citrates favours Cu and Pb removal, respec-
tively [117]. Use of CA in place of sodium citrate facilities 
removal of Ni and Cu and use of 2.5% NH3 favours higher 
Cd extractions due to the formation of tetraamine complexes 
[117].

EDR was also used to treat fly ashes from straw (SF) 
and able to remove 78% Ni, 66% Pb and enhanced level 
(97%) of Cd when scale-up process is used. On the other 
hand, EDR of co-combustion of wood (CWF), a high metal 
content ash, did not give encouraging results [122]. The use 
of assisting agent though facilitates the fast and effective 
removal of heavy metals, but on the other hand can impede 
fly ash further valorization due to strong binding capacity 
with fly ash causing impregnation of assisting agent in fly 
ash [122].

A similar set of experiments conducted with and with-
out assisting agent, Na-gluconate, as a metal solubilization 
enhancer showed comparatively higher metal extraction 
rates in EDR [116].

Thermal treatment processes

High temperature treatment of fly ash was also done to aid 
detoxification of fly ash. Volatilization of metals is deter-
mined by many factors like time, temperature, metal spe-
cies involved, type of matrix, etc. [123] and is governed 
by simple first-order rate law [124]. Use of assisting agents 
promotes the evaporation of metals at a comparatively low 
temperature. Roasting of fly ash with chlorine is one such 
way that can be done by direct chlorine gas, HCl fumes or 
by the use of some salt like NaCl, CaCl2, etc. [124–129]. The 
process can also occur by thermal treatment of chloride rich 
fly ash, hence promoting the vaporization of metals [123, 
130]. Temperatures, gas velocities, chloride concentrations, 
residence times [127] and type of assisting agent used [125] 
impact the removal rate of metals to considerable level. In 
addition to these the presence of alkali metals and moisture 

owing their high affinity towards chlorine effects process 
efficiency [123].

Among the three chlorinating agents, i.e. CaCl2, MgCl2 
and NaCl, the first two are known to better agents than NaCl 
owing to its low volatilization temperature evaporates with-
out reacting [125]; the best being CaCl2 [125, 128]. Hence, 
by using MgCl2 90% extractability was achieved for metals 
Cu, Pb and Zn [125], whereas CaCl2 leads to the removal 
of >90% Cd and Pb [125, 127, 128]; 100% Cu [125, 128], 
and 90% Zn [125, 127, 128] and 75% Ni [125] from MSWI 
fly ash. On the other hand, treatment of fly ash with CaCl2 
promoted just 13% Cr extraction from simulated sample 
[126] while in actual fly ash case CaCl2 imparts negative 
impact on Cr leaching from fly ash [125]. Polyvinyl chloride 
(PVC) doping of power plant incinerator fly ash was also 
done as a source for chlorine and it was observed that it 
leads to 10–15% increase in heavy metals’ (Pb, Zn and Cd) 
vaporization at temperatures <1000 °C [131]. Extractability 
of Cr from MSWI fly ash spiked with 5% Cr2O3 followed 
by sintering was found dependent on the temperature and 
atmosphere provided as it affected the formation of soluble 
oxides [132].

The composition of fly ash also impacts the efficacy 
of chlorination-assisted thermal treatment process; it is 
observed that the presence of SiO2 favours the reaction of 
metals with CaCl2, thereby facilitating detoxification of sew-
age sludge ash (SSA) in just 10 min, while the presence of 
CaO and Al2O3 in MSWI fly ash hinders the reaction result-
ing in delayed metals’ evaporation [128]. Leaching of Ca and 
Mg from CFA calcinated at similar temperature followed 
by NH4Cl solution washing at 80 °C had shown to depend 
on the phases in which the respective metals are present in 
fly ash [72]. Extraction efficiencies of 81, 70 and 60% for 
Al, Fe and Ti were obtained by thermal treatment of CFA 
at 1200 °C with CaO followed by H2SO4 leaching at 80 °C. 
The process is recommended for high percentage removal 
of Al that occurs in acid insoluble form, i.e. mullite [61]. 
Likewise, CaO presence in the fly ash helps in extraction of 
Cr that at high temperatures reacts with Cr to facilitate its 
extraction in acetic acid [133].

Another approach is based on the calcination of MSWI 
fly ash with H2SO4 at 300 °C resulting in cracking of fly 
ash core and formation of aluminium sulphate followed by 
recovery of unreacted H2SO4; the process resulted in 85% 
alumina extraction with the added advantage of avoiding 
excess use of acid [134].

The high impact of evaporation temperature, sintering 
atmosphere, velocity of gas stream and the presence of some 
cations or anions on the thermal recovery of metals and 
evaporation time was observed [31, 124, 129, 135]. Metals 
like Cd and Pb are almost completely extracted at tempera-
tures ranging between 760 and 1300 °C, while complete Cu 
extraction was observed at 1030 °C in air as against 10% 
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in argon atmosphere. On the other hand, Zn showed better 
extractability in argon atmosphere (100%) as compared to 
air (51%) at 1130 °C [31]. Cr extraction is favoured in the 
air owing to the formation of hexavalent oxides as com-
pared to in N2 atmosphere [132]. The extraction efficacy of 
Cu and Zn, the least volatile metals [31], and Pb decreases 
with increasing temperature whereas that of Cr increases 
[132]. Comparatively low temperature evaporation can be 
facilitated in much shorter time by use of chlorinating agent, 
e.g. NaCl [124], CaCl2, Cl2 [129, 136]. Further, the velocity 
of gas stream when changes from low to high can enhance 
metal evaporation rate and in much less time too [129].

The sintering of fly ash resulted in the formation of differ-
ent phases that impacts the extractability of metals in water, 
e.g. better leaching was observed for metals like Cr while 
for other metals, i.e. Cd, Pb, Ni, Cu and Zn the leachability 
was reduced [137]. The thermal treatment of Al containing 
fly ash had resulted in the formation of various mixed metal 
oxides that facilitate the leaching of Al in nitric acid and 
also the sequential fractional factorial extraction [138]. Zn 
from fly ash has also been leached by conversion of its non-
volatile phases (i.e. hydrozincite, willemite, gahnite) into 
volatile species (ZnCl2) at 900 °C; the process is hindered by 
the presence of S that can be taken care of by using oxygen 
containing inert gas stream or else alkali chloride salt [139]. 
The separation of Zn from thermally treated fly ash depends 
on the competing reactions and mass transfer reactions to 
the gas stream used in the study as well as on the residence 
time at heating temperature [135]. Vacuum-assisted high 
temperature treatment of fly ash carried out at 900 °C and 
10 Pa resulted in the effective elimination of Cd 100%, Pb 
93.1% and Zn 81.0% within 4 h [140]. Another thermal treat-
ment, i.e. self-propagation high temperature reaction aided 
by Fe2O3-Mg (40:9 w/w), was used for detoxification of 
Municipal waste incinerator fly ash (MWIFA) at a melting 
temperature of 1400 °C [141].

Combination of different techniques/sequential 
extracting techniques

A combination of two techniques was also used by research-
ers to get better extractability of the heavy metals from fly 
ash. MSWI fly ash leaching by NaOAc (pH 3) followed by 
electrolysis using 0.4 A-h of electrical charge resulted in 
96.70% Pb and 93.69% Cu recovery. The former process was 
found to be dependent on L/S ratio, extraction time and metal 
concentration while current density played an important role 
in later process efficacy; no impact of pH and temperature 
was observed [89]. 48 kg high purity Zn was extracted from 
1 tonne of fly ash using a three-step procedure consisting of 
acid extraction, electrolysis using selective reactive extract-
ant (bis(2,4,4-trimethylpentyl) phosphinic acid) and recircu-
lation [142]. A. niger extraction of calcined CFA carried out 

in presence of quick lime at 900–1000 °C for 12 h resulted in 
93.5% removal of Al as compared to 5–8% from uncalcined 
CFA [93]. High amounts of Al (85%) along with removal 
of oxides of titanium, iron, silicon, sulphur, phosphorous, 
sodium and potassium were extracted from fly ash using a 
sequence of steps consisting of fusion with CaO and coal at 
1200 °C; leaching by H2SO4 at 80 °C, washing with (NH4)
CO3, solvent extraction using Primene JMT or di(2-ethyl-
hexyl) phosphoric acid, precipitation with sodium hydroxide 
and crystallization using ammonium salts [61].

Supercritical fluid extraction combined with the metal 
ligand extraction technique was able to extract Zn2+, Cu2+, 
Pb2+, Cd2+ and Cr3+ from the fly ash. Cyanex 302 (bis(2,4,4-
trimethylpentyl)monothiophosphinic acid) was found to be 
best ligand of all the employed ones that is able to extract 
99% Cd and Cu, 87% Pb and 52% Cr when methanol modi-
fied CO2 was used. Independently, Cd2+ best extracted with 
Aliquat 336; D2EHPA (bis(2-ethylhexyl)phosphoric acid) 
and DiOPA (diisooctylphosphinic acid) is most effective for 
Zn2+ [30].

A rather complicated protocol was observed for gal-
lium recovery from CFA consisting of thermal treatment, 
HCl leaching, impurity removal and extraction in specially 
designed reactor using polyurethane foam. As most of the 
gallium found on the surface of fly ash particles, the process 
is favoured by smaller particle size, lesser extraction times 
and increased L/S and hindered by rise in temperature and 
presence of silica as it results in hindering filtration step and 
entrapment of gallium, respectively [60].

A series of fly ash treatment and extraction steps consist 
of spiking with Cu or Cd followed by water leaching; the 
solid residue was sintered, treated with Cu (or Cd), Ca(OH)2 
and H3PO4 and leached in EDTA and TA. The process led to 
the removal of Na in water leachate, while higher amounts 
of Ca were extracted in EDTA and that of Cu in TA [143].

Overall analysis

On comparing different techniques, the selection criteria are 
usually based on the evaluation of factors like energy usage, 
efficiency of process, process simplicity and liability, cost of 
the process, potential for reducing the cost and the research 
progress as pointed out by Tateda [34]. Considering the 
green nature of process microbial BL is a preferred choice 
[41] but it is time consuming and costly. When compared 
chemical leaching under similar experimental conditions, 
bacterial leaching (T. thiooxidans) is found comparable to 
the H2SO4 leaching [45, 54] while fungal BL employing 
A. nigar showed variable results on comparison with inde-
pendent organic (citric, oxalic and gluconic acids) and inor-
ganic acids (sulphuric and nitric acid) leaching. On the other 
hand, simulated mixture of organic acids mixed in same ratio 
as produced during fungal BL step showed poor leaching 
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potential as compared to fungal BL [47]. But when com-
pared to inorganic leaching, organic acids demonstrate good 
extractability [74] but are expensive to use. HCl extraction 
when compared with BL and other processes is shown to be 
more cost-effective considering its low cost and ease of use 
[34], but the alkaline nature of the ash led to utilization of 
large amounts of acid [70]. EDR process has the advantage 
of being efficient [117] and physically separating the leached 
metals from the fly ash with help of membrane but use of 
high energy and fouling of membrane makes the process 
somewhat unfeasible [121]. Melting or thermal treatment 
has the advantage of separating heavy metals through evapo-
ration and the resulting metals are pure and hence can be 
utilized in other metallurgical industries [123], but excep-
tionally high cost of this process makes it the least favoured 
process [34].

Conclusion

Fly ash may pose serious risks to the surrounding environ-
ment when land filled due to the presence of heavy met-
als which are highly mobile in nature. Thus, removal of 
metals is necessary for saviour of life and ecology in soil 
and aquatic environment. Several techniques were studied 
in this regard, i.e. bioleaching, chemical leaching, physi-
cal leaching, thermal treatment, electrochemical methods 
and the combination of two or more processes to get better 
extraction yield and hence detoxification of fly ash. From 
the literature reviewed, it seems that the selection criteria for 
a process to be feasible depend highly on the nature of ash 
and its composition. But overall acid extraction technique 
followed by metal recovery seems to be an environmentally 
sound practice prior to the ash disposal if used in combina-
tion with water washing pre-treatment.
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