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ABSTRACT

This study explored the physiological response of the 
human brain to degraded speech syllables. The deg-
radation was introduced using noise vocoding and/or 
background noise. The goal was to identify physiologi-
cal features of auditory-evoked potentials (AEPs) that 
may explain speech intelligibility. Ten human subjects 
with normal hearing participated in syllable-detection 
tasks, while their AEPs were recorded with 32-channel 
electroencephalography. Subjects were presented with 
six syllables in the form of consonant-vowel-consonant 
or vowel-consonant-vowel. Noise vocoding with 22 
or 4 frequency channels was applied to the syllables. 
When examining the peak heights in the AEPs (P1, 
N1, and P2), vocoding alone showed no consistent 
effect. P1 was not consistently reduced by background 
noise, N1 was sometimes reduced by noise, and P2 was 
almost always highly reduced. Two other physiological 
metrics were examined: (1) classification accuracy of 
the syllables based on AEPs, which indicated whether 
AEPs were distinguishable for different syllables, and 
(2) cross-condition correlation of AEPs (rcc) between 
the clean and degraded speech, which indicated the 
brain’s ability to extract speech-related features and 
suppress response to noise. Both metrics decreased 
with degraded speech quality. We further tested if the  
two metrics can explain cross-subject variations in 
their behavioral performance. A significant correlation 
existed for rcc, as well as classification based on early 
AEPs, in the fronto-central areas. Because rcc indicates 
similarities between clean and degraded speech, our 

finding suggests that high speech intelligibility may 
be a result of the brain’s ability to ignore noise in the 
sound carrier and/or background.

Keywords:  EEG, noise vocoding, auditory evoked 
potentials, noise suppression, speech intelligibility,  
speech perception

INTRODUCTION

Human speech contains highly redundant information 
(Stilp 2011; Beekhuizen et al. 2013). When noise is intro-
duced to sound carriers or added in the background, 
speech perception can stay high until too much distortion 
occurs (Eisenberg et al. 2000; Friesen et al. 2001; Shannon 
et al. 2004). One may ask the following questions: Does 
the brain activity reflect the distortion when speech is still 
highly intelligible? What features of the brain signals may 
be used to predict human’s speech perception?

In this study, we examined two features of brain sig-
nals recorded from human subjects who were performing 
syllable-recognition tasks. Ten normal-hearing subjects 
were presented with clean or noise-vocoded syllables in 
the form of consonant-vowel-consonant or vowel-conso-
nant-vowel, while their auditory-evoked potentials (AEPs) 
were recorded by a 32-channel electroencephalography 
(EEG) system. In some conditions, background noise was 
added to the non-vocoded or vocoded speech. Subjects 
were asked to select the perceived syllable from a list of 
six.

First, we examined traditional AEP features as posi-
tive and negative peaks, such as the P1, N1, and P2. 
The P1-N1-P2 complex was frequently used in previous 
studies using clean (Digeser et al. 2009; Swink and Stuart 
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2012; Wagner et al. 2016), vocoded (Friesen et al. 2009; 
Won et al. 2011; Utianski et al. 2015), and noisy (Koerner 
et al. 2016; Faucette and Stuart 2017) speech. In general, 
the amplitudes of N1 and P2 are typically reduced with 
the addition of background noise (Faucette and Stuart 
2017). It has also been shown that the addition of back-
ground noise significantly reduced a “P3” component 
(Koerner et al. 2016), which agrees with our P2 in terms 
of the latency. However, it was suggested that the behav-
ior of the P1-N1-P2 complex with vocoded speech cannot 
fully account for human perception (Friesen et al. 2009).

Therefore, apart from those peaks, two other EEG 
metrics were also tested. The first was the classification 
accuracy for individual syllables. That is, after a classifier 
has been trained, can it predict which of the six syllables 
was presented given a particular brain waveform? The 
rationale of using this metric is that, when the subject can 
correctly choose the perceived syllable, his/her brain sig- 
nals must respond differentially to individual syllables in 
a consistent way. In contrast, when speech is highly dis-
torted, especially when random noise is introduced to the 
sound carrier or background, brain signals may no longer 
be able to consistently differentiate individual syllables. 
Therefore, one would predict that the classification perfor-
mance should decrease as the listening condition becomes 
more difficult. Similar classification studies have been 
done previously with non-vocoded speech (Brandmeyer  
et al. 2013; Kim et al. 2014; Mugler et al. 2014).

However, one could also argue that a better classi-
fication may not indicate better speech recognition, if 
the brain waveforms to individual syllables are highly 
distorted. When our brain can correctly perceive dis-
torted speech, it should be able to extract speech-related 
features and more or less suppress its response to noise 
in the vocoder or background, thus making it more simi-
lar to its clean-speech response. Previous studies showed 
that speech envelopes are found to be linearly related to 
EEG within 2–8 Hz (Pasley et al. 2012; O’Sullivan et al. 
2015). The mechanism probably originates from cortical 
entrainment, which refers to phase-locked brain activity 
to speech envelope and other linguistic features. Corti-
cal entrainment is believed to play an important role in 
speech perception (Peelle et al. 2013; Ding et al. 2014; 
Weisz and Obleser 2014; Baltzell et al. 2017; Puvvada 
et al. 2017; Steinmetzger and Rosen 2017). In particular, 
some studies focused on examining the so-called “noise-
robust” cortical entrainment to speech envelope (Ding 
et al. 2014; Puvvada et al. 2017).

Although the present study did not directly examine 
cortical entrainment, the concept predicts that, if the 
brain does suppress its response to noise when being 
entrained to speech envelope, AEPs evoked by vocoded 
speech and/or speech in background noise should more 
or less resemble the clean-speech AEPs. Therefore, the 
second metric we examined was the cross-condition cor-
relations of AEPs between clean and vocoded speech 

with/without background noise. A high correlation value 
would indicate that the brain is capable of ignoring noise 
in the vocoder or background.

For the two physiological metrics, we further examined 
if one of them can explain cross-subject behavioral vari-
ations. In other words, when a human subject achieves 
high speech intelligibility with severely distorted speech, 
does the person also show highly distinguishable AEPs 
for different syllables, or, alternatively, high similarities of 
AEPs between the clean and distorted speech?

Methods

Human Subjects and EEG Recording

Ten human listeners (aged 19–40 years; four females and 
six males) participated in the study. The listeners were 
screened to have pure-tone thresholds of ≤ 20 dB HL at 
0.25, 0.5, 1, 2, and 4 kHz. Experiments were conducted 
in a double-walled sound booth (8′ × 8′ × 8.1′; Noise Barri- 
ers LLC). The subjects performed behavioral tasks while 
their EEG signals were recorded. The experimental pro-
tocol was approved by the Institutional Review Board of 
Saint Louis University.

EEG signals were obtained with a 32-channel portable 
system (eego™sports; ANT Neuro) including a head cap, 
an amplifier, and a Windows tablet computer. There 
were 31 active electrodes using the common average 
(i.e., the average of all the electrodes was subtracted 
from each electrode recording). Each electrode cup 
was filled with conductive gel (Onestep Cleargel). The 
sampling frequency of the EEG amplifier was 500 Hz. 
Diotic sound was generated with a sampling frequency 
of 44.1 kHz using MATLAB (MathWorks) and delivered 
to a StimTracker (Cedrus). The StimTracker relayed 
the sound to a headphone (Sennheiser HD 280 PRO), 
while sending precisely timed markers to the EEG ampli-
fier. Sound levels were calibrated with a Sound Pressure 
Meter (Extech).

An independent component analysis approach (Zhou 
and Gotman 2009) was applied offline to remove blinking 
artifacts. About 2% of trials (51 out of 2700) were then 
rejected from the analysis, since those trials contained 
notable artifacts. To obtain AEPs, signals were bandpass-
filtered between 0.1 and 20 Hz using a 50th-order finite 
impulse response filter. The signals were then averaged 
over 75 trials for each syllable and sound condition to 
obtain an AEP.

Sound and Behavioral Paradigms

A total of six syllables (i.e., /aba/, /aka/, /asa/, /hӕd/, 
/hͻd/, and /hid/) were tested using combined consonant-
vowel syllables. Consonant-centered syllables spoken by 
a male talker were presented in the form of /aCa/, with 
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C being one of the three: /b, k, s/ (Shannon et al. 1999). 
Vowel-centered syllables spoken by a female talker were 
presented in the form of /hVd/, with V being one of 
the three: /ӕ, ͻ, i/ as in “had”, “hod”, and “heed” 
(Hillenbrand et al. 1995). Figure 1b shows example spec-
trograms of non-vocoded (top) and 22-channel vocoded 
syllables (bottom). The syllables started at time 0.

A noise-vocoding technique similar to Shannon et al. 
(1995) was applied to speech in quiet and in noise. 
Briefly, the number of bandpass filters was 22 or 4, with 
center frequencies evenly spaced on a logarithmic scale 
from 0.5 to 10 kHz. The filters were implemented as 
3rd-order Butterworth filters, and the bandwidth of each 
filter was 24.7+ 0.1CF (Hz), according to the equivalent 
rectangular bandwidth (ERB) of human listeners with 
normal hearing (Glasberg and Moore 1990). The low-
pass filtering for envelope extraction had a cutoff fre-
quency of 150 Hz. The noise carrier was a broadband 
noise passing through the same bandpass filters and was 
randomly generated for each filter. As can be seen in 
the spectrograms, noise vocoding smeared the spectral 
features (Fig. 1b, bottom). The final sound level of the 
natural or vocoded speech alone without background 
noise was approximately 50 dB SPL, i.e., variations of the 
number of channels did not affect the overall sound level.

One difference between our approach and the Shannon  
et  al. study is that, when the channel number was 
decreased to four, we did not broaden the bandwidths 
but kept them as the human ERB. The rationale is 
that, when the bandwidth broadens, the envelope after 

bandpass filtering will be altered. For example, after the 
vocoding process, we compared the narrowband (e.g., 
50 Hz)  envelopes between clean and vocoded speech  
and found a correlation value of 0.7 using our ERB 
bandwidths. The correlation using the continuous band-
widths was only 0.4. As a consequence, our approach did 
not cover the entire frequency range.

The background noise was a white noise of 33 dB 
SPL with a flat spectrum between 0.4 and 15 kHz. The 
noise waveform was randomly created on each trial and 
was independent from the noise carrier during vocoding. 
Onset of the background noise was 0.2 s prior to the 
speech onset. When background noise was added, the 
speech level was lowered from 50 to 40 dB SPL so that 
a significant amount of behaviorally incorrect responses 
may be obtained with the 4-channel condition, yielding 
a signal-to-noise ratio (SNR) of 7 dB. The speech and 
broadband noise, if any, were added together before noise 
vocoding was applied.

Note that we chose a moderate SNR because large 
effects of background noise can already be seen at this 
level. Although, behaviorally, a lower SNR may generate 
more detection errors with the human subjects, it would 
be difficult to extract speech-related information using 
EEG (a better recording method, such as invasive elec-
trode arrays, may be more suitable to perform the task).

There were three vocoding conditions: non-vocoded 
and vocoded with 22 or 4 channels. For each vocoding 
condition, there was either background noise or not. 
Therefore, a total of six conditions were obtained from 
each subject. Because there were six syllables and six 
sound conditions, a total of 6× 6× 75 = 2700 trials were 
obtained from each subject, with 2% of the trials further 
rejected for containing artifacts.

The stimulus condition (vocoded vs. non-vocoded, in 
quiet vs. in noise) was fixed for a given recording ses-
sion with the six syllables presented in a random order. 
On each trial, a syllable with or without background 
noise was randomly selected from the six syllables, and 
the subjects were asked to choose the perceived syllable 
from the list. Trials were presented every 7 s, and a 
behavioral/recording session contained 90 trials. Because 
sound presentations were clearly different for vowel- and 
consonant-centered syllables, the subjects were essentially 
choosing from three options in each group, and thus, the 
chance performance was 1/3. A correct percentage ( ̂p ) 
was obtained in the end.

To test the significance of behavioral performance, the 
confidence interval, CI  , was computed as

(Lock et al. 2017) for a 95% confidence interval. If 
CI − p̂ was greater than chance (i.e., 1/3), a statistical sig-
nificance was reached. When comparing two percentages, 

(1)CI = ±1.960×

√
p̂(1− p̂)

n

Fig. 1   a Spectrograms of two non-vocoded syllables, /hͻd/ and 
/aka/. b Spectrograms of the two syllables after being vocoded with 
22 frequency channels
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p1 and p2 , a two-proportion z test (Lock et al. 2017) can 
be computed as

with the null hypothesis being H0 : p1 = p2 . Here, 
n = 75× 6 = 450 trials for all six syllables in each sound 
condition.

AEP Peak Analysis

We examined three peaks that were most prominent 
in the AEPs, namely, the P1, N1, and P2. Not every 
electrode showed all three peaks, and not every subject 
showed the same peaks. Therefore, in the result (Table 1), 
we only presented the peaks that occurred consistently for 
the majority of subjects for each electrode.

Because different syllables can create variations in the 
peak time, a relatively large window, 200 ms, was used 
in finding the peak value. Specifically, after the mean 
peak latencies (Table 1) had been identified, a window 
of ± 200 ms was used to find the maximum or the mini-
mum value of the peak. Note that this large window may 
result in overlaps in the adjacent windows. Fortunately, 
for P1, N1, and P2, we were computing the maximum, 
minimum, and maximum of the EEG traces in those 

(2)z = (p1 − p2)/
√
p1(1− p1)/n + p2(1− p2)/n

windows, respectively. Therefore, the overlaps should not 
cause confusions in the result.

Note that P2 would remain P2, even if there was no 
discernible P1 before. Also, as mentioned later, there can 
be a very early negative peak around 0.1 or 0.2 s caused 
by the onset of background noise. This peak was excluded 
from the peak analysis.

EEG Signal Classification

Signal classification measures how responses to differ-
ent syllables were consistently different from one another. A 
linear discriminant analysis (LDA) (Balakrishnama et al. 
1999) was used to classify AEPs elicited by different syl-
lables. We examined the early (0–0.5 s) and late por-
tions (0.5–1 s) of the AEPs separately for classification 
accuracy.

A “leave-one-out-cross-validation” approach based on 
combined trials was used to provide the training and test 
samples to the classifier. Each time, four trials obtained 
with the same class (i.e., syllable) were randomly selected 
and averaged to form a test waveform. Meanwhile, 200 
training waveforms for each class were randomly formed 
from the pool, excluding trials that had been selected as 
the test waveform. A 1D weighting function was derived 
using the LDA and applied to the test waveform to come 

TABLE 1

 A, mean peak latencies for all the electrodes when there were consistent peaks across the human subjects. NA, a consistent 
peak cannot be identified for the majority of subjects

Electrodes Peak Latencies (s) Electrodes Peak Latencies (s)

P1 N1 P2 P1 N1 P2

Fp1 NA NA NA C4 NA 0.20 0.28

Fpz NA NA NA T8 NA NA NA

Fp2 NA NA NA M2 0.20 0.28 NA

F7 NA NA NA CP5 NA 0.27 NA

F3 NA NA NA CP1 NA 0.20 0.28

Fz NA 0.20 0.28 CP2 NA 0.20 0.30

F4 NA 0.20 0.28 CP6 NA NA NA

F8 NA NA NA P7 0.20 0.28 NA

FC5 NA NA NA P3 NA NA NA

FC1 0.15 0.20 0.28 Pz NA NA NA

FC2 NA 0.20 0.27 P4 NA NA NA

FC6 NA NA NA P8 0.18 0.28 NA

M1 0.20 0.30 NA POz NA NA NA

T7 0.20 0.28 NA O1 0.18 0.28 NA

C3 NA 0.20 0.28 O2 0.20 0.28 NA

Cz NA 0.20 0.30
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up with a decision variable. This procedure was repeated 
for 50 times to obtain the accuracy, p̂ . Because the struc-
tures of the syllables were different for vowels and con-
sonants (Fig. 1a), a two-step classification was performed. 
The early or late AEP on each trial was first classified as 
a vowel or a consonant using the LDA. A second classifi-
cation of the exact syllable was then performed within the 
vowel or consonant group using the LDA again, regard-
less of whether the group had been correctly determined 
in the previous step. We found that the two-step classi-
fication generated higher classification accuracies than a 
direct classification of six syllable types.

The p̂ value indicates, for a certain sound type, how 
consistently distinguishable the AEPs were with different 
syllables. By comparing p̂ values obtained with different 
sound conditions, the effects of noise vocoding and back-
ground noise can be examined. The early- and late-AEP 
p̂ value was further compared with human behavior in 
terms of cross-subject variations to answer the following 
question: Is high speech intelligibility achieved together with dis-
tinguishable AEPs in the brain signals?

EEG Cross Condition Correlations

Because there were six syllables, each sound condition 
elicited six AEPs, each averaged over 75 trials. For a given 
electrode, AEPs of the six syllables were concatenated in 
time to enable the computation of a single correlation 
value. This is a better approach than averaging individ-
ual-syllable correlations because differences in the AEP 
amplitude for different syllables can thus contribute to the 
concatenated correlation value. When obtaining the cross-
condition correlation, rcc, correlations were always made 
between the AEP in the control condition (non-vocoded 
syllables without background noise) and the AEP in a 
vocoded/noisy condition. The first 0.3 s of response was 
excluded from the correlation, since it may contain noise 
onset-induced activity irrelevant to the speech.

The resulting correlation indicates the similarity 
between the control AEP and a distorted sound AEP. 
This correlation value was further compared with human 
behavior to answer the following question: Is high speech 
intelligibility achieved together with a high waveform similarity to 
the clean-speech response in the brain signals?

Results

Behavioral Results

Figure 2 shows behavioral accuracies for individual sub-
jects (A) and individual syllables (B). Results are grouped 
based on the sound condition, with black bars showing 
the background noise-free performance and gray bars 
showing the speech-in-noise performance. Error bars are 

95% confidence intervals. For all subjects and syllables, 
the non-vocoded and 22-channel-vocoded conditions 
always showed near-perfect performances, whether or 
not accompanied with background noise.

With four vocoding channels, no-noise performance 
remained high for subjects S1, S2, S3, and S9 (Fig. 2a). 
For the rest of the subjects, lower performance was 
caused only by incorrect detections of /hӕd/ and /
hͻd/, as shown in individual performance (Fig. 2b, 3rd 
black bars). When background noise was added to four-
channel vocoded speech, all subjects showed significantly 
decreased performance (Fig. 2a, asterisks; z test, with z, p, 
and df values specified in the figure). When examining the 
individual syllables, /hid/ had the highest performance; 
/hӕd/ and /hͻd/ were still the lowest (Fig. 2b, 3rd gray 
bars). The result generally agreed with previous studies 
in that high speech recognition scores can be obtained 
with as few as four vocoding channels in easy listening 
conditions, but more channels are required for listening 
in noise (Shannon et al. 1995; Loizou et al. 1999; Friesen 
et al. 2001; Smith et al. 2002).

AEPs and Speech‑Related Features

Figure 3a shows examples of AEPs for non-vocoded 
speech in quiet, each averaged over 75 trials, obtained 
with electrode FC1. Time 0 was the beginning of syllable 
presentation. Auditory potentials evoked by non-vocoded 
speech were highly fluctuating with multiple positive and 
negative peaks. The most consistent features were P1, 
N1, and P2 (Fig. 3a, left). When examining individual 
electrodes, all these three peaks may not always occur. 
Table 1 lists the peak latencies for all the electrodes. 
Here, we only identified those peaks that occurred con-
sistently for the majority of subjects.

In the examples shown in Fig. 3, when random back-
ground noise was introduced to clean speech with an 
onset at − 0.2 s (Fig. 3b, the beginning of the plot), 
noise-induced onset activity occurred around 0 to 0.1 s 
(Fig. 3b, arrow), which was not present in the noise-free 
responses (Fig. 3a). Meanwhile, the P1 and N1 associ-
ated with the speech signal (Fig. 3a) were clearly altered 
(Fig. 3b). With 22 vocoding channels but no background 
noise (Fig. 3c), most subjects showed similar AEPs to the 
clean-speech AEPs.

To quantify the effect of vocoding and background 
noise on AEPs, the absolute values of the P1 N1, and P2 
were extracted. Figure 4 shows examples for electrode 
FC1. The x-axis is always the peak height without voco-
ding or background noise, serving as a control to clean 
speech. In A, the y-axis is the peak height for vocoded 
speech. Each symbol represents the average value for a 
single syllable over 75 trials, and hence, there are six sym-
bols per condition for each subject with a total of 10 sub-
jects. Overall, vocoding did not consistently change any 
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of the peaks. In contrast, the effect of background noise 
was more consistent in suppressing the speech-related P2 
(Fig. 4b, rightmost). Most subjects and responses showed 
reduced peaks with background noise for electrode FC1 
compared with the clean-speech condition. Note that the 
boosting effect on P1 (Fig. 4b, leftmost) was not real; it 
was due to the noise-onset activity (Fig. 3b).

When we examined P1, N1, and P3 for all the elec-
trodes, vocoding alone rarely showed a consistent effect 
on P1, N1, or P2 (not shown). Therefore, in Fig. 5, only 

the noisy conditions were plotted. Figure 5a shows effect 
of noise on P1; no electrode showed a significant reduc-
tion (t test; the t, df, and p values are specified in the 
figure); again, the boosting effect due to noise onset was 
omitted. For N1, more electrodes showed significant 
reductions (Fig. 5b). The largest reduction was observed 
for electrodes having a P2 (Fig. 5c). In fact, all the elec-
trodes showing a prominent P2 had a significant reduc-
tion in their peak height with the addition of background 
noise.

Fig. 2   Behavioral accuracies under different vocoding and noisy conditions averaged across all the syllables for each subject a or averaged 
across the subjects for each syllable b. Error bars are 95% confidence intervals. * marks a significant decrease when background noise was 
added to the 4-channel vocoded syllables (z test)
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Vocoding and Noise on Classification Accuracy

Figure 6a shows examples of the scalp topography of 
signal classification accuracies based on the early AEPs 
(0–0.5 s) for four subjects and different sound conditions. 
Recall that a high accuracy indicates that AEPs elicited 
by the six different speech syllables were consistently dif-
ferent and, therefore, can be distinguished. Chance per-
formance for six classes was 16.7%, and the maximum 
color was set to represent 33%.

Although the classification accuracy varied across sub-
jects, general trends can be observed in that: first, AEPs 
elicited by the non-vocoded clean speech (i.e., control; 
first column of Fig. 6a) were the most distinguishable/
classifiable. Here, for illustration purpose, the maximum 

color was capped at 33%, whereas the best classifica-
tion accuracies can often reach 50%. Second, although 
the 22-ch and 4-ch vocoded performance (2nd and 3rd 
columns) was generally worse than the control AEPs, the 
difference was relatively small. Third, adding background 
noise to the non-vocoded speech had deteriorating effects 
on some subjects (4th column), whereas adding back-
ground noise to vocoded speech (5th and 6th columns) 
had clear deteriorating effects on all the subjects.

Figure 6b, c show the grand averages over all the sub-
jects based on the early (0–0.5 s) and late (0.5–1 s) AEPs, 
respectively. It was clear that the fronto-central area had 
the highest classification accuracies in both cases. Another 
area of electrodes that may yield the second-best accuracy 
was the temporal and/or occipital lobe.

Fig. 3   Examples of AEPs obtained with electrode FC1 using non-
vocoded (a, b) and vocoded (c) syllables for three subjects. In b, 
background noise was added to non-vocoded syllables. Note that 
speech began at time 0, whereas onset of the background noise 

was 0.2 s prior to the speech onset, which was the beginning of the 
plot. The arrow pointed at noise-induced onset activity. Each AEP 
was an average over 75 trials
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When comparing classification performance between 
the early and late AEPs, some conditions showed signifi-
cantly or insignificantly better performance with the early 
portion (t test values in blue near the arrows), whereas 
other conditions showed better performance with the late 
portion (t test values in red). In general, the two portions 
were similar, and we were unable to conclude which half 
contained better information.

Vocoding and Noise on Cross‑condition 
Correlations

Figures 3, 4, and 5 show that prominent AEP fea-
tures, such as N1 and P2, can be significantly affected 
by background noise. Other features of AEPs may 
be altered too, which can be reflected by performing 
cross-correlations between AEP waveforms obtained 
in the control (i.e., clean speech) and any other sound 
conditions. Figure 7a shows the rcc values averaged 
over all the subjects. To exclude the clearly noise-
induced onset activity around 100–200 ms, we took 

the AEP between 0.3 and 1 s for computing all the 
correlations.

Warm colors indicate high correlation values. For plot-
ting purpose, the maximum rcc was capped at 0.5. In fact, 
individual rcc values can be as high as 0.9. It seems that 
the brain response was capable of ignoring the vocoding 
alone to a great extent. For some subjects (S1, S2, S3, 
S4, S6, and S7), the majority of electrodes had high rcc 
values (not shown).

The rightmost three plots of Fig. 6a show the rcc 
between the clean speech and background noise condi-
tions with or without vocoding. Compared with voc-
oding-only conditions (the two leftmost plots), rcc was 
highly significantly reduced. The lowest rcc for each 
subject was often achieved with the 4-channel voco-
ding + noise condition (not shown). Using a Holm- 
Bonferroni correction method, the two leftmost plots 
were significant (p < 0.01).

Similar to the scalp topography of classification (Fig. 6), 
the best rcc values were again achieved with electrodes 
Fz, FC1, FC2, and Cz. Electrodes at the occipital lobe 
yielded high rcc values only for the noise-free conditions.

Fig. 4   Effect of vocoding (a) and/or adding background noise 
(b) on P1, N1, and P2 obtained with electrode FC1. In each scat-
ter plot, the x-axis shows the absolute peak amplitude to the non-
vocoded speech without background noise, and the y-axis shows 
the absolute peak amplitude to speech with vocoding (a) and/or 

background noise (b). Each subject had six identical symbols in 
each sound condition representing the six syllables, and there were 
a total of 10 subjects. Symbols below the diagonal line would indi-
cate that the peak became smaller with the introduction of voco-
ding/background noise
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Figure 7b replots the rcc of Cz as a bar plot. The three 
noisy rcc’s were significantly lower than the two no-noise 
rcc’s (z test; the values are specified in the figure).

In general, similar to the classification performance 
(Fig. 6), the rcc was also decreasing as the speech quality 
deteriorated. However, a major difference was that the 
classification plot showed a gradual decrease (Fig. 6b, 
c), whereas the rcc plot had an abrupt decrease with the 
introduction of background noise.

One may wonder how those deteriorations in AEP 
classification and correlation were caused by deterio-
rations of sound quality. Figure 7c shows the correla-
tions of sound envelopes between the non-vocoded clean 
speech and other distorted speech. Here, no EEG data 
was involved; we are only examining the change in the 
sound waveforms. We did not show the significance val-
ues because, due to the large sample size in the sound 
waveform (e.g., 51,200 points), all the correlation values 
were significant, and all the pairs of correlations were 
significantly different.

An interesting observation is that, although a gen-
eral deteriorating trend existed in the sound envelope 
(Fig. 7c), it did not represent the trend in either the clas-
sification (Fig. 6) or correlation result (Fig. 7b). In fact, it 
was more similar to the human behavioral result (Fig. 2). 
This finding implies that the two above analyses we per-
formed on the AEPs most likely did not fully capture 
human behavior.

EEG Physiology Compared with Human 
Behavior

As shown above, both AEP classification and rcc showed 
decreased trends with vocoding and/or background noise. 
Next, we will examine whether the classification and/or  
rcc values agreed with the human perception in terms of  
cross-subject variations. Because the subjects showed a 
significant amount of errors only with the 4-channel-noise 
condition (Fig. 2, last bar in each panel), only classifi-
cation and rcc obtained with this sound condition were 
examined.

In the example shown in Fig. 8a, we used a scatter 
plot to compare the rcc value obtained with electrode FC1 
and the behavioral data. The statistical values shown in 
the figure indicate the quality of the linear fit. The linear 
fit (i.e., correlation) between the AEP classification and 
behavioral data was highly significant. Recall that rcc here 
measures the similarity between the clean speech and 
vocoding/noise AEPs. In other words, those subjects who 
had high behavioral performance also had high similari-
ties of brain responses using FC1 between clean speech 
and vocoding/noise speech, indicating better abilities to 
suppress brain responses to noise with this electrode.

Figure 8b shows this linear fit in terms of a correlation 
value for all the electrodes, using both AEP classification 

and rcc. Only the early portion of the classification seems 
to explain the human behavior with a small number of 
electrodes. Overall, electrodes in the fronto-central areas 
were most consistent in explaining human behavior using 
early-portion classification or rcc.

Discussion

Effects of Noise Vocoding on EEG Response to 
Speech

Noise vocoding has been used as a technique to manipu-
late speech intelligibility, and, to some extent, simulate 
cochlear implant perception. When there is no back-
ground noise, high speech recognition can be obtained 
with as few as four frequency channels (Shannon et al. 
1995). When the listening condition is difficult, more 
channels are required to maintain intelligibility (Loizou 
et al. 1999; Friesen et al. 2001; Smith et al. 2002). Simi-
larly, for cochlear implant listeners, speech intelligibil-
ity in noise may be effected by the number of spec-
tral channels (Friesen et al. 2001) and characteristics of 
background noise (Hu and Loizou 2010). Our behavio-
ral result confirmed that more frequency channels are 
needed for perceiving speech in background noise. Even 
for 4-channel vocoded speech in quiet, some subjects 
had problems with certain vowel detections (/hӕd/ and 
/hͻd/, Fig. 2b).

With a linear relationship between EEG and sound 
envelopes varying in between 2 and 8 Hz (Pasley et al. 2012;  
O’Sullivan et al. 2015), EEG obtained with vocoded 
speech is expected to more or less resemble the EEG for 
clean speech. Baltzell et al. (2017) also showed that cross-
correlations between speech envelope and brain signals 
may exist for both clean and noise-vocoded speech.

The present study examined the effect of noise voco-
ding and background noise on the peaks of the AEPs, 
namely, the P1-N1-P2 complex, as well as two more types 
of AEP metrics, (1) syllable classification for each sound 
condition, and (2) cross-condition correlations between 
the clean speech and distorted speech AEPs.

First, regarding the P1-N1-P2 complex, we did not 
observe consistent changes in the peak amplitudes (such 
as Fig. 4a) for vocoded speech without noise. Note that 
this did not mean there was no change in each individual 
subject’s response. Rather, the effect of vocoding alone on 
those peaks was not consistent, in contrast to the effect 
of noise alone.

Second, the classification accuracy indicated whether 
the AEPs of different syllables were consistently distin-
guishable. Overall, classification accuracy was reduced by 
noise vocoding, but not as drastically as the background 
noise.

Third, the correlation metric was a direct measure-
ment of the similarity between AEPs of the clean and 
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vocoded/noisy speech. Most subjects showed significant 
correlations with both 22- and 4-channel vocoded speech 
without background noise.

The above observations are reasonable because noise 
vocoding removes most of the temporal fine structure, 
while retaining temporal envelope to certain extent in a 

few frequency bands. When correlating the sound enve-
lopes of vocoded speech to clean speech (Fig. 7c), we 
obtained a correlation value of > 0.8 for both 22- and 
4-channel vocoded speech.

Effects of Background Noise on EEG Response 
to Speech

Overall, the effect of background noise on the P1-N1-P2 
complex and the two other metrics were much more 
notable than the effect of vocoding alone; however, 

Fig. 5   Peak analysis on P1, N1, and P2 for all electrodes that 
showed consistent peaks across subjects according to Table 1. For-
mats are similar to Fig. 4. Statistics were performed with the one-
sided t test, with df = 179; Bonferroni corrections were applied to 
correct for multiple measurements

◂

Fig. 6   a Classification accuracies for four representative subjects 
and sound conditions using the early AEPs (0–0.5 s). Chance perfor-
mance was 16.7%. b Grand averages over all the subjects for each 
sound condition using the early AEPs (0–0.5  s). c Grand averages 
over all the subjects for each sound condition using the late AEPs 

(0.5–1  s). The statistical values next to the arrows are two-sided t 
tests (df = 30) to examine whether early or late AEPs provided sig-
nificantly better classification accuracy than the early AEPs. A posi-
tive t value (red) indicates better performance with the late portion. 
There was not a consistent observation regarding the two portions

359



Y. Dong, Y. Gai: Speech Perception with Noise Vocoding and Background Noise: An EEG and …

background noise also interacted with the vocoding, 
jointly impacting the brain responses.

When examining different electrodes, background 
noise had rarely any consistent effect on P1. It some-
times had a decreasing effect on N1, while it always 
had a large decreasing effect on P2. This is consist-
ent with the previous observation that (1) N1 and P2 
are usually reduced by background noise (Faucette 
and Stuart 2017) and (2) a late event-related poten-
tial (approximately 600 ms following signal onset) is 
particularly useful for processing degraded speech, or 
degraded processing of speech (Utianski et al. 2015). 
It has also been shown that P3 (with a latency similar 
to our P2) is significantly reduced by the presence of 

speech babble noise (Koerner et al. 2016), indicating 
that our observation is not limited to white noise.

Both the classification and rcc metrics were affected 
by background noise more than noise vocoding. When 
background noise was added to vocoded speech, both 
metrics showed further reductions in performance. 
However, there existed a very clear distinction 
between the behaviors of the two metrics. With back-
ground noise alone and no vocoding, the classifica-
tion metric based on grand averages only decreased 
slightly (Fig. 6), whereas the correlation metric showed 
a highly significant decrease (Fig. 7a, b). This decrease 
of correlation was not a noise onset effect, because we 
excluded the first 0.3 s from the computation of the 

Fig. 7   a Cross-condition correlations of AEPs between the non-
vocoded clean speech and speech with vocoding and/or noise as 
grand averages over all the subjects. *The correlations were sig-
nificant using a Holm-Bonferroni correction method (p < 0.01, 
df = 103; exact t values were unavailable due to the nature of per-
forming the Holm-Bonferroni correction). b Correlation values 
obtained with Cz from a was replotted as a bar plot. Correlations 

of the three conditions with background noise were all significantly 
lower than the correlations of the two conditions with vocoding 
only. c Correlations of sound envelopes for /hͻd/ between the non-
vocoded clean speech and speech with vocoding and/or noise. 
Here, all the values were significantly different from any other 
values with the large sample size in the sound waveforms (51,200 
points)
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correlation value. Instead, it was an ongoing suppres-
sion of speech-related features.

This decrease was also not an effect of deteriorated 
speech envelope, because the sound envelope with 
background noise remained highly correlated to the 
speech envelope (Fig. 7c, third bar). Overall, the trend 
in the sound envelope correlation (Fig. 7c) was most 
similar to the behavioral data (Fig. 2). Next was the 
classification metric (Fig. 6) that decreased gradually. 
The rcc metric (Fig. 7) was the least similar to the 
behavioral result in terms of this decreasing trend. 
This finding implies that neither the classification nor 
the correlation method fully captures human behavior.

For speech encoding, two brain areas, the lateral 
posterior temporal and fronto-central electrode sites, 
are especially interesting. The two areas have been 
shown to reliably display syllable-specific waveforms 
(Wagner et al. 2016). In particular, Cz is a commonly 
used electrode for speech perception and syllable 

classification (Brandmeyer et  al. 2013; Jafarpisheh 
et al. 2016; Khalighinejad et al. 2017; Steinmetzger 
and Rosen 2017). In our study, Cz, FC1, FC2, and 
Fz generally yielded the best classification and cor-
relation performance, with a slight preference to the 
left side (FC1).

EEG Metrics and Human Behavior

In the present study, we created a difficult listening con-
dition using the 4-channel vocoded speech presented in 
background noise. A significant number of behavioral errors 
were obtained. Subjects also showed variable detection per-
formance with this condition (Fig. 2a). We compared this 
behavioral variability with the two EEG metrics to examine 
if they can explain the cross-subject variation.

We found a significant correlation between the behav-
ioral performance and cross-condition AEP correlation 

Fig. 8   Explaining human behavioral data using AEP metrics, which 
are either the classification accuracy or rcc. Here, only human per-
formance with the 4-channel vocoding and noise condition was 
examined. a An example scatter plot of the behavioral accuracy 

and AEP correlation (rcc) obtained with electrode FC1. b The same 
as in a except that all the electrodes were plotted for both AEP clas-
sification and rcc. The color represents the correlation between the 
AEP analysis and the human behavior
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(rcc). In other words, subjects who had high similari-
ties in their electrophysiology between the 4-channel 
vocoded noisy AEPs and clean speech AEPs also per-
formed better behaviorally. This is reasonable because, 
if the subject’s cortical signals can actively suppress 
noise, fewer behavioral errors should have been made.

This study did not directly examine cortical 
entrainment. However, the assumption was that the 
AEPs we obtained were more or less determined by 
speech envelope. In particular, the frequency range of 
2─8 Hz in cortical responses is found to be linearly 
correlated to speech envelope (Pasley et al. 2012; Zion 
Golumbic et al. 2013; O’Sullivan et al. 2015). Slow 
and moderate temporal fluctuations in speech may 
be linearly reconstructed from cortical signals even in 
certain background noise (Ding et al. 2014; Puvvada 
et al. 2017), whereas fast temporal fluctuations require 
nonlinear transformations. The correlation metric may 
provide answer to the question—when sound qual-
ity changes, especially when speech is degraded by 
vocoding or background noise, can the brain resist 
those non-preferred changes and still respond as if 
clean speech were being presented? In this sense, a 
high correlation between human behavior and rcc is 
reasonable.

When the classification metric was compared with 
behavioral data, only the early portion (0–0.5 s) of 
AEPs showed high correlations (Fig. 8b). This is sur-
prising because the classification performance was 
comparable for the early and late AEPs (Fig. 6b, c). 
Note that we only had 10 subjects for the linear fit. 
Future studies will need a larger subject population to 
validate these relationships.

In summary, the present study examined the effect 
of noise vocoding and background noise on the AEP 
peaks (i.e., P1, N1, and P2) and two other metrics 
(i.e., classification and correlation). Background noise 
generally had larger deteriorating effects than noise 
vocoding alone, but it also interacted with vocoding 
in generating the worst human and EEG performance. 
Last, noise suppression in the EEG signals did seem to 
correlate with human behavior.
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