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Abstract
Purpose  Frequency selectivity is a fundamental property of the peripheral auditory system; however, the invasiveness of 
auditory nerve (AN) experiments limits its study in the human ear. Compound action potentials (CAPs) associated with 
forward masking have been suggested as an alternative to assess cochlear frequency selectivity. Previous methods relied on 
an empirical comparison of AN and CAP tuning curves in animal models, arguably not taking full advantage of the informa-
tion contained in forward-masked CAP waveforms.
Methods  To improve the estimation of cochlear frequency selectivity based on the CAP, we introduce a convolution model 
to fit forward-masked CAP waveforms. The model generates masking patterns that, when convolved with a unitary response, 
can predict the masking of the CAP waveform induced by Gaussian noise maskers. Model parameters, including those 
characterizing frequency selectivity, are fine-tuned by minimizing waveform prediction errors across numerous masking 
conditions, yielding robust estimates.
Results  The method was applied to click-evoked CAPs at the round window of anesthetized chinchillas using notched-noise 
maskers with various notch widths and attenuations. The estimated quality factor Q10 as a function of center frequency is shown to 
closely match the average quality factor obtained from AN fiber tuning curves, without the need for an empirical correction factor.
Conclusion  This study establishes a moderately invasive method for estimating cochlear frequency selectivity with potential 
applicability to other animal species or humans. Beyond the estimation of frequency selectivity, the proposed model proved 
to be remarkably accurate in fitting forward-masked CAP responses and could be extended to study more complex aspects 
of cochlear signal processing (e.g., compressive nonlinearities).

Keywords  Compound action potential · Auditory nerve · Frequency selectivity · Cochlear tuning · Forward masking

Introduction

Much of our knowledge about the mammalian peripheral 
auditory system has been gained from single-fiber record-
ings of the auditory nerve in animals commonly used in 

laboratory studies. However, the invasiveness of these 
experiments prevents their use in humans, hindering the 
search for potential specificities of the human auditory sys-
tem. Other means have been employed to infer the prop-
erties of the the human inner ear, either through psycho-
physical experiments or through less invasive physiological 
methods. In particular, a combination of these solutions—
including psychophysical experiments based on masking 
[1, 2], otoacoustic emissions (OAEs) [1, 3] and compound 
action potentials (CAPs) [4]—has led to a growing body of 
evidence that cochlear frequency selectivity is sharper in 
humans than in small mammals. Frequency selectivity is 
a fundamental property of the peripheral auditory system, 
but its study is not straightforward, the reason being that it 
is affected by cochlear compressive nonlinearities [2, 5, 6]. 
As a result, although data on cochlear frequency tuning in 
humans have been obtained by various means, the picture 
is not as detailed as for other mammals, and some methods 
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of assessing cochlear frequency selectivity do not show any 
significant difference with small mammals [7]. To advance 
our knowledge in this area, it is necessary to refine the avail-
able tools and to better understand how they relate to audi-
tory physiology. For example, OAE-based estimates of fre-
quency selectivity would benefit from a better understanding 
of how OAE delays [8] or distortion-product level functions 
[9] relate to cochlear tuning. The focus of this paper is the 
CAP, an auditory evoked potential that reflects the summed 
activity of auditory nerve fibers (ANFs). CAP data can be 
obtained with a satisfactory signal-to-noise ratio (SNR) at 
the cost of moderate invasiveness [10, 11], and, if analyzed 
with an appropriate model, could provide significant infor-
mation on the compound response of ANFs, including AN 
frequency tuning.

Estimation methods of cochlear frequency selectivity 
based on the CAP rely on the masking paradigm, simi-
lar to psychophysical experiments historically associated 
with the measurement of critical bands in humans [12, 13]. 
While simultaneous masking reflects both excitatory and 
suppressive masking [14–16], estimates based on forward 
masking reflect only excitatory masking and have good 
agreement with ANF tuning curves [15, 17, 18]. In the last 
decade, Verschooten et al. refined a previous estimation 
procedure based on forward-masked CAPs [15, 17] using 
notched-noise maskers. The procedure was first validated 
in animal models [18] and later applied to human subjects 
[4]. Their estimation method was based on establishing 
iso-response curves for masker level versus masker notch 
width. However, the method required an empirical correc-
tion to match the quality factor Q10 of ANF tuning curves 
with the correction factor varying across species. In par-
ticular, the estimate of Q10 for humans was higher if the 
correction factor found for macaques was applied instead 
of the factor found for smaller mammals, leaving the exact 
range for Q10 uncertain.

In this work, we attempt to reduce the dependence of 
the estimation of frequency selectivity on an empirical cor-
rection factor by relating forward-masked CAP responses 
to a computational model of ANF activity. To this end, 
we assume that the masked part of forward-masked CAP 
responses can be approximated by a “masking pattern” 
defined in the time domain convolved with a unitary 
response. Convolution models have been used for decades to 
describe the CAP [19], but applications of these models have 
been limited since they require many assumptions about the 
factors affecting the CAP waveform. These factors include 
the (level-dependent) relationship between cochlear place 
and AN spike latencies, the spread of excitation along the 
cochlear partition, the spike unit response, and the distribu-
tion of thresholds and rate functions [20]. However, consid-
ering forward-masked CAPs with multiple masking stimuli, 
but with a fixed probe, simplifies the modeling approach 

because several factors remain constant as a consequence of 
using a unique and fixed probe. In addition, forward-masked 
CAPs provide information about some of the factors men-
tioned above, such as the place-latency relationship using 
high-pass noise maskers with different cut-off frequencies 
[10, 21]. In this paper, we introduce a model for predicting 
click-evoked CAP waveforms in the presence of notched-
noise forward-maskers with different spectral properties. 
The estimation of the model parameters, including coch-
lear frequency selectivity, is done through the minimization 
of the waveform prediction errors. To assess our method, 
we recorded forward-masked CAPs at the round window 
of anesthetized chinchillas and tuned the model to fit the 
masked CAP waveforms. We found that the estimates of the 
quality factor averaged over experiments closely matched 
Q10 values from published ANF single-fiber data. Beyond 
the estimation of frequency selectivity, the results show that 
the model was remarkably accurate in fitting the forward-
masked CAP responses, highlighting the potential of the pro-
posed paradigm to study other properties of the peripheral 
auditory system (e.g., compressive nonlinearities).

Methods

Methods Overview

Approach

The methods introduced in this paper build upon the convo-
lution model that has been widely adopted since early work 
on the CAP [19, 20]. In this framework, in its most basic 
representation, a CAP waveform is written as a convolution 
between two components, a cochlear excitation pattern E 
and a unitary response u0 that shares the biphasic shape of 
the CAP:

The cochlear excitation pattern represents the distribution of 
excitation levels across different latencies. For consistency, 
we use the term “latency domain” throughout the paper to 
refer to the context before the convolution is applied, cor-
responding to the dummy variable � in the above integral. 
Conversely, we use the term “time domain” to refer to the 
context after the convolution has been performed when the 
excitation patterns and unitary response are combined to 
generate the CAP waveforms.

However, our focus in this work is on the part of the 
CAP that is affected by forward masking. In particular, 
we are interested in the differences of a click-evoked 
CAP waveform induced by spectral manipulations on a 

(1)CAP (t) = E ∗ u0 (t) = ∫
�

E(�) u0(t − �) d� .
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notched-noise masker (e.g., increasing the masker notch 
width). Rather than examining the raw CAP waveform, 
we consider ΔCAP(t) , the release of masking of the CAP, 
defined by the difference in the CAP amplitude between 
two masking conditions:

where CAPmasked(t) is the CAP response associated with a 
notched-noise masker and CAPmasked, b(t) is the response 
associated with a reference masking condition, chosen as 
the no-notch masker (“b” stands both for baseline or broad-
band noise).

We can write a similar equation to Eq. 1 for ΔCAP , which 
will play a key role in the rest of the paper:

where we call R(�) the masking-release pattern and u the 
unitary response.

The approach of this paper is to introduce a model that 
generates estimates for the masking-release pattern R(�) 
associated with each presented forward-masking condition. 
The generation of these patterns depends on several param-
eters, including the quality factor Q10 characterizing cochlear 
frequency tuning. The model is fitted to experimental data 
by minimizing the mean squared error between the gener-
ated waveforms and the actual masking-release waveforms, 
resulting in estimates of the model parameters.

The structure of the “Methods” section is as follows. 
We start by introducing the concept of masking input-
output curves, on which our model is based. The model 
architecture is described next. The remaining subsections 
are dedicated to the application of the introduced methods 
to experimental data collected in anesthetized chinchil-
las. First, we describe the data collection procedure and 
provide more details on the masking conditions used. We 
then detail how we adjusted the model to the experimental 
data. In addition, Appendix A provides more context to the 
convolution model (Eqs. 1 and 2) with a closer examina-
tion of the underlying assumptions.

Stimulus Paradigm

As we proceed into the “Methods” section, this paragraph 
briefly describes the relevant experimental paradigm. 
We consider CAP waveforms evoked by a fixed probe 
(alternating polarity click) in the presence of Gaussian 
noise maskers in a forward-masking setting. The level 
of the click probe is 80 dB peak-equivalent sound pres-
sure level (peSPL). The CAP waveforms are obtained by 
averaging the responses (over the two polarities) asso-
ciated with the same masker. Figure 1a shows the time 

ΔCAP(t) = CAPmasked(t) − CAPmasked,b(t) ,

(2)ΔCAP(t) = R ∗ u(t)

representation of a stimulus cycle. The panel b of the 
same figure shows the spectral profile of the three types 
of maskers that were used in this study: high-pass noise 
maskers, notched-noise maskers with a varying notch 
amplitude, and notched-noise maskers with a varying 
notch width. The three types of maskers were designed to 
probe different aspects of the CAP, as further explained 
in the “Methods” section; all three types were needed 
to optimize the convolution model introduced next and 
to estimate the parameters of interest (in particular: the 
place-latency relationship, the growth of masking, and 
the cochlear frequency selectivity). The set of maskers 
also includes the reference condition, i.e., a broadband-
noise masker without a spectral notch.

Model

This subsection describes the architecture of the model used 
to generate the estimates of the masking-release CAP wave-
forms. Its purpose is not to provide exhaustive information 
on how the model parameters were estimated, which is done 
at the end of the “Methods” section.

Masking Input‑Output Functions

To build our model, we make the assumption that the amount 
of masking of the CAP can be quantified using the outputs 
of a cochlear filter bank and masking input/output (I/O) 
curves determining the growth-of-masking for each output 
channel (Fig. 2, steps B and C). More explicitly, if I is the 
average intensity in response to a masker at the output of a 
single cochlear filter, we assume that the amount of masking 
M for the compound response of the associated ANFs can be 
characterized by a function of I (masking I/O function). We 
used the Weibull cumulative distribution function (CDF), as 
in Verschooten et al. [18]:

where (I − I0)+ = I − I0 if I ≥ I0 , 0 elsewhere. Its parameters 
are I0 , � (scale parameter), and s (shape parameter). The 
Weibull CDF is similar to a sigmoid but does not impose 
symmetry around its half-maximum value point. By conven-
tion, we set the constant C so that the masking I/O functions 
are constrained to 100% masking for the response level.

Note that the above assumption is not the only basis of 
our model. In particular, other assumptions underlie the con-
volution model (Eq. 2). To avoid overloading the “Methods” 
section, we leave the discussion of these additional assump-
tions in Appendix A.

(3)M(I) = C

[
1 − e

−
(

(I−I0)+

�

)s]
,
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Place‑Latency Relationship

For our model to simulate forward-masked CAP waveforms, 
we need to have estimates of the relevant quantities (e.g., 
the amount of masking M or the masking-release pattern 
R ) in the latency domain. However, it is generally easier to 
consider these values in the place (or center frequency, CF) 
domain. Whenever it is useful, we will convert dependen-
cies on latencies into a dependency on CF (or vice versa) by 
assuming that CFs and latencies are related by a power-law: 
CF(�) = B(� − t0)

� for 𝜏 > t0 . In this equation, B , t0 and � 
can be estimated using the high-pass noise maskers, similar 
to the narrow-band analysis of the CAP already described in 
other studies [21, 22]. This method assumes that the high-
pass noise stimuli mask the contributions of ANFs with CFs 
above the cut-off frequency. By decreasing the cut-off fre-
quency and masking more basal ANFs, the peak latency of 
the CAP response (N1) is delayed in a similar fashion to the 
cochlear traveling wave.

Generation of the 1CAP(t) Estimates

We recall the main equation (Eq. 2): ΔCAP(t) = R ∗ u(t) , 
where ΔCAP(t) is a masking-release CAP waveform 
obtained by subtracting the response obtained under a given 
masking condition with the one obtained in the reference 

condition (no-notch). The right side of the equation is a 
convolution between a masking-release pattern R(�) and a 
unitary response u.

Figure 2 describes the steps leading to the generation of 
the estimates Δ̂CAP(t) . In the following, we justify these 
steps going backward from Δ̂CAP(t) . Δ̂CAP(t) is obtained 
by convolution of a masking-release pattern R(�) and the 
unitary response u . We assume that the masking-release pat-
tern R is related to the amount of masking M by

where R0 is the difference in the excitation pattern between 
the full-notch condition (M=0; no forward-masker) relative 
to the no-notch condition (M=1; broadband noise). Here, 
we used the convention than M = 1 for the no-notch condi-
tion. As such, R0 represents the maximum or fully unmasked 
masking release; its significance and how it is estimated is 
expressed later in the text. To generate the masking-release 
patterns, R0 and M were first estimated in the CF domain 
by discretizing the linear frequency range [600 Hz, 12 kHz] 
into uniform intervals. This allowed us to define the mask-
ing-release pattern over CF, which was then converted into 
the latency domain by mapping latency and frequency bins 
using the power-law relationship mentioned in the previous 
paragraph. Finally, to compute the amount of masking M as 
a function of frequency, we relied on a simplified model of 

(4)R = R0(1 −M),

Fig. 1   Time representation of one stimulus cycle (a) and spectral rep-
resentation of the three types of maskers (b). a The stimuli consist of 
the repetition of a masker and probe. The masker is generated from 
Gaussian noise, following one of the frequency patterns represented 
in panel b. The probe is a 80-dB peSPL click of alternating polarity. 
The forward-masked CAPs are obtained by averaging the responses 
evoked by the probe presented under the same masking condition. 
The durations illustrated are from left to right: gating time (cosine 

ramp), masker-probe interval, probe-masker interval and masker 
duration. b Schematic representation of the spectra of the three differ-
ent types of maskers. Each type of masker was designed for a differ-
ent purpose: high-pass noise maskers for the estimation of the place-
latency relationship (“narrow-band analysis” method [21]), notched 
noise maskers for the estimation of masking input-output functions 
(maskers with varying notch attenuation) or frequency selectivity 
(varying notch widths)
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cochlear filtering using a linear filter bank. Given the aver-
age power spectral density of the masker S(f ) , the average 
response intensity I at the output of a cochlear filter was 
computed using

In the above equations, < A2 > is the intensity in linear 
units while I is in dB, and w is the cochlear filter defined 
in the frequency domain, centered around 0 and normal-
ized such as its root mean square (RMS) value is 1. We 
considered that w was a 4th-order gammatone filter. The 
shape of w then depends only on the tuning of the coch-
lear filter at CF, characterized by the quality factor Q10 
(related to the 10 dB-bandwidth by Q10 = CF∕BW10 ). As 
the masker spectra are simple and defined by rectangular 
bands, analytical formulas for I as a function of CF were 
employed instead of integral expressions. These formulas 
are written in Appendix B.

< A2 >= ∫ |w(f − CF)|2 S(f ) df ,

I = 10 log10(< A2 >).

After the computation of the response average intensities 
was done, the amount of masking M was finally obtained by 
applying the masking I/O function (Eq. 3) to I.

Experimental Protocol

Preparation and Anesthesia

To assess our method, we collected forward-masked CAP 
responses in 5 adult male chinchillas (Chinchilla lanig-
era) using surgical procedures pre-approved by the Purdue 
Animal Care and Use Committee. Anesthesia was induced 
using subcutaneous injections of xylazine (2–3 mg/kg) 
and ketamine (30–40 mg/kg). Anesthesia was maintained 
using intraperitoneal boluses of sodium pentobarbi-
tal (15 mg/kg/2 h), and fluids (Lactated Ringer’s) were 
administered subcutaneously throughout the experiment 
( ∼1cc/hr). The animals’ vital signs were monitored using 
pulse oximetry (Nonin 8600V, Plymouth, MN) while 
oxygen was continuously delivered to the animal’s nose 
area. Body temperature was maintained at 37 °C using a 

Fig. 2   Flow diagram of the generation of the masking-release esti-
mates Δ̂CAP(t) . The masker spectrum (a) is decomposed by a bank 
of gammatone filters. As the masker spectra are of simple form, 
i.e., composed of rectangular bands, the average response (b) at the 
output of the filter bank was computed using an analytical formula 
(see text). The masking input-output function applied to the average 
response provides the amount of masking M(f ) (c) or, equivalently, 
the amount of masking release 1 −M(f ) (d). Frequency weights 
R0(f ) are included to account for the non-homogeneous contribu-
tions of different CFs to ΔCAP . This yields the final estimate of the 
amount of masking release defined in the frequency domain (e). With  

a change of variable substituting CFs with latencies (using a power-
law), the masking release is converted to the latency domain, giving 
the masking-release pattern R(�) (f). Once convolved with the uni-
tary response u , we finally obtain the estimate of the release wave-
form Δ̂CAP(t) (g). The parameters that are fine-tuned during the 
optimization process (gradient descent) are highlighted in red: they 
are Q10 , the masking I/O function (Weibull CDF) variables, and the 
frequency weights. The unitary response u and the power-law param-
eters relating CFs and latencies are also parameters of the model, but  
are adjusted independently by a specific procedure (see text)
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homeothermic monitoring system with rectal probe (50-
7220F, Harvard Apparatus).

Surgical Procedure

Following anesthetic induction, a tracheotomy was per-
formed to provide a low-resistance airway, reducing res-
piratory artifacts. Skin and muscles were transected follow-
ing a dorsal-midline incision, and the external ear canals 
and bullae were subsequently exposed. Hollow ear bars 
were bilaterally placed in the ear canals and secured to a 
stereotaxic frame (David Kopf Instruments, Tujunga, CA). 
Sound was delivered monaurally through the ear bars using 
a dynamic loudspeaker (DT48, Beyerdynamic) at a sampling 
frequency of 48 kHz. To prevent a progressive negative pres-
sure buildup in the bulla, a polyethylene tube (PE-90) was 
placed through an incision in the anterior bulla [23]. A sec-
ond incision was made in the posterior base of the ipsilateral 
bulla to expose the middle ear. A silver wire electrode was 
placed near the round window to record CAPs and sealed in 
place within bulla opening using light-cured dental cement 
(Prime-Dent, USA). A pocket in the nape of the neck was 
made for a silver coiled wire reference electrode soaked in 
isotonic saline and connected to the ground. All procedures 
were carried out in a double-walled, electrically shielded, 
sound-attenuating booth (Acoustic Systems, Austin, TX, 
USA). At the end of the experiments, animals were eutha-
nized by barbiturate overdose.

Signal Acquisition and Pre‑Processing

We calibrated sound input using a probe microphone (Ety-
motic ER-7C) placed near the eardrum. A flat frequency 
response (within ± 2 dB until 10kHz) was achieved using a 
real-time 256-tap digital finite impulse response filter for the 
forward-maskers implemented using Tucker-Davis Technol-
ogies (TDT, Alachua, FL) hardware (RP2.1). For the click 
probe, we adopted a different equalization strategy by using 
the inverse of a 128th-order all-pole filter computed using 
linear predictive coding (LPC) to also correct for the phase 
differences induced by the acoustic system. CAP responses 
from the round window were amplified and band-passed 
using an ISO-80 Bio-Amplifier ( 103 gain, bandpass filtered 
from 102 to 104 Hz, World Precision Instruments) before 
being recorded by hardware modules (TDT RP2.1). Signal 
acquisition was controlled by a custom MATLAB-based 
(MathWorks, Natick, MA) interface. We used 5 chinchillas 
for this study, 4 of which had exploitable data at all center 
frequencies (CFs) tested (except at CF=8 kHz for chinchilla 
Q333). The last animal had exploitable data only within a 
limited frequency range (3–5 kHz), and is not included in 
the “Results” section, although the analysis we conducted on 
the partial data did not contradict the conclusions presented 

in the paper. Prior to analysis, the CAP responses were pre-
processed by applying a Tukey window to isolate the time 
window where masking had a visible effect on the CAP 
(e.g., for chinchilla Q395: window defined on the interval 
[0.7, 5] ms, proportion of interval covered by the tapered 
cosine region: 0.4). The signals were smoothed by a Gauss-
ian filter of standard deviation 0.03 ms (or, in frequency: 
5.3 kHz). Additional pre-processing was required in two 
animals to address specific experimental artifacts: for chin-
chilla Q395, a band-rejection filter was applied to remove a 
1.5-kHz periodic electronic noise; for chinchilla Q393, the 
DC components of the CAP responses were corrected to 
compensate for a slow DC drift.

Presentation of Masker and Probe

The relevant durations within one stimulus cycle are given 
in Fig. 1a showing the time representation of the masker and 
probe. A cycle has a total duration of 160 ms. The durations 
were set according to existing data in the literature [24] as 
well as data collected during pilot experiments. We used 
in total 155 masking conditions, each associated with one 
of the three power spectral profiles shown in Fig. 1b. Each 
stimulus cycle was repeated 120 times (12 blocks × 10 repe-
titions). Within each block, the conditions were presented in 
a random order, ensuring some degree of interleaving to mit-
igate potential adverse effects due to long-term adaptation.

Masker Design

A total of 155 masking conditions were presented during 
each experiment. Apart from the reference condition (broad-
band noise), the remaining 154 conditions were divided as 
follows: (a) high-pass noise maskers, n = 12; (b) notched-
noise maskers with a varying notch amplitude, n = 77; (c) 
notched-noise maskers with a varying notch width, n = 65.

The high-pass noise maskers (n = 12) were each associ-
ated with a cut-off frequency ranging from 1.2 to 10 kHz. 
As mentioned before, these maskers were used to estimate 
the relationship between latencies and CFs.

The notched-noise maskers with a varying notch ampli-
tude (n = 77) were grouped according to the CF of the notch 
around 7 reference frequencies: 1.5, 2.2, 3, 4, 5, 6, and 8 
kHz. For each CF, 10 maskers of this type were associated 
with a notch attenuation ranging from 35 to 0 dB, thus grad-
ually merging into the no-notch condition (0-dB attenuation, 
reference condition). Except for the first experiment that was 
conducted (chinchilla Q395, corresponding to the data pre-
sented in the “Results” section), an additional condition was 
included with a notch of -3 dB attenuation (i.e., the power 
spectrum in the region of the notch was above the broad-
band-noise spectrum density); the introduction of this extra 
masker helped to determine the slope of the input-output 
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masking curve at the reference power-spectrum level. The 
notched-noise maskers described in this paragraph typically 
had a large notch width (e.g., 2-kHz width at CF=5 kHz, 
1-kHz width at CF=1.5 kHz). They were designed to esti-
mate the amount of masking as a function of place-specific 
response intensity (masking I/O curves).

The remaining maskers were related to the third and last 
type: notched-noise maskers with a varying notch width (n 
= 65). As for the previous type, these maskers were grouped 
according to the 7 reference frequencies. As an example, 10 
maskers were associated with CF=5 kHz, with the notch 
width ranging from 900 Hz to 1.4 kHz, which is of the order 
of the expected value of the 10-dB bandwidth of cochlear 
filters at this CF [25]. To probe different groups of ANFs, 
the center frequency of the notch was intentionally put at 
slightly different values between each masker; e.g., 4,800 
Hz for one masker and 5,200 Hz for another. The notch 
amplitude for this type of masker was in most cases zero 
(infinite attenuation in dB). These maskers were designed to 
estimate the frequency selectivity of the cochlear filters. The 
approach is analogous to the measurement of critical bands 
in psychological studies, which also employ notched noise 
stimuli [2, 12, 13]. The underlying principle is based on the 
observation that, if the cochlear filters are sharply tuned, 
there is a rapid reduction in masking when the notch width 
is increased starting from the no-notch condition.

The frequency spectra of all the maskers were restricted 
to the range between 200 Hz and 12 kHz. The maximum 
power spectral density (PSD), corresponding to the side-
bands of the maskers, was constant within each experimen-
tal session but varied across animals, ranging from 4 to 14 
dB SPL. This range of maximum PSD corresponds to a 
sound level of 45 to 55 dB SPL for the no-notch (broadband 
noise) condition.

Estimation of Model Parameters

Model Unknowns

The model introduced at the beginning of the “Methods” 
section and outlined in Fig. 2 has multiple unknowns which 
are reviewed here: 

1.	 The relationship between latencies and CFs. It is 
assumed to follow a power-law: 

2.	 The unitary response u.
3.	 The amount of masking as a function of place-specific 

intensity response ( masking I/O curves). In the case of 
the Weibull CDF (Eq. 3), as adopted in the rest of the 

(5)CF(�) = B(� − t0)
� for � ≥ t0 .

paper, this curve is parametrically defined by three vari-
ables ( � , I0 , s).

4.	 The tuning of the auditory filters, characterized by Q10.

5.	 The distribution R0(f ) , which was introduced in Eq. 4 
as the fully unmasked masking release. As we move to 
more practical considerations, it is convenient to think 
of R0(f ) as frequency weights that had to be included to 
account for the non-homogeneous contributions of dif-
ferent CFs to the masking release of the CAP.

Parameter Estimation

This section presents the outline of the estimation of the 
parameters listed above. Technical details on the step-
by-step procedure can be found in the code released for 
this project (jupyter notebook) [26]. To describe how the 
model was adjusted to the data, the model parameters can 
be separated into two groups. The first group of param-
eters are those that require a specific estimation proce-
dure (described in the following paragraph): these are the 
parameters defining the place-latency relationship and the 
unitary response. The other parameters constituting the 
second group (masking I/O function, quality factor Q10 , 
and frequency weights) were estimated by minimizing the 
reconstruction error of the masking-release waveforms 
using a gradient descent algorithm.

The relationship between latencies and CFs was deter-
mined using the high-pass noise maskers; when presented 
in the order of decreasing cut-off frequencies, these maskers 
progressively mask the CAP from basal to more apical AN 
contributions. We considered that the ΔCAP peak delay (N1) 
was the latency associated with the cut-off frequency. The 
latencies were fit by a power-law estimated from the peak 
delays by least-squares fitting (Powell’s dog leg method).

The unitary response u was estimated by deconvolution of 
the masking-release responses [ΔCAP(t)] with a first estima-
tion of the masking-release patterns for the notched-noise 
maskers. For this step, the CAP responses were smoothed 
by a Gaussian filter of deviation 0.06 ms (or, in frequency: 
2.6 kHz) instead of 0.03 ms elsewhere. Once the unitary 
responses and latencies were determined, they were consid-
ered fixed. However, after the estimation of all the param-
eters was done according to the procedures described in this 
subsection, the unitary response was re-estimated with the 
updated masking-release patterns and the estimation of the 
other parameters was performed a second time with the new 
unitary response.

Apart from the unitary response and the place-latency 
relationship, all the model parameters (highlighted in red 
in Fig. 2) were fitted simultaneously by minimizing the 
mean squared error (MSE) between the signals Δ̂CAP(t) 
generated by the model, and the true signals ΔCAP(t) . The 
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implementation of the corresponding optimization algorithm 
is described in the paragraph Optimization procedure below.

One challenge of the method is that most of the model 
parameters potentially depend on CF. This is the case for 
the unitary response (depending on the normalized PSTH 
as defined in the model), the parameters controlling the 
masking I/O curve, the quality factor Q10 , and the frequency 
weights R0(f ) . This issue is mostly resolved by adjusting 
different versions of the model to each CF probed instead 
of having a single model fitted on all the data. For this 
purpose, the notched-noise maskers were grouped into 7 
different center frequencies according to the frequency 
region of the notch (CF = 1.5, 2.2, 3, 4, 5, 6, or 8 kHz) 
and the associated forward-masked responses were fitted 
separately. However, the parameters defining the frequency 
weights R0(f ) were shared across the different optimiza-
tion processes. The estimation of R0(f ) at every frequency 
was made possible at the cost of a regularity assumption 
considering that R0 is a smooth function of f. We assumed 
that R0 belongs to a low-dimensional manifold, explicitly 
that R0(f ) in the range [200 Hz, 12 kHz] is only defined by 
its m = 10 first Fourier coefficients. For the estimation of 
Q10 , we assumed that the 10-dB bandwidth was constant 
in the interval of frequencies around CF and searched its 
optimal value using gradient descent. As an alternative, 
we also used a regression method assuming that Q10 could 
be approximated by a radial basis function (RBF) neural 
network. The input of the neural network was normalized 
frequency ( x = f∕15, 000 ) and its target was logQ10 . The 
activations for the first layer were Gaussian functions with 
standard deviation � = 0.5 ). The first layer had 6 hidden 
neurons and the second layer (output) was a linear combina-
tion of the hidden neuron activations. If enabled, the RBF 
network was trained the same way as the other modules of 
the model, using gradient descent to minimize the recon-
struction error of the masking-release waveforms.

Optimization Procedure

The goal of the optimization procedure is to adjust the 
model parameters highlighted in red in Fig. 2, including 
Q10 characterizing frequency selectivity, to obtain the best 
fit between the signals generated by the model and the true 
responses. While fitting all these parameters at once could 
seem intractable in a traditional setting, this approach is 
made possible by the fact that responses to many mask-
ing conditions are acquired during an experiment. We 
denote [ΔCAP(t)]i the masking-release waveforms of 
the CAP, where i is an index for the masking condition 
( i = 1⋯Ncond , with Ncond being the total number of mask-
ing conditions). The model yields estimates [Δ̂CAP(t)]i for 
each masking condition, and we define the cost function 
as the total mean square error:

MSE was minimized by gradient descent. The gradients 
with respect to the model, parameters were computed with 
PyTorch, an automatic differentiation library originally 
designed for the optimization of artificial neural networks 
[27]. A schematic for the graph of computations is provided 
in supplementary materials (Online Resource 2), that also 
synthesizes the operations that lead to the generation of 
Δ̂CAP(t) . The key point is that, although the entire model is 
complex, each step of computation is a simple differentiable 
operation, and the gradients can be computed by applying 
the chain rule. An alternating gradient scheme was adopted. 
At step 1, the gradients were computed and summed over 
all the notched-noise masker conditions and the frequency 
weights R0(f ) were updated. At step 2, the gradients were 
computed over the maskers with a notch of varying ampli-
tude and the masking I/O function was updated. At step 3, 
Q10 was updated using the maskers with a varying notch 
width. The same steps were then repeated about 100 times. 
The optimization was done separately for each CF probed. 
However, some parameters could be shared and optimized 
jointly—in particular, the frequency weights R0(f ) – using 
the distributed communication package of PyTorch. The 
parameters were initially set manually or set at plausible 
values; e.g., Q10 was set to fit the curve Q10 = 2(f∕1000)0.5 
loosely matching AN data [25], before being fine-tuned by 
the optimization algorithm. Since the cost function is not 
guaranteed to be convex with respect to the model param-
eters, and the algorithm can be stuck in local minima, several 
initializations were tried. For each run, a visual verification 
of the result was done; if the model did not achieve a close 
fit of the masking-release waveforms on the varying notch 
amplitude conditions, the initialization parameters were 
adjusted accordingly. Further discrimination between fine-
tuned models was done by selecting the one associated with 
the minimum cost function.

Results

Estimation of Input‑Output Masking Curves

Figure 3 shows an example of CAP responses in the pres-
ence of forward-maskers with a notch of varying ampli-
tude. The right panel of the figure shows the correspond-
ing ΔCAP(t) waveforms derived from the forward-masked 
CAPs by subtracting the reference response. The maxi-
mum peak-to-peak (p-p) amplitude of the masking-release 
ΔCAP is approximately a third of the p-p amplitude of 
the baseline masked CAP ( CAPmasked,b ; response associ-
ated with the no-notch condition), which in turn accounts 

MSE = ‖Δ̂CAP − ΔCAP‖2
2
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for about half of the p-p amplitude of the unmasked CAP 
(recorded in the absence of a forward-masker; not shown). 
A first indication of the masking input-output curve – the 
amount of masking as a function of cochlear-filter output 
intensity – is provided by the measure of reduction of the 
ΔCAP p-p amplitude when the masker notch attenuation is 
progressively decreased (Fig. 4a). In reality, the relation-
ship between the reduction of the CAP peak amplitude and 
the underlying masking I/O curve is not guaranteed to be 
linear, because the masking of the CAP also depends on 
the spread of the cochlear excitation pattern, which dif-
fers for each masker. For this reason, the determination 

of the reduction of the CAP amplitude serves only as a 
first approximation of the parametric masking I/O curve, 
which is then fine-tuned during the optimization proce-
dure along with the other parameters. The masking I/O 
curve at CF=5 kHz after optimization (dashed line) is also 
shown in Fig. 4a, clearly deviating from the initial curve. 
The other curves for the same animal at different CFs are 
shown in panel B. We did not find a regular pattern in the 
changes of the I/O curves with CF considering all the ani-
mals in the study. Note that since the I/O functions were 
computed using the notched-noise maskers, the amount of 
0% masking does not necessarily mean that no masking 

Fig. 3   Example of CAP data and derivation of ΔCAP(t) . Left for-
ward-masked CAP responses to 80-dB (peSPL) clicks. The masker 
presents a 2-kHz notch of varying amplitude around 5 kHz (masker 
profiles are shown at the top center of the panel). Right Correspond-

ing masking releases, considering the no-notch condition as reference 
( ΔCAP(t) = CAPmasked(t) − CAPmasked,b(t) ). CM=cochlear microphon-
ics. The notch attenuations goes from 15 to 0 dB (REF) in 3-dB steps

Fig. 4   Masking input-output (I/O) curves. a Amount of masking at 
CF=5 kHz as estimated by the peak-to-peak (p-p) amplitude of the 
responses represented in Fig. 3 (masker with a 2 kHz-wide notch cen-
tered at 5 kHz). The x-axis refers to the power spectral density in dB 
SPL within the notch. The purple cross corresponds to the reference 
condition (i.e., no-notch condition, matched to 100% masking). The 

fit to this data using a Weibull CDF is shown, as well as the fit after 
fine-tuning the model (dashed line; see text for discussion of why 
this curve is different from the p-p amplitude data), considered to 
better approximate the underlying masking I/O function of the com-
pound response of ANFs tuned to CF. b Masking I/O curves (Weibull 
CDFs) for the same animal at every CF after fine-tuning the model
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occurred for that level but rather that there was no addi-
tional masking relative to the minimum masking condition 
(masker presenting a wide notch with 35-dB attenuation).

Estimation of Latencies and Frequency Weights 

Figure 5 shows the estimated latencies for the same chin-
chilla using the narrowband analysis method. Although 
the relative errors appear to be larger at high frequencies, 
it is the deviations from the power law at lower frequen-
cies (deviations of 0.15 ms for this animal at 1 kHz, up to 
0.3 ms in another animal) which have a greater impact on 
the model performance. Note that to obtain the CAP peak 
latencies, it is necessary to also take into account the peak 
delays of the estimated unitary response, shown for the same 
animal in Fig. 6a. The estimate unitary response u keeps the 
biphasic shape of the spike unit response typically reported 
[28], but is repeated at least twice, with the two first negative 
peaks separated by 0.8 ms. The second peak has been seen 
in other studies and partly attributed to the phenomenon of 
“double-spiking,” i.e., the firing of ANFs immediately after 
the refractory period [29, 30]. However, this phenomenon is 
not systematically seen in the PSTH of ANFs in response to 
clicks [31, 32]. Another reason may be the presence of sub-
threshold electrical resonances in the auditory nerve periph-
eral dendrites [33]. Interestingly, this figure does not exhibit 
significant variations in the shape of the unitary response, 
but small changes with a trend consistent with decreasing 
CFs can be observed at 2.2 and 3 ms. These changes could 
be explained by larger group delays for apical cochlear fil-
ters (i.e., a slower build-up of response intensity), hence a 
prolonged peak in nΔPST  for lower CFs in Eq. 7. A fast 
analysis based on the deconvolution of the unitary responses 

at each CF with the unitary response at CF=8 kHz supports 
this hypothesis.

Figure 6b shows the estimation of the frequency weights 
R0(f ) representing how different CFs contribute to ΔCAP 
relative to each other. The distribution of weights is also 
shown as a function of latencies using a change of vari-
able (panel B, bottom). The gradual decrease of R0(f ) with 
CF was expected since the distribution of the preferred fre-
quency of ANFs is denser at low frequencies as a result of 
the exponential relationship between cochlear place and CF. 
However, as shown in Fig. 6b, R0(f ) exhibits, in addition, 
two narrow dips (2.5 kHz and 6 kHz) that hinder the estima-
tion, not only of the frequency weights but also of the other 
parameters of the model at the corresponding frequencies. 
At the same time, since R0(f ) is estimated as a sum of sine 
and cosine functions, oscillations in the approximation of 
R0(f ) can affect the prediction of other model parameters. 
To deal with this issue, we adopted a strategy consisting of 
approximating R0(f ) with low Fourier modes only ( m = 4 ) 
at the initialization of the optimization procedure, then 
increasing the maximum mode ( m = 10 ) during gradient 
descent. Most of the chinchillas presented the same type 
of distribution, with an overall decreasing trend for R0(f ) 
and one or two relatively narrow dips, but the dips were 
not always found at the same frequencies across animals. 
We do not have a definitive explanation for the presence of 
dips in R0(f ) , but a speculative hypothesis is that they result 
from the three-dimensional spiral cochlear geometry. Previ-
ous studies have suggested that the geometrical configura-
tion of the cochlea could account for the presence of dips in 
the spatial contributions to the cochlear microphonic [34]. 
However, the lack of understanding regarding the spatial 
origin of the CAP adds an additional layer of uncertainty to 
this explanation.

Fig. 5   Estimation of the place-latency relationship. a. Masking-
release waveforms ΔCAP for the high-pass noise maskers. The cut-off 
frequency goes from 10 to 1.5 kHz (REF: broadband noise, cut-off 
frequency 200 Hz). The responses display a shift in the peak latency 
(N1) that follows the same trend as the cochlear traveling wave. The 
responses for 8 out of 12 high-pass noise maskers are shown. b. Esti-

mated latencies as a function of CF (green crosses, log-log scale) 
from the data represented in panel A. Fit (dashed line): power law, 
CF = 11.6

(
t − t0

)−0.64 , with t0 = 0.83 ms (standard error: 0.05 ms; 
note: to interpret the value of t0 , one also has to take into account the 
timing of the unitary response, see Fig. 6a)
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Fitting of 1CAP and Estimation of Frequency Selectivity

Figure 7a shows how the model fit the experimental data 
for two masking conditions. Panel B is a synthesis of the 
prediction errors as a function of CF for the same animal. In 

most cases, more than 90% of the variance was accounted 
for by the model. Remarkably, for some CFs, the predic-
tion error almost reached noise level (after pre-processing). 
Equally robust fits were also obtained for the other animals 
in the study.

Fig. 6   Other ancillary parameters of the model. a. Estimated uni-
tary responses u corresponding to the weighted average of deconvo-
lutions of ΔCAP responses (notched-noise maskers with a varying 
notch attenuation) with their associated masking-release patterns. 
The estimated unitary responses have been normalized to have the 
same baseline-to-peak amplitude. b. Estimation of the frequency 
weight distribution R0(f ) (top) representing the relative CF con-

tributions to ΔCAP . The weights below 1.5 kHz and above 8kHz 
(dashed lines) are a result of extrapolation and do not correspond to 
real data points. The associated distribution in the latency domain 
is shown (bottom). The conversion from CF to latency was done 
using the relation CF(�) = B(� − t0)

�
+
 , with the change of variable 

R0(f )df = R0(f )B�(� − t0)
�−1d� = R0(�)d�

Fig. 7   Fitting of ΔCAP(t) : results. a Two examples of fits of ΔCAP(t) 
for two notched-noise maskers after parameter optimization. The 
first masker belongs to the varying notch width type, while the sec-
ond masker belongs to the varying notch attenuation type. Masking-
release excitation patterns are shown in dashed blue (arbitrary scale 

and zero for y-axis). b Synthesis of errors and ΔCAP RMS amplitude 
values (computed on the 100% region of the Tukey window after pre-
processing of the data) at the different CFs from the same animal. 
The squared errors are averaged across all conditions corresponding 
to notched-noise maskers with a notch centered around CF
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Finally, we present the results of the estimation of 
frequency selectivity, which was the main goal of the 
present study. Figure 8 shows the fitting error for ΔCAP 
for CF=6 kHz as a function of model filter 10-dB band-
width for all chinchillas. The fitting error is computed 
on the maskers presenting a varying notch width around 
CF=6 kHz which were designed to estimate cochlear 
frequency selectivity. To plot this figure, the model 
parameters were found by gradient descent and consid-
ered fixed except for the 10-dB bandwidth which was 
varied from 500 Hz to 5 kHz. The bandwidth minimizing 
the prediction error provides an estimate of the 10-dB 
bandwidth at CF, as shown by the arrow for one of the 
animals. Two curves exhibit a larger curvature at their 
minimum point, showing that the data collected from 
different animals do not always provide the same amount 
of information about Q10 (in the sense of Fisher infor-
mation). For each chinchilla, we also estimated Q10 as a 
function of CF using a RBF network, to take advantage 
of the assumed smoothness and regularity of the quality 
factor with respect to CF. These regressions are shown 
in Fig. 8b, along with their average and standard devia-
tion across animals. An average of Q10 values derived 
directly from AN tuning curves is also provided for com-
parison [25], highlighting the close match between the 
two datasets.

Discussion

Suitability of the Convolution Model 
for Forward‑Masked CAPs

Our approach to fit forward-masked CAP responses with a 
differentiable convolution-based model led to accurate pre-
dictions of forward-masked CAP waveforms. The genera-
tion of the waveform estimates relied on a consistent set of 
parameters (including cochlear frequency selectivity), which 
were estimated by gradient descent (parametric masking 
I/O function, frequency weights, quality factor Q10 ) or by a 
specific procedure (latencies and unitary responses). More 
than 90% of the variance of the masking-release waveform 
ΔCAP(t) was explained by the model considering the Gauss-
ian notched-noise maskers, in most animals and CFs. Note 
that this prediction error is calculated without cross-valida-
tion so that a part of the performance of the model could be 
due to overfitting the data. However, the number of maskers 
divided by the number of reference CFs (155/7=22.14) is 
relatively large compared to the number of effective param-
eters by CF ( ∼ 6, excluding the unitary response estimated 
from a weighted average of the CAP waveforms). The inter-
actions between the variables of the model are also limited 
thanks to the design of each type of masker to estimate spe-
cific parameters (i.e, the high-pass noise maskers are used 

Fig. 8   Estimation of the frequency selectivity. a Plot of the fitting 
errors of Δ̂CAP as a function of model 10-dB bandwidth for each 
chinchilla. The minimum error corresponds to the estimate of the 
10-dB bandwidth using gradient descent (e.g., the estimated band-
width for Q393 at 6 kHz is 1.66 kHz). The error was computed over 
the responses corresponding to the notched noise maskers present-
ing a varying notch width around CF=6 kHz. The data for chinchilla 
Q432 (dashed line), characterized by a lower signal amplitude, was 
multiplied by 5 to match the scale of the other plots. b Synthesis of 

the estimates of the quality factor Q10 as a function of CF. Crosses 
correspond to the estimates using gradient descent for each CF inde-
pendently; solid lines correspond to estimates using a regression tech-
nique (RBF network) during the optimization of the model parame-
ters. The gray shaded area shows the average and standard deviation 
of the regressions (solid lines). Average data from published ANF 
recordings in chinchillas [25] are given for comparison (dashed pur-
ple line) to support the accuracy of the current approach
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to estimate the parameters of the place-latency model; the 
maskers with a varying notch amplitude are used to estimate 
the masking I/O function, etc.). These two factors combined 
reduce the potential for overfitting.

One of the underlying assumptions of the convolution 
model was that applying different degrees of masking by 
manipulating the masker notch would substantially change 
the amplitude of the masking-release waveform ΔCAP , but 
not its overall shape (Appendix A). We found that it was 
indeed the case, as shown for example in Fig. 3 (right). 
However, we noticed an exception during a pilot experiment 
where a reduction in the masker notch attenuation from 15 
to 6 dB resulted in an additional 0.1 ms delay in ΔCAP . We 
attributed this observation to the lower probe sound level 
that was used for this experiment compared to subsequent 
sessions, suggesting the importance of using a loud probe 
to obtain a sufficiently time-localized PSTH and mitigate 
this issue.

In the convolution model, the latencies were related to 
CF by a power-law. Although it captured the overall trend 
well, the local dependence of latencies on CF was not always 
properly described by a single power-law model fitted over 
the entire range of CFs. In addition, the latencies were small 
above CF=4 kHz (< 0.1 ms, Fig. 5b) relative to the width of 
the unitary response, therefore the relevance of the convo-
lution model could be questioned for high CFs. A simpler 
model in which all the contributions of higher CFs are con-
sidered synchronous would probably equally well describe 
the ΔCAP masking-release waveforms. However, the convo-
lution model remains robust when the latencies are of small 
magnitude and can provide a more accurate model for lower 
CFs where the latency differences are more pronounced. 
Latencies could also show greater variations when consider-
ing other animal species.

The fitting of the ΔCAP waveforms after the adjustment 
of the model was remarkably accurate, but the estimation 
procedure presented several challenges. The fact that the 
model relies on a relatively large number of parameters, 
especially if we include all the possible dependencies on CF, 
can make the optimization cumbersome. The optimization 
of the model is however facilitated by the existence of new 
elegant libraries for automatic differentiation. We found that 
the main difficulty regarding the estimation of the different 
model parameters was the determination of the frequency 
weights R0(f ) . The model would be greatly simplified if we 
could assume that different CFs contribute to ΔCAP with 
the same magnitude, but we found that it was not the case. 
We showed one extreme case in Fig. 6b, where two narrow 
dips (at 2.5 kHz and 6 kHz) were present in R0(f ) . The esti-
mation of R0(f ) is still possible with regularity assumptions 
and notched-noise maskers with notches distributed over 
the entire range of frequencies. However, if the dips are too 
steep, the estimation of the frequency weights and of the 

other parameters can be affected. As potential evidence, the 
largest deviation between Q10 values derived from AN tun-
ing curves and those obtained with our estimation procedure 
(Fig. 8b) was observed at 2.2 kHz for the animal presenting a 
dip around this frequency (blue cross). By using a regression 
technique for the estimation of Q10 , we can however exploit 
the regularity of the quality factor with respect to CF to still 
provide a reasonable estimate of frequency selectivity (blue 
solid line in Fig. 8b).

Estimation of Frequency Selectivity Using 
Forward‑Masked CAPs

We found a good agreement between the estimates of the 
quality factor averaged over the 4 experiments for which 
we had complete data (Fig. 8) and published values derived 
from the collection of many ANF tuning curves in chin-
chillas [25]. For one animal (chinchilla Q395), single-fiber 
auditory-nerve recordings were conducted for another exper-
iment after the end of the collection of the CAP responses. 
The tuning-curve Q10 factors from the ANF recordings were 
close to the Temchin et al. (2008) data, but the estimate of 
Q10 using forward-masked CAPs followed a non-monotonic 
trend not seen in the data (blue line, Fig. 8b). This suggests 
that, while the results matched published ANF data when 
averaged over experiments, the method is not robust enough 
to provide an exact estimate at an individual level. Overall, 
it is necessary to exercise some caution when interpreting 
the results, despite the striking similarity observed between 
our averaged estimates and the averaged data from Temchin 
et al. (2008). Indeed, several factors add some uncertainty 
to the comparison of quality factor estimates: a) there is a 
significant spread of Q10 values when examining individual 
ANF tuning curves [35], and their measurements typically 
involve the use of low-intensity tones; b) tuning-curve esti-
mates employ an iso-response method, while our approach 
is closer to an iso-input method: this is known to have con-
sequences for the estimation of frequency tuning [6, 36]; c) 
the number of experiments conducted here was limited to 
4. Given these factors, the main conclusion is that the two 
averaged sets of data fall in the same range of values and 
have the same CF trends, rather than indicating outstand-
ing accuracy in predicting absolute Q10 values using our 
method. Despite these potential limitations, the accuracy of 
our method in overall values suggests that it may be highly 
valuable as an evoked-response method for comparing AN 
tuning across hearing-loss etiologies and/or across species 
without requiring single-unit data.

Our experimental approach is akin to the experiments 
of Verschooten and colleagues [4, 18] on the estimation 
of cochlear tuning – their work was in turn an improve-
ment of experiments using forward-masked CAPs that 
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were conducted in the 1980s [15, 17]. The estimation 
method used by Verschooten et al. involved establish-
ing iso-response curves for masker level versus masker 
notch width—the response criterion being that 66% of 
the initial CAP amplitude had to be restored. A measure 
of tuning was derived from these curves by considering 
the 10-dB bandwidth—reduced to a single auditory filter 
model, this measure can be seen as the bandwidth encom-
passing 90% of the frequency response power spectrum 
(called BW90 in other works [37]). The main advantage 
of their technique compared to ours is that it did not 
require the assumption that the amount of masking of 
synchronized ANFs is driven by input-output curves that 
are to be determined. Rather, their measure of tuning 
was considered as an empirical quantity and assumed 
to be proportional to the 10-dB bandwidth of ANF tun-
ing curves. They found a good agreement between the 
two quantities after a constant correction factor was 
applied. However, the conversion factor from CAP to 
ANF data was not the same for every species and was 
smaller for small mammals. In addition, the correction 
factor for macaques was not constant as a function of CF 
(S5 Fig. in [4]). It is therefore not clear how the derived 
measure can be interpreted, as it may be affected differ-
ently from one species to another by different factors 
(e.g., differences in masking-release patterns). By con-
trast, the strength of our method lies in the mathemati-
cal modeling of the forward-masked CAPs that seek to 
capture the essential physiological aspects relevant to the 
amplitude and shape of the CAP waveforms. Our model 
incorporates the complex relationship between frequency 
selectivity and the effect of masker manipulations (e.g., 
increasing notch width) on the forward-masked CAP 
waveforms. This limits the reliance on an empirical 
correction factor. We were able to fit ANF tuning data 
without any additional factor (Fig. 8) on the experimen-
tal data we collected. Further testing of our method’s 
accuracy would require additional experimental work and 
analysis involving other species. The convolution-based 
method could have other advantages. Since the entire 
ΔCAP signal is used instead of only the CAP peaks, one 
can expect the method to be more robust to noise. Fur-
thermore, it exploits all the available data, whereas the 
“fast” procedure in Verschooten et al. searches for a par-
ticular masker level meeting the masking criterion, thus 
potentially wasting measurement points. Beyond these 
aspects, a potential of our analytical approach is that the 
mathematical model and experimental paradigm could 
be adapted to study more complex aspects of cochlear 
signal processing, such as compressive nonlinearities, as 
mentioned in the next paragraph.

Limitations Related to the Simplified Underlying 
Auditory Model

A few difficulties associated with the model were men-
tioned throughout the paper, including changes in the model 
parameters with CF that make estimation more challenging. 
Another set of limitations is related to the oversimplifica-
tions of the model to describe the behavior of the cochlea. 
One major drawback of the model is that it assumes that 
the cochlear frequency decomposition, implemented by 
a filter bank independent of sound level (Fig. 2), is lin-
ear. However, this assumption is not valid for the healthy 
ear, since compressive nonlinearities decrease the coch-
lear frequency selectivity when intensity is increased [5]. 
The non-linearities also modify the input-output functions 
depending on the amount of suppression [14]. Therefore, 
including these nonlinear effects in the model or adapt-
ing more complete computational models of the auditory 
periphery for the proposed paradigm (e.g., BEZ model [38]) 
could provide insights into how compressive nonlinearities 
affect cochlear processing, but given the major extension 
in scope, is left for future developments. To study nonlin-
ear effects, a greater variety of masking conditions would 
have to be employed during data collection (e.g., various 
level or asymmetry of notches relative to one CF); however, 
this additional set of conditions is certainly possible. As 
an example, Verschooten et al. evaluated the level depend-
ence of cochlear frequency selectivity in cats by presenting 
maskers of various intensities [18].

Other aspects of the auditory model considered in this 
work also correspond to oversimplifications of cochlear 
signal processing. Auditory filter frequency profiles are in 
reality asymmetric, and the lower and upper sides are not 
affected the same way by nonlinearities [39]. We focused 
on the “tip” of the auditory filters, which can be accurately 
described by gammatones—we also tried Gaussian filters 
and did not find significant differences using one model or 
the other. But auditory filters also present a low-frequency 
tail, the latter showing different attributes depending on fil-
ter CF [25]. In addition, the CF of cochlear filters change 
with the degree of compression [40]. Future work is needed 
to explore whether the proposed method could be extended 
to include these different aspects.

Compared to non-invasive techniques for measuring 
cochlear frequency selectivity (such as OAE-based meth-
ods or psychoacoustic experiments based on masking), 
estimation methods using forward-masked CAPs have the 
advantage of being more closely related to AN activity. This 
advantage would be especially meaningful if more complex 
aspects of cochlear processing, such as compressive nonlin-
earities, could be integrated in the model. In the transition 
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of the proposed method to human subjects, the question of 
the quality of the CAP measurements also gains importance. 
While recent studies using tympanic membranes show prom-
ise for obtaining a reasonable SNR [41, 42], extra-tympanic 
measurements alone may be too limited to provide exploit-
able data. More invasive alternatives also exist for translat-
ing the method to humans, such as trans-tympanic measure-
ments [4, 11] or intracranial recordings during surgeries for 
neurovascular conflicts [43–45].

Appendix A: Breakdown of the Convolution 
Equations

In this appendix, we take a closer look at the convolution 
equations (Eqs. 1 and 2), since the assumptions justifying 
these formulas were implicit in the main body of the paper.

We first start by considering the equation for the non-
masked version of the CAP (Eq. 1), recalled here:

This formula can in fact correspond to two different 
approaches, depending on how the unitary response is 
defined. If the unitary response is the same as the spike 
unit response, then E is the compound post-stimulus time 
histogram (PSTH) of all ANFs. This is consistent with 
several studies that use elaborate computational models 
of ANF activity to simulate compound PSTHs and then 
generate CAP waveforms [20, 46]. This differs however 
from our approach, as we actually never try to reproduce 
the compound PSTH. In this sense, our work is closer to a 
second approach [47, 48], where E is defined as an excita-
tion spread over latencies with a one-to-one mapping of 
latencies and CFs. This approach necessarily requires that 
the spike-time jitter of ANFs tuned to a given CF is encom-
passed in the unitary response since it cannot be included 
in the excitation pattern.

To make the above distinction more explicit, let us con-
sider nPST  , the compound PSTH of ANFs tuned to a sin-
gle CF normalized by the total number of spikes. We also 
assume that only a limited segment of the cochlear parti-
tion contributes to the CAP waveform, so that nPST  can be 
considered independent of CF. We can then write a double 
convolution equation for the CAP waveform:

where nPST , cPST  stand for the normalized and compound 
PSTHs, and UR is the spike unit response. In this formula, 
we have used notations similar to Bappert et al. [48], which 
describes the double convolution approach in more detail. If 

CAP (t) = E ∗ u0 (t) .

(6)

nPST  is left outside the function to the right of the convolu-
tion, the unitary response aligns with the spike unit response, 
corresponding to the first approach of simulating the com-
pound PSTH. In our case, however, the unitary response 
u0 takes into account the spike unit response as well as the 
normalized spike histogram nPST .

Now let us take a closer look at the equation for the 
masked version of the CAP, specifically the masking-release 
ΔCAP(t) , which is the real focus of this paper. Since we con-
sider masking releases associated with the manipulation of 
a narrow spectral notch, the assumption that only a limited 
segment of the cochlear partition contributes to ΔCAP(t) 
is always justified. We can therefore approximate ΔCAP(t) 
with an equation similar to Eq. 6:

We recall that R(�) is the masking-release pattern and u is the 
unitary response – here, the zero subscript has been removed to 
distinguish the unitary response from the one in Eq. 6, defined 
differently. Again, u is considered as the compound of the spike 
unit response and the difference in the PSTH of a population of 
synchronized ANFs normalized with respect to the amount of 
masking ( nΔPST ). If, on the other hand, the unitary response 
was identical to the spike unit response UR , the function to the 
left of the convolution would be the difference in the compound 
PSTH induced by masking ( cΔPST ). We are not interested, 
however, in the actual decomposition of u , justifying that the 
simpler equation ΔCAP = R ∗ u is kept in the main body of 
the paper. It is worth noting that, in this equation, we assume 
that nΔPST is independent of the amount of masking. If a click 
probe of medium-to-high intensity is used, the individual PSTHs 
are characterized by a sharp predominant peak restricted on a 
short time interval [29]. As a result, the changes in the shape 
of nΔPST are expected to have a minimal effect on the CAP; 
however, the amount of masking applied to the PSTHs will have 
a significant impact on the CAP amplitude. Prior to any experi-
ment, we tested whether this hypothesis was reasonable with a 
well-established computational model of ANF responses (BEZ 
model [38]). This analysis is left as supplementary material 
(Online Resource 1). As for the spike unit response UR , studies 
have typically reported that it can be considered independent of 
the ANF best frequency or spontaneous rate [28, 49, 50].

Appendix B: Gammatone Model

This appendix contains the computation of the average 
intensity at the output of a gammatone cochlear filter:

Note: In this paragraph, � does not have the same 
use as in the main part of the paper where it is a 

(7)
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variable for latencies. Here, it refers to the time con-
stant of the gammatones.

The k-th order gammatone, characterized by an envelope 
proportional to tk−1

+
e−t∕� , is defined in the frequency domain 

(complex version, w.l.o.g.) by

The average quadratic response considering a single-band 
Gaussian noise masker is

The last integral is then computed by writing

In the case of a masker presenting multiple bands, the 
expressions for each band simply add up.

Note: The 10-dB bandwidth is related to �  by 
BW10�� =

[
101∕k − 1

]1∕2.
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