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ABSTRACT

Presbyacusis, or age-related hearing loss, can be
characterized in humans as metabolic and sensory
phenotypes, based on patterns of audiometric thresh-
olds that were established in animal models. The
metabolic phenotype is thought to result from dete-
rioration of the cochlear lateral wall and reduced
endocochlear potential that decreases cochlear am-
plification and produces a mild, flat hearing loss at
lower frequencies coupled with a gradually sloping
hearing loss at higher frequencies. The sensory
phenotype, resulting from environmental exposures
such as excessive noise or ototoxic drugs, involves
damage to sensory and non-sensory cells and loss of
the cochlear amplifier, which produces a 50–70 dB
threshold shift at higher frequencies. The mixed
metabolic + sensory phenotype exhibits a mix of
lower frequency, sloping hearing loss similar to the
metabolic phenotype, and steep, higher frequency
hearing loss similar to the sensory phenotype. The
current study examined audiograms collected longi-
tudinally from 343 adults 50–93 years old (n = 686
ears) to test the hypothesis that metabolic phenotypes
increase with increasing age, in contrast with the
sensory phenotype. A Quadratic Discriminant Analysis
(QDA) was used to classify audiograms from each of
these ears as (1) Older-Normal, (2) Metabolic, (3)
Sensory, or (4) Metabolic + Sensory phenotypes.

Although hearing loss increased systematically with
increasing age, audiometric phenotypes remained
stable for the majority of ears (61.5 %) over an
average of 5.5 years. Most of the participants with
stable phenotypes demonstrated matching pheno-
types for the left and right ears. Audiograms were
collected over an average period of 8.2 years for ears
with changing audiometric phenotypes, and the
majority of those ears transitioned to a Metabolic or
Metabolic + Sensory phenotype. These results are
consistent with the conclusion that the likelihood of
metabolic presbyacusis increases with increasing age
in middle to older adulthood.
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INTRODUCTION

Presbyacusis (i.e., age-related hearing loss) is pro-
posed to result from distinct cochlear pathologies that
can produce unique threshold patterns in audiograms
(Schmiedt 2010; Dubno et al. 2013). Accurate classi-
fication of pathologies based on audiometric data
could improve our understanding of hearing loss
mechanisms and their prevalence, as well as facilitate
detailed diagnoses and enhance treatment strategies.
Audiometric patterns from middle-aged to older
adults can be challenging to interpret because they
reflect contributions from noise history, injury, dis-
ease, medication, diet, heredity, and age. The search
for robust audiometric patterns in presbyacusis is
aided by algorithms that can detect or categorize
audiograms within large databases (e.g., Allen and
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Eddins 2010; Dubno et al. 2013). These efforts have
been enhanced with a theoretical framework based
on studies of human temporal bones and animal
models of hearing loss (Schmiedt 2010; Dubno et al.
2013), which relate distinct pathologies to audiomet-
ric patterns seen in audiograms from older adults.

Studies involving animal models have shown that
degeneration of the stria vascularis and auditory nerve
are primary contributors to presbyacusis (Mills et al.
1990; Tarnowski et al. 1991; Schmiedt 1996; Schmiedt
et al. 2002; Mills et al. 2006). Most of these studies
directly related cochlear pathology to changes in
animal audiograms, which led to four proposed
audiometric phenotypes of age-related hearing loss
in humans: (1) Older-Normal, (2) Metabolic, (3)
Sensory, and (4) Metabolic + Sensory (Dubno et al.
2013). Individuals classified in the Older-Normal pheno-
type have audiograms with thresholds in low-to-mid
frequency G20 dB hearing level (HL) and slightly
elevated thresholds for higher frequencies. The
Metabolic phenotype is thought to result from the
deterioration of the stria vascularis in the cochlear
lateral wall, which normally produces endolymph to
maintain the endocochlear potential (see Schmiedt
2010 for review). As a result of reduced endocochlear
potential and decreased cochlear amplification, indi-
viduals classified in the Metabolic phenotype have
audiograms that exhibit mild, flat hearing losses at
lower frequencies and gradually sloping hearing loss
at higher frequencies. The Sensory phenotype is thought
to be related to damage to sensory cells in the inner
ear and loss of the cochlear amplifier due to
environmental exposures, including excessive noise
or ototoxic drugs, resulting in steeply sloping 50–
70 dB threshold shifts that predominantly affect
higher frequencies. The Metabolic + Sensory phenotype
is thought to reflect combined metabolic declines and
sensory damage, which results in audiograms with
mild, flat hearing loss at lower frequencies (the
metabolic component) and steeply sloping hearing
loss at higher frequencies (the sensory component).
Audiometric patterns similar to the hypothesized
phenotypes were observed in a data-driven principal
component analysis of human audiograms (Allen and
Eddins 2010), suggesting that these patterns common-
ly occur with increasing age.

Differences in the pathologies underlying the
audiometric phenotypes led to distinct predictions
regarding age-related changes in the likelihood of
sensory or metabolic types. Histopathological studies
of human temporal bones indicated that degenera-
tion of the stria vascularis and auditory nerve contrib-
utes more to age-related hearing loss than sensory cell
losses or conduction changes (Schuknecht and Gacek
1993). Similarly, gerbils raised in noise-limited envi-
ronments to separate age-related declines from the

effects of noise exposure consistently demonstrate
strial and neural pathologies with only sparse sensory
losses (Mills et al. 1990; Tarnowski et al. 1991;
Schmiedt et al. 2002; Mills et al. 2006). Based on the
gradual declines seen in the stria vascularis, the
likelihood of a Metabolic phenotype was predicted
to increase with age, along with concomitant age-
related increases in pure-tone thresholds. Given the
observations that sensory hearing losses result from
damage rather than an aging process per se, thresh-
old changes were predicted to be relatively restricted
with increasing age for older adults with a Sensory
phenotype.

Based on the theoretical framework for phenotypes
of age-related hearing loss, Dubno et al. (2013) used
algorithms to classify phenotypes for a cross-sectional
sample of audiograms from 1728 ears (865 partici-
pants) to test the prediction that metabolic declines are
a dominant factor in presbyacusis. After classifying
each of the individual ears into a phenotype category
using machine learning methods, their results showed
that Metabolic and Metabolic + Sensory ears were on
average the oldest, more likely to be female, and less
likely to have a positive noise history than the other
phenotypes. In contrast, the Sensory ears were younger
on average, more likely to be male, and more likely to
have a positive noise history compared to theMetabolic
or Metabolic + Sensory ears. The positive noise history
suggested that sex differences among the phenotypes
were associated with different patterns of occupational
and recreational noise exposure, which led to an
increase in sensory loss for males. These age and noise
history differences were consistent with predictions
based on animal models, given that strial declines
occur gradually with increasing age and result in
Metabolic or Metabolic + Sensory phenotypes at a later
age, compared to Sensory phenotypes.

Because the study by Dubno et al. (2013) was
based on a cross-sectional sample of audiograms,
their conclusions regarding age-related changes
were based on participant age differences rather
than age-related changes observed within subject.
Although cross-sectional aging studies can be sensi-
tive to changes that occur consistently with increas-
ing age, individual age-related differences in
hearing thresholds and phenotypes could also be
influenced by other uncontrolled factors that add
unexplained variance or co-vary with age differ-
ences. Nonetheless, the original cross-sectional de-
sign provided an initial validation for automatic
phenotype classification and added support for the
hypothesis that metabolic presbyacusis becomes
more common with increasing age. Building on
the framework and methods from Dubno et al.
(2013), the current study tested age-related predic-
tions for the hearing loss phenotypes with audio-
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metric data collected longitudinally from a sample
of older adults.

Longitudinal analyses were performed to test the
hypothesis that metabolic phenotypes increase with
age by comparing the average age for ears within each
phenotype category. The number of ears that
transitioned to a Metabolic or Metabolic + Sensory
phenotype with increasing age were also compared.
This study also built on the earlier findings (Dubno
et al. 2013) by characterizing the stability of each
phenotype. Longitudinally obtained audiograms
could provide further validation for phenotype classi-
fication of audiograms by demonstrating that audio-
metric phenotypes were relatively stable across
measurements and typically matched across left and
right ears.

Another goal of the current study was to charac-
terize longitudinal declines in hearing sensitivity for
each audiometric phenotype, with the prediction that
each audiometric phenotype should exhibit a unique
pattern of threshold changes. Hearing sensitivity
declines have been examined in longitudinal data in
relation to increasing age (Cruickshanks et al. 2003;
Lee et al. 2005; Echt et al. 2010). Maximum cochlear
gain increases progressively from about 20 dB at the
apex to 60 dB at the base, resulting in declines in the
endocochlear potential that decrease sensitivity to
high frequencies more than to low frequencies
(Schmiedt 2010). Consequently, Metabolic and Meta-
bolic + Sensory ears are predicted to exhibit gradual
threshold changes that are larger for high frequen-
cies than low frequencies. Sensory presbyacusis pri-
marily involves inner and outer hair cell damage that
can eliminate cochlear amplification, which typically
results in substantial high-frequency hearing loss and
relatively preserved endocochlear potential and lower
frequency thresholds (Schmiedt 2010). To the extent
that the Sensory phenotype reflects hearing damage,
which is assumed to be restricted for older adults,
only limited threshold changes were predicted for
those ears (cf. Gates et al. 2000; Kujawa and
Liberman 2006).

Sex-related differences in threshold changes have
been observed longitudinally (Lee et al. 2005) and
could partially reflect the unique distribution of
females and males within each audiometric pheno-
type. Metabolic ears are more often female, and
Sensory ears are more often male (Dubno et al.
2013). In studies of age-related hearing loss with
human participants, audiograms from females appear
more consistent with a Metabolic phenotype and
audiograms from males are more consistent with a
Sensory phenotype (Jerger et al. 1993; Demeester
et al. 2009; Schmiedt 2010; Dubno et al. 2013; Kaya
et al. 2015). These apparent sex differences in
audiometric patterns have been attributed to social

factors that could vary for males and females, such as
recreational and occupational noise history (Jerger
et al. 1993; Demeester et al. 2009; Dubno et al. 2013),
rather than biologic factors. Consistent with these
observations, screening for noise history can reduce
sex differences in audiograms (Schmiedt 2010); an
increased likelihood for positive noise history has
been observed for mostly male, Sensory ears (Dubno
et al. 2013). Thus, diminished sex differences in both
audiometric configuration and threshold changes
were expected for audiograms organized by pheno-
type.

In summary, the current study aimed to establish
the longitudinal stability of phenotypes and declines
in hearing sensitivity for older adults, as well as
provide additional validation for the phenotype
categories. Audiograms obtained longitudinally from
large numbers of human participants were used to
characterize age-related declines in hearing sensitivity
for different audiometric phenotypes. An optimized
algorithm was used to classify each ear as one of the
four phenotypes; following that, descriptive statistics
were calculated for ears classified in each phenotype.
For example, comparisons of participant age were
used to test the hypothesis that metabolic and sensory
presbyacusis reflect distinct pathologies, with metabol-
ic declines that predominantly contribute to age-
related hearing loss in older humans. Annual thresh-
old changes were estimated separately for ears with
stable audiometric phenotypes and ears with chang-
ing phenotypes. The likelihood of phenotype transi-
tions were used to test the prediction that the
likelihood of Metabolic and Metabolic + Sensory
phenotypes increases with increasing age.

METHODS

Participants and Audiometric Measurements

Since 1987, the Hearing Research Program at the
Medical University of South Carolina (MUSC) has
collected audiometric and other data from more than
1500 participants enrolled in a longitudinal study of
age-related hearing loss. None of the participants
presented evidence of conductive hearing loss and
otologic disease. Otologic examinations were per-
formed for each participant, and audiometric mea-
surements of pure-tone thresholds were collected at
conventional frequencies (0.25, 0.5, 1, 2, 3, 4, 6,
8 kHz) and extended high frequencies (9, 10, 11, 12,
14, 16, 18 kHz; Matthews et al. 1997). Pure-tone
thresholds were measured using a Madsen OB822 or
OB922 clinical audiometer calibrated according to
standards from the American National Standards
Institute (ANSI 2010) with TDH-39 headphones in
MX-41/AR cushions and the measurement protocol

VADEN JR ET AL.: Age-Related Changes in Audiometric Phenotypes 373



recommended by the American Speech-Language-
Hearing Association (2005).

Noise history questionnaires were completed by all
participants, which indicated that 47 % had a positive
history for one or more of the following noise
exposure categories: (1) noisy work environments,
(2) guns, (3) loud music, (4) power tools, (5) farm
machinery, and (6) sudden loud noises. Consistent
with previous findings discussed above, the likelihood
of a positive noise history differed significantly with
the sex of the part ic ipant (Χ2 = 105.42,
P = 2.2 × 10−16), with a positive noise history for
23 % of the females and 79 % of the males. An
elevated likelihood for positive noise history was
predicted for Sensory ears, given that hearing damage
is hypothesized to drive sensory declines. Additional
details on the complete test battery are described in
Dubno et al. (2013), including medical history ques-
tionnaires, hearing self-assessments, and other
hearing-related measurements.

Audiograms were obtained from each participant
over a cluster of three to six visits that were needed to
complete the entire test battery, with visits that
typically occurred 1 month apart and clusters of visits
repeating at 2–3-year intervals. Audiograms were
averaged for each ear within a cluster of visits, which
included three or more audiograms that were collect-
ed within a single year. Average audiograms were also
used by Dubno et al. (2013) to improve threshold
measurement accuracy by reducing error that results
from within-subject variability and standard pure-tone
threshold test increments of 5 dB HL. Left and right
ears were analyzed separately to determine whether
the two ears had the same or different audiometric
phenotype. After excluding data from participants
who were younger than 50 years old, participants with
fewer than two clusters of visits, and audiograms with
missing thresholds, the current study included data
from 343 participants (n = 686 ears). A total of 7686
separately collected audiograms from those ears were
averaged within clustered visits to produce the 1826
average audiograms that were used for all of the
analyses.

Summary of Analyses

Because of the extensive number of analyses required,
an overview of all analyses is presented before describing
each in greater detail. First, tests were performed to
optimize the accuracy of automatic classification of
audiometric phenotypes based on threshold configura-
tions in audiograms. Next, the longitudinally collected
audiograms were classified into phenotype categories,
and ears were divided into groups with longitudinally
stable or changing phenotypes. Demographic charac-
teristics were compared, and threshold changes were

characterized separately for the ears with longitudinally
stable or changing phenotypes. Finally, transitional
probabilities were calculated for each phenotype to
estimate the likelihood of longitudinal phenotype
changes or no change.

Quadratic Discriminant Analysis

Audiometric phenotypes were classified using a ma-
chine learning algorithm, quadratic discriminant
analysis (QDA; R-Project package MASS, 7.3-29). The
QDA model was first trained with a dataset that
included 897 first-year (baseline) audiograms that
were classified by expert raters as one of the four
audiometric phenotypes (Dubno et al. 2013). After
training, the QDA model was used to estimate the
posterior probability that quantifies the extent to
which an audiogram matches the distribution of
training examples for each of the phenotypes. An
audiogram is classified as the phenotype category with
the highest posterior probability, and the probability
for the classified phenotype is referred to as its
classification probability.

Shape-related information (e.g., intercept, slope,
quadratic) guided the expert ratings of audiograms
and has been used in the literature to characterize
audiometric differences (e.g., Demeester et al. 2009;
Allen and Eddins 2010). To provide similar details to
the classification algorithm, orthogonal polynomial
curves were fit to pure-tone thresholds in each
audiogram prior to classification (R-Project package
nlme version 3.1-113). Orthogonal polynomials consist
of independent factors that are orthogonalized, so
additional higher order factors do not alter the values
of lower order factors. For example, the fitted
intercept term is the average pure-tone threshold,
whether or not a slope term is added to the model
and fitted to the data. This facilitates model optimi-
zation because each term that is added to the model
accounts only for variance that the other terms do
not. The shape parameters from each pooled audio-
gram in the longitudinal dataset were submitted as
multivariate predictors to the QDA, which classified
phenotypes after training with the shape parameters
derived from the training dataset (Fig. 1). Important-
ly, the QDA was naïve regarding the identity, sex, or
age of individual ears, so classifications were deter-
mined solely on the basis of the shape of a pooled
audiogram in relation to the prior distributions of the
training dataset.

Optimizing Classification Accuracy

A feature selection process was used to train and test
the QDA model with an increasing number of shape
parameters from the training dataset. This approach
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maximized classification accuracy in matching expert
labels, while increasing the likelihood of successful
generalization of the classifier to new data. After
determining the optimal number of shape parameters
based on the expert-labeled training dataset, the QDA
model was used to classify audiograms in the longitu-
dinal dataset. Note that shape parameters were only
used for classifying phenotypes. Pure-tone thresholds
were used for more detailed statistical analyses of
threshold changes and audiograms.

Machine learning methods often demonstrate
improved classification accuracy after training with
more examples or data points (Figueroa et al. 2012).
For this reason, QDA was tested with a larger training
dataset that contained diverse examples of each
phenotype and a smaller subset of training data that
contained more representative examples of each
phenotype. As part of the study by Dubno et al.
(2013), a collection of audiograms was labeled by two
expert raters and 338 exemplars were selected that
were judged to be good examples of each phenotype.
There was also an expert labeled set of 559 non-
exemplar audiograms. The classification accuracy of
the QDA model was tested after training with the
smaller set of exemplar audiograms, and the results
were compared to the QDA model trained with the
combined set of exemplar and non-exemplar audio-
grams (N = 897). This approach allowed us to (1)
demonstrate similar classification accuracy with the
shape parameters compared to pure-tone thresholds
that were used for QDA classification in Dubno et al.
(2013) and then (2) extend the approach to a larger
dataset to increase the accuracy and validity of the
classifier.

A leave-one-out cross-validation (LOOCV) was
used to establish classification accuracy. This proce-
dure preserved the independence of audiograms
that were used to train the QDA and tests its
accuracy in matching expert-based labels. The
LOOCV procedure iteratively trains the QDA model
with all of the audiograms in the training dataset,
except for one. Then, the model is tested by

classifying the remaining audiogram to determine
whether the QDA-based phenotype matched the
expert label. Because this cross-validation method is
unlikely to over-estimate classification accuracy for
new audiograms that were not part of the training
dataset (i.e., generalization), this method was used to
optimize the accuracy of QDA-based phenotype
classification.

Classification of Ears with Longitudinally Stable
or Changing Phenotypes

The QDA model was used to classify the phenotype
for each audiogram in the longitudinal dataset. Then,
individual ears were identified with phenotypes that
appeared to change or not change with increasing
age. Comparisons of phenotypes for left and right ears
were made with the prediction that phenotypes were
likely to match within subject. Ears with stable
phenotypes or changing phenotypes were also tallied
to determine the probability of transitions from one
phenotype to another.

Phenotype Differences in Age, Sex, and Noise
History

Summary statistics were calculated from the demo-
graphic data to assess the validity of classifications,
separately for ears with stable or changing pheno-
types. Based on the hypothesis that the likelihood of
metabolic type hearing loss increases with age,
predictions were tested that Metabolic and Metabolic
+ Sensory ears were more likely to include older
participants and females and were less likely to have a
positive noise history, compared to Sensory cases.

Estimating Longitudinal Threshold Changes
by Phenotype

Longitudinal changes in audiometric data were ex-
amined separately for ears with stable or changing
phenotypes to characterize their progression as par-

FIG. 1. QDA classification probability (CP) quantifies the similarity
of an audiogram (points) to the distribution of expert-labeled training
data (shaded regions: Older-Normal (gray), Metabolic (green),
Sensory (red), Metabolic + Sensory (blue)). Pure-tone thresholds

and fitted curves from an example audiogram for each category are
shown in relation to the distribution. Higher CPs are typically
obtained for correct classifications than for incorrect ones.
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ticipants became older. We predicted that pure-tone
thresholds increase with age over a relatively wide
frequency range in ears with metabolic declines (i.e.,
Metabolic or Metabolic + Sensory phenotypes). The
Older-Normal phenotype and Sensory phenotype
were predicted to demonstrate relatively fewer cases
with significant threshold changes.

Generalized linear mixed model (GLMM)-based
regression analyses were performed separately for
each frequency and phenotype to characterize age-
related hearing loss for each phenotype. The GLMMs
were used to estimate threshold changes per year,
because this type of regression model can estimate
fixed effects across participants (e.g., threshold
change per year of age) and between-subject random
effects (e.g., differences such as overall hearing loss or
age at the first visit). The GLMM also can be used to
estimate effects for unbalanced datasets that include
different numbers of observations across participants
and with varying time intervals between clusters of
visits. The GLMM equation was formulated to predict
thresholds (PT) for each subject (s) at time (t) as a
function of age and random subject effects (1|s),
which can be expressed as PTs,t = ages,t + (1|s) + error.
After fitting the GLMMs, estimated threshold changes
per year were used to produce simulated hearing loss
for specified ages within each phenotype category.
The GLMM was also modified to test for interactions
between sex and age, in relation to thresholds:
PTs,t = ages,t + sexs + ages,t × sexs + (1|s) + error.
Bonferroni correction was used to adjust the alpha
(α = 0.05 / 24 = 0.0021) for 24 GLMM tests performed
to estimate age and gender effects on thresholds
within each phenotype, based on eight frequencies ×
three groups [females, males, combined]. A control
analysis was performed to demonstrate that sex
differences in age-related threshold changes occurred
when the audiograms were not separately modeled
within phenotype categories. In summary, the GLMM
regression analyses were used both to estimate
average threshold changes (dB/year) and to test their
statistical significance.

RESULTS

Optimal QDA Classification Accuracy

The optimized QDA model correctly matched
expert labels for the 897-audiogram training
dataset with 80 % accuracy, based on the LOOCV
tests. The classification accuracy for the optimized
QDA model within each phenotype category was
91 % Older-Normal, 76 % Metabolic, 84 % Senso-
ry, and 72 % Metabolic + Sensory. The QDA
model with five shape parameters demonstrated

optimal classification accuracy after testing the
entire range of two to seven shape parameters.

Classification probabilities for the predicted phe-
notype indicate the similarity of each audiogram to
the training data and were significantly higher for
correct than incorrect classifications, t(895) = 14.52,
two-tailed P = 2.2 × 10−16. This result indicated that
QDA and expert labels were less likely to match when
an audiogram was not similar to the phenotype
examples in the training dataset.

Phenotype classifications were more accurate when
the QDA was trained with the larger dataset (exem-
plars + non-exemplars) compared to the QDA trained
with exemplars only. When classification accuracy was
calculated across all of the labeled audiograms
(N = 897), exemplar-only training resulted in 72 %
classification accuracy, whereas the expanded training
dataset resulted in 80 % accuracy. These results
showed that a larger training dataset increases classi-
fication accuracy, which likely reflects greater multi-
variate statistic power (Figueroa et al. 2012).

Based on the optimization test results, five shape
parameters and the large training dataset (N = 897
audiograms) were selected for the subsequent QDA
analyses.

Longitudinally Stable Phenotypes

Audiometric phenotypes were stable across all time
points for 422 out of 686 ears (61.5 %), although
thresholds increased with age (Lee et al. 2005; Echt
et al. 2010). Audiograms were collected over an
average of 5.5 ± 3.4 years from ears with stable
audiometric phenotypes, and classification probabili-
ties were observed to vary across serial measurements
(Fig. 2). As expected, a majority of participants with
stable phenotypes for both ears across all time points
(90 %; N = 138/154) were classified with the same
phenotype for both ears. Stable phenotype classifica-
tions were observed for one ear only in an additional
114 participants.

For the ears with longitudinally stable phenotypes,
the oldest ears were classified as Metabolic and
Metabolic + Sensory phenotypes, consistent with age-
related metabolic declines observed in animal models.
The results of a one-way ANOVA showed that average
participant ages differed significantly between pheno-
types, F(3, 418) = 30.11, P = 2.2 × 10−16, with
significantly younger Older-Normal ears compared
to the other phenotypes (Tukey P G 0.001) and
significantly older Metabolic + Sensory ears compared
to the Sensory ears (Tukey P G 0.01).

Sex differences were also observed among the
phenotypes (Χ2 = 43.50, P = 1.9 × 10−9). As in Dubno
et al. (2013), males were significantly more likely than
females to be classified as Sensory and less likely to be
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classified as Metabolic (Χ2 = 7.05, P = 0.0079), and
Metabolic + Sensory ears were evenly divided among
males and females. Demographic information for the
ears with longitudinally stable phenotypes is summa-
rized in Table 1.

Consistent with the view that rates of noise
exposure would systematically differ among the four
audiometric phenotypes, positive noise history varied
significantly across phenotypes (Χ2 = 12.17,
P = 0.0068) with a majority of positive ears in both
the Sensory and Metabolic + Sensory phenotypes. As
expected, positive noise history was significantly more
likely for Sensory ears (Χ2 = 7.74, P = 0.0054) than
Older-Normal ears. Metabolic + Sensory ears were also
significantly more likely to have a positive noise
history than Older-Normal ears (Χ2 = 6.69,
P = 0.0097), but there was not a significant difference
between Metabolic and Older-Normal ears (Χ2 = 0.04,
P = 0.83). The differences in positive noise history
among the phenotypes were consistent with the sex
differences for both positive noise history and pheno-
types.

Distinct patterns of age-related hearing loss were
observed based on the audiograms from ears with

longitudinally stable phenotypes (Fig. 3), and the
average threshold changes (dB/year) also appeared
consistent with the characteristic audiometric phe-
notype profiles (Fig. 4). The Older-Normal ears did
not exhibit significant age-related increases of pure-
tone thresholds for frequencies less than 8 kHz
(Fig. 4, upper left panel), over an average of
4.02 ± 1.97 years. In contrast, significant age-related
threshold increases were observed across the tested
frequency range for Metabolic and Metabolic +
Sensory ears (Fig. 4). Similarly, Sensory ears demon-
strated significant age-related threshold increases,
but only for frequencies ≥0.5 kHz (Fig. 4). Few
significant interactions between sex and age were
observed: Males exhibited smaller threshold changes
than females at 4 and 8 kHz (Metabolic + Sensory).
When threshold changes were tested without sepa-
rating phenotypes, there were significant sex inter-
actions with age (Bonferroni-corrected P value
G0.05) such that males exhibited significantly larger
threshold changes at 2 kHz and females exhibited
larger changes at 4, 6, and 8 kHz. Together with the
sex distributions reported in Table 1, these results
are consistent with the prediction that distinct

FIG. 2. Most individual ears (lines) were classified as the same phenotype with increasing age (four shaded regions; classification probabilities
on the ordinate), although these classification probabilities varied with age (abscissa, points). While the phenotype categories were stable
longitudinally for these ears, classification probabilities were observed to vary with increasing age.

TABLE 1
Demographic information for ears with longitudinally stable phenotypes

Phenotype Age Sex Noise history

Older-Normal 65.6 ± 5.0 91 % F [49 F, 5 M] 33 % Positive
Metabolic 72.8 ± 7.5 68 % F [25 F, 12 M] 38 % Positive
Sensory 70.1 ± 5.8 42 % F [69 F, 96 M] 56 % Positive
Metabolic + Sensory 74.1 ± 6.4 49 % F [81 F, 85 M] 55 % Positive

Average 71.4 ± 6.7 53 % F [224 F, 198 M] 51 % Positive

The age column shows the age averaged across clusters of visits, pooled across ears within each phenotype (M ± SD). The noise history column shows the
percentage of ears with positive noise histories based on questionnaire responses
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phenotypes (e.g., more Sensory males, more Older-
Normal or Metabolic females) can account for sex
differences in age-related hearing loss. Detailed
results from the GLMM regression models are
provided in Supplementary Tables 1 and 2.

Phenotypes that Changed with Increasing Age

Evidence for longitudinal changes in phenotype was
observed for 264 out of 686 ears (38.5 %) in addition
to increased hearing loss. Audiograms were collected

FIG. 3. Audiometric patterns consistent with each phenotype were preserved despite increasing thresholds. The simulated pure-tone threshold
values were produced with a GLMM linear regression model that estimated age-related changes separately for each frequency and phenotype for
females (left column), males (open circles, middle column), and their combined data (right column).

FIG. 4. Mean threshold changes as a function of frequency (dB/
year, SEM bars), estimated with separate GLMM regressions for
frequency and phenotype. Asterisks denote significant hearing
sensitivity declines with increasing age: *P G 0.05 and **P G 0.001
(Bonferroni corrected). Changes were estimated and plotted sepa-

rately where sex significantly interacted with age effects, which only
occurred for the Metabolic + Sensory ears at 4 and 8 kHz (Bonferroni
corrected P G 0.05; open circles depict mean threshold change for
males).
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for an average period of 8.2 ± 4.8 years for the ears
with changing audiometric phenotypes. Audiometric
phenotypes appeared to change at an average transi-
tion age of 74.2 ± 6.4 years. Transition age significantly
differed in relation to the phenotype to which each
ear changed (i.e., final phenotype; F(3, 260) = 20.35,
P = 7.04 × 10−12); all post hoc pairwise comparisons
were significant (Tukey P G 0.05). For example, ears
that were classified as Older-Normal phenotype
transitioned to Sensory or Metabolic phenotypes
when participants were in their early 70s, whereas
ears changed from Metabolic or Sensory phenotypes
to Metabolic + Sensory when participants were in their
mid-70s. The final phenotype observed for each ear
significantly differed depending on the initial pheno-
type for each ear (Χ2 = 99.32, P = 0.0005). Consistent
with age-related strial declines, the majority of ears
with changing phenotypes transitioned to metabolic
types: 54.2 % became Metabolic + Sensory (130 ears),
and 21.7 % became Metabolic (52 ears). Demograph-
ic characteristics of ears with changing phenotypes are
summarized by initial phenotype in Tables 2 and 3.

Figure 5 shows examples of Older-Normal ears that
exhibited changes in audiometric shape over the
course of 8 to 15 years, such that their classification

also transitioned to Metabolic, Sensory, or Metabolic +
Sensory phenotypes. Figure 5 also shows examples of
Metabolic or Sensory ears that exhibited characteristic
low-frequency threshold increases that are proposed
to reflect metabolic declines, resulting in their transi-
tion to the Metabolic + Sensory phenotype over 13–
19 years. These examples support the implicit assump-
tion that, in certain cases, ears can change from one
phenotype category to another with increasing age,
over the course of years or even decades.

The QDA classification probabilities plotted as a
function of age within each phenotype transition type
(Fig. 6) revealed substantial variability in the trajectory
across individual ears. Because the classification
probability reflects the similarity of an averaged
audiogram to the audiograms in the training dataset,
changes in classification probability with increasing
age indicate that audiograms became less similar to
one phenotype and more similar to another. The
example audiograms (Fig. 5) and estimated threshold
changes (Fig. 7) both show that phenotype changes
occurred relatively gradually.

Participant age during the first cluster of visits was
significantly different among initial phenotypes, F(3,
260) = 12.04, P = 2.09 × 10−07, with Older-Normal ears
younger than the others (Tukey P G 0.001). Phenotype
transitions occurred at different ages for the pheno-
types, F(3, 260) = 4.96, P = 0.0023, and pairwise
comparisons showed that Older-Normal ears changed
at younger ages than Sensory ears (Tukey P G 0.001).

Sex differences were observed for the classified ears
(Χ2 = 17.33, P = 0.0006), as a smaller proportion of
ears that were initially Sensory were females (54 %)
compared to the other phenotypes (Χ2 = 10.47,
P = 0.0012), which were predominantly female
(74 %). Positive noise history differed across initial
phenotype categories for ears with changing pheno-
types (Χ2 = 13.26, P = 0.004). Post hoc comparisons
showed that Sensory and Metabolic + Sensory ears
both were again more likely to have a positive noise
history compared to Older-Normal ears (Χ2 = 4.43,
P = 0.036; Χ2 = 5.98, P = 0.017, respectively). In
contrast, Metabolic ears were no more likely to have a

TABLE 2
Demographic information for ears with changing phenotypes

Initial phenotype Average age Sex Noise history

Older-Normal 69.1 ± 5.5 84 % F [61 F, 12 M] 0 % Positive
Metabolic 72.9 ± 5.8 64 % F [30 F, 17 M] 25 % Positive
Sensory 73.2 ± 4.9 54 % F [62 F, 53 M] 40 % Positive
Metabolic + Sensory 73.8 ± 5.1 66 % F [19 F, 10 M] 47 % Positive

Average 72.1 ± 5.6 65 % F [172 F, 92 M] 39 % Positive

Demographic information organized by initial phenotype, which refers to the phenotype classification from a participant’s first cluster of visits. Average age across
visits for ears that were initially classified in each phenotype category (M ± SD), proportion of female ears [female counts, male counts], and percentage of ears with
positive noise histories

TABLE 3
Age differences for ears with changing phenotypes

Initial phenotype Initial age Transition age

Older-Normal 65.2 ± 5.3 72.4 ± 6.7
Metabolic 69.1 ± 5.9 74.9 ± 5.8
Sensory 68.9 ± 5.0 76.2 ± 5.9
Metabolic + Sensory 71.1 ± 6.1 75.1 ± 5.2

Average 68.0 ± 5.6 74.7 ± 6.3

Demographic information organized by initial phenotype, which refers to
the phenotype classification from a participant’s first cluster of visits. Initial age
refers to the participant’s age at the first visit, averaged for ears that were
initally classified with the same phenotype. Transition age was defined as the
youngest age that an ear was classified with its final phenotype, rather than its
initial phenotype
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positive noise history compared to Older-Normal ears
(Χ2 = 2.20, P = 0.19). The demographic differences
among phenotypes are summarized in Tables 2 and 3.

GLMMs were used to estimate age-related thresh-
old changes separately within each pure-tone frequen-
cy, for each observed phenotype transition type
(Fig. 7). Older-Normal ears that transitioned to

Metabolic, Sensory, or Metabolic + Sensory pheno-
types exhibited significant threshold changes for
frequencies above 0.25 kHz, unlike the stable Older-
Normal ears with threshold changes G0.5 dB per year
for all but one frequency (Fig. 4). Metabolic ears and
Sensory ears that transitioned to the Metabolic +
Sensory phenotype showed significant threshold in-

FIG. 5. Example audiogram data from individual ears that changed audiometric phenotype with increasing age. Ears that were initially
classified as Older-Normal phenotype and later transitioned to Metabolic, Sensory, or Metabolic + Sensory phenotypes (top row). Ears initially
classified as Metabolic or Sensory phenotype and later transitioned to Metabolic + Sensory phenotype (bottom row).

FIG. 6. Most of the individual ears that changed phenotypes with
increasing age (four shaded regions; classification probabilities on
the ordinate) transitioned to a Metabolic or Metabolic + Sensory
phenotype (O-N Older-Normal, MET Metabolic, SENS Sensory, MET
+ SENS Metabolic + Sensory). Classification probabilities (abscissa,
points) varied with age. Each subplot displays a particular phenotype
transition (e.g., Older-Normal to Metabolic (top row)). The Older-

Normal ears that appeared to transition directly to Metabolic +
Sensory changed phenotypes during a relatively long interval
between clustered visits (8.74 ± 1.17 years), compared to those that
changed to Metabolic phenotypes (5.98 ± 0.88 years) or Sensory
phenotypes (5.03 ± 0.51 years).
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creases across the measured frequencies, with larger
estimated changes at lower frequencies than their
stable phenotype counterparts. Age-sex interactions
were tested, but none was statistically significant,
suggesting that threshold changes were no different
for female and male ears that transitioned from one
phenotype category to another. However, sensitivity to
sex-related differences in threshold changes was
potentially limited by the sample size for some
phenotype transitions (e.g., 49 females and 5 males
classified as Older-Normal phenotype).

The Likelihood of Changing Phenotypes

Phenotype category changes differed among the
phenotypes. The conditional likelihood of each
observed phenotype change was calculated based on

ears with the same audiometric phenotype during
their initial visit (Fig. 8). Older-Normal ears demon-
strated the highest likelihood of a phenotype transi-
tion (55 % changed), whereas the least likely change
was observed for Metabolic + Sensory ears (11 %).
This trajectory was expected, given the capacity for
threshold changes, but this observation provided
additional validation for QDA classifications showing
phenotypes that change with increasing age.

Transitional counts showed that transitions to
Metabolic and Metabolic + Sensory categories were
quite common for older adults with increasing age.
Although the largest portion of changing Older-
Normal ears became Sensory, ears in the Metabolic
and Sensory phenotypes predominantly became Met-
abolic + Sensory. With 52 ears added to the Metabolic
phenotype and 130 added to the Metabolic + Sensory

FIG. 7. Mean threshold changes as a function of frequency (dB/
year, SEM bars) for ears with changing phenotypes, estimated with
separate GLMM regressions for frequency and phenotype (same
procedure as shown in Fig. 4). Asterisks denote significant hearing

sensitivity declines with increasing age: *P G 0.05 and **P G 0.001
(Bonferroni corrected). There were no significant interactions be-
tween participant sex and age-related threshold changes.

FIG. 8. The likelihood of phenotype change or no change (left).
Filled circles depict the phenotype classification at the initial visit
(Older-Normal (gray), Metabolic (green), Sensory (red), Metabolic +
Sensory (blue)), and same-colored lines depict phenotype changes by
the final visit (e.g., 30 % of Sensory ears became Metabolic +
Sensory). Closed loops show ears that were classified with the same
phenotype at the initial and final visit. The transitional probabilities
sum to 100 % for each phenotype, although the total for the rounded
percentages was 101 % for the Older-Normal phenotype. A

frequency matrix shows the total number of ears that were classified
with each phenotype at their initial visit (rows) and final visit
(columns) (right). Ears with the same phenotype at the initial and
final visit (diagonal) included 422 ears with stable phenotypes as
well as 24 ears with a different intermediate classification, which
could reflect an ambiguous audiometric configuration or classifica-
tion error.
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phenotype by their final visit, 76 % of the ears with
changing phenotypes and 27 % of all the ears in the
sample transitioned to a metabolic type of hearing
loss. These results support the conclusion that the
likelihood of Metabolic or Metabolic + Sensory
phenotypes increases with increasing age in middle
to older adulthood.

Positive noise history differed based on the initial
phenotype across all ears (Χ2 = 24.00, P = 2.50 × 10−5;
percentages reporting noise history: Older-Nor-
mal = 31 %, Metabolic = 35 %, Sensory = 53 %,
Metabolic + Sensory = 53 %). The results of a logistic
regression demonstrated that the likelihood of a
positive noise history was significantly higher for ears
initially classified as Sensory (Z = 2.54, two-tailed
P = 0.011) or Metabolic + Sensory (Z = 2.54,
P = 0.011) but was not significantly different for the
final phenotypes when the initial and final classes
were included in the same regression model (Sensory
Z = 1.20, P = 0.23; Metabolic + Sensory Z = 0.76,
P = 0.45). Self-reported noise history was uniquely
associated with the initial audiometric phenotype and
not the final phenotype, which indicates that noise
history did not affect longitudinal phenotype changes
or stability.

DISCUSSION

The results from this longitudinal study demonstrate
that Metabolic and Metabolic + Sensory phenotypes
are more likely with increasing age. Most ears
exhibited a stable audiometric phenotype for several
years, and those classified as Metabolic or Metabolic +
Sensory were older on average than ears from the
other phenotypes. Among the ears with audiometric
phenotypes that transitioned to a different phenotype
with increasing age, the majority transitioned to a
Metabolic or Metabolic + Sensory phenotype at an
older average age than the others. Age-related differ-
ences in phenotype and increased likelihood of
metabolic-type age-related hearing loss in the longitu-
dinal dataset reinforce the conclusion that gradual
age-related metabolic declines are a primary contrib-
utor to age-related hearing loss (Dubno et al. 2013).
The Sensory and Metabolic + Sensory ears were more
likely to have a positive noise history than the Older-
Normal ears, while Metabolic ears were not, consistent
with the premise that noise-related damage is more
likely to be involved for ears with sensory declines.

Ears with stable phenotypes nonetheless demon-
strated significant threshold changes that conformed
to the characteristic audiometric patterns for each
phenotype. For example, Older-Normal ears only
exhibited a significant threshold change at the highest

frequency, consistent with relatively flat, mild hearing
loss seen in their audiograms. The Metabolic and
Metabolic + Sensory ears exhibited larger threshold
changes for higher frequencies than lower frequen-
cies, which would form the sloping pattern of hearing
loss common for those phenotype categories. The
Sensory ears also exhibited threshold changes for
frequencies ≥2 kHz and above, which leads to the
steeply sloping hearing loss in their audiograms.
Threshold changes of this magnitude were not
predicted for ears with sensory hearing loss, which is
hypothesized to result from sensory cell damage
related to environmental exposures.

A few potential explanations were considered for
the unexpected result that indicated a continued
increase in higher frequency thresholds for the
stable Sensory ears. The estimated threshold chang-
es were faster for frequencies ≥2 kHz and slower
for frequencies G2 kHz among Sensory ears, which
would produce a pattern of hearing loss that is
consistent with the typical Sensory audiometric
shape. Because the threshold changes would pro-
duce a characteristic Sensory profile, these results
appeared unlikely to reflect misclassified audio-
grams. Certain mutant mouse strains (e.g., CBA/J
mice) exhibit age-related sensory cell losses that are
most concentrated at the apex (Sha et al. 2008),
although characterizing genetic predispositions is
beyond the scope of the current study. Another
possibility is that the Sensory ears had ongoing
noise exposure that continued to increase hearing
thresholds over time. This is difficult to assess
because a positive noise history would simply
remain positive longitudinally, which is why the
likelihood of a positive noise history was significant-
ly higher for some initial phenotypes when control-
ling for final phenotypes, but not for the final
phenotypes. Nonetheless, self-reported noise history
in this dataset confirmed that the likelihood of a
positive noise history differed based on phenotype,
with the highest rates observed for the Sensory and
Metabolic + Sensory phenotypes. Finally, it has been
proposed that hearing damage could trigger co-
chlear pathologies that endure for many years,
which could also account for the continued thresh-
old increases for the Sensory ears (Gates et al. 2000;
Kujawa and Liberman 2006). However, those studies
reported slower age-related threshold changes for
frequencies with the most hearing damage and
faster losses in adjacent regions of the audiogram,
which contrast with our results that faster threshold
changes occurred for the frequencies with the most
hearing loss. Consistent with Lee et al. (2005), we
did not observe differences in the rate of threshold
change for Sensory ears based on self-reported
noise history, which would be expected if progres-
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sive age-related sensory losses occurred indepen-
dently of noise exposure or if noise exposure
resulted in faster declines over many years. It is
unclear why significant high-frequency threshold
changes were seen for the stable Sensory ears.

Few significant differences were observed between
males and females when threshold changes were
estimated within each phenotype category. As noted
in the introduction, sex differences in hearing loss are
commonly observed in studies of age-related hearing
loss and are hypothesized to reflect differences in
noise exposure (Jerger et al. 1993; Demeester et al.
2009; Dubno et al. 2013). Consistent with the view that
noise-induced hearing damage affects more males
than females, Sensory ears were more likely to be
male, while Metabolic and Older-Normal ears includ-
ed more females in the current longitudinal results as
well as the previous cross-sectional results (Dubno
et al. 2013). These findings suggest that phenotype
differences with distinct cochlear pathologies could
be misattributed to sex differences. For example,
relatively slower threshold changes were observed for
an all-male sample of older adults studied by Echt
et al. (2010) and relatively faster threshold changes
were observed for an older adult sample with males
and females (Lee et al. 2005). Because males are
relatively more likely to exhibit sensory hearing loss
and females are more likely to exhibit metabolic
hearing loss, these threshold changes potentially
differ in rate and pattern as a result of phenotype
differences. Age-related hearing loss may be charac-
terized more accurately by examining longitudinal
changes in relation to distinct audiometric pheno-
types in addition to sex differences.

The current results appear to demonstrate changes
in audiometric phenotype that occurred within indi-
vidual participants, which validated an implicit as-
sumption that transitions between phenotypes occur
for older adults. Ears with stable phenotypes and
changing phenotypes both exhibited classification
probabilities that varied with increasing age, and a
phenotype transition occurred whenever the proba-
bility for an ear’s initial phenotype was exceeded by
the probability of a different phenotype. Because
classification probability reflects the extent to which
an audiogram’s shape matched those in the training
dataset, this progression indicates that audiograms
with changing phenotypes gradually shifted from one
audiometric configuration to another with increasing
age. Example audiograms for individuals that
transitioned from Older-Normal to Metabolic, Senso-
ry, or Metabolic + Sensory phenotypes with increasing
age are shown in Figure 5. Because their threshold
changes were larger and occurred more quickly than
for the stable ears, longer periods of time are likely
needed to observe these changes for most ears.

When different phenotype transitions were exam-
ined, it was apparent that not all transitions were
equally likely. Most of the ears that changed were
observed to transition to a Metabolic or Metabolic +
Sensory phenotype, confirming the prediction that
those phenotypes are increasingly likely for older
adults with increasing age. The likelihood of a
phenotype change or no change also depended on
the initial phenotype. First, there were differences in
the capacity for threshold changes that restrict
potential changes in phenotype. For example, Older-
Normal ears were the most likely to transition to any
other phenotype with increasing age, whereas the
Metabolic + Sensory ears were the least likely to
transition to anything else. Second, distinct audiomet-
ric shapes and potentially distinct underlying pathol-
ogies limited exchange between the Metabolic and
Sensory phenotypes, aside from classification errors.
There appeared to be two distinct routes from the
Older-Normal phenotype to the Metabolic + Sensory
phenotype, which typically involved an intermediate
stage of Metabolic or Sensory phenotype. The Older-
Normal ears that appeared to directly transition to
Metabolic + Sensory phenotype changed during
relatively long intervals between clustered visits, so
an intermediary stage of Metabolic or Sensory pheno-
type cannot be ruled out.

As previously noted (Schmiedt 2010; Dubno et al.
2013), animal models that were used to establish
audiometric patterns from distinct cochlear pathologies
were obtained in acoustically controlled environments.
In contrast, age-related hearing loss for older adults is
caused by a complex mixture of genetic, health, and
environmental risk factors. An accumulation of risk
factors, exposures, and damage across the lifespan
produces age-related hearing loss with metabolic and
sensory characteristics for many older adults (Dubno
et al. 1984; Allen and Eddins 2010). Age-related hearing
loss could potentially be modeled effectively with
distinct metabolic and sensory mechanisms that differ-
entially combine to produce a variety of metabolic,
sensory, and metabolic + sensory pathologies.

Limitations

Audiograms were categorized within audiometric
phenotypes based on their similarity to a distribution
of expert-labeled audiograms. One important limita-
tion of the current approach is that audiometric
configurations for individuals are not always well-
represented by the four phenotype categories. Care-
ful screening of participants and audiograms can
limit misclassification of presbyacusis phenotypes for
children, younger adults, or people with a congenital
hearing loss (i.e., Bcorner audiograms^) instead of
age-related hearing loss, per se. Because audiograms
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from older adults reflect an accumulation of com-
bined genetic, health, and environmental risk factors
that impact hearing sensitivity across the lifespan,
even carefully selected and correctly classified au-
diograms will vary considerably within phenotype
categories. Hearing loss reflects a mixture of distinct
influences that could be useful to disentangle in
future studies, for example, by estimating the
relative contribution of the sensory or metabolic
declines.

Another consideration regarding the current find-
ings is the sample composition. Participants with
longitudinal data included a relatively large propor-
tion of Metabolic + Sensory ears, more females than
males, and 2–5-year intervals of longitudinal data.
While the current longitudinal dataset established
relative differences in phenotype transitions and
patterns of threshold change, a larger dataset could
produce more detailed information about the distri-
bution of phenotypes for the larger population. A
clinical database could potentially be illustrative,
although careful screening would be necessary to
avoid misclassification of hearing loss that is not
related to aging per se.

Although this was not a limitation of the current
study, we note that several measures were taken in the
current analyses to prevent circularity in the analyses
and results. First, the optimal number of shape
parameters and the best training dataset were deter-
mined on the basis of LOOCV procedures to preserve
independence between the audiograms used to train
and test the QDA model, described earlier. Second,
the longitudinal data were largely distinct from the
cross-sectional audiogram data used to train the QDA
model. Furthermore, the QDA classifications for
audiograms were naïve with respect to the specific
identity of each ear, sex, noise history, and age, so
differences in those characteristics were not influ-
enced by the categorization process. Audiometric
differences were not directly tested between the
phenotypes, because those differences would depend
on the same data that generated the phenotype
classifications.

The current study provided additional evidence for
distinct audiometric phenotypes that can change with
increasing age in middle to older adulthood, as well as
further validation for phenotype classification. The
classification accuracy was observed to improve within
a larger training dataset, which suggests that the
development of more extensive training datasets
could further enhance this method. Future studies
could also use a similar automatic classification
approach to characterize the relative contributions
of distinct mechanisms in presbyacusis and determine
the prevalence of audiometric phenotypes in a clinical
audiometric database.

CONCLUSIONS

Building on previous observations with a cross-sectional
audiogram dataset (Dubno et al. 2013), the current study
used pure-tone thresholds measured longitudinally to
classify phenotypes that are hypothesized to reflect distinct
etiologies. Consistent with the view that age-related
hearing loss is a metabolic rather than a sensory disorder,
individuals categorized within the Metabolic and Metabol-
ic + Sensory phenotypes were the oldest. Furthermore,
most individuals that exhibited a change in phenotype
category transitioned to Metabolic phenotypes at older
ages compared to other phenotype transitions. The
longitudinal audiometric data revealed threshold changes
that produce characteristic audiogram configurations for
each phenotype, including age-related threshold changes
at higher frequencies for the Sensory phenotype that were
larger than expected. Furthermore, well-established sex
differences in audiometric change were minimized when
age-related threshold changes were estimated separately
for each phenotype. Phenotype classification methods
have the potential to facilitate our ability to accurately
categorize hearing loss mechanisms and predict declines
based on audiometric data. The current results from
classifying longitudinal audiograms provided additional
evidence that age-related hearing loss commonly includes
metabolic-type declines for middle-aged to older adults.
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