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ABSTRACT

Tone-in-noise detection tasks with reproducible noise
maskers have been used to identify cues that listeners
use to detect signals in noisy environments. Previous
studies have shown that energy, envelope, and fine-
structure cues are significantly correlated to listeners’
performance for detection of a 500-Hz tone in noise.
In this study, envelope cues were examined for both
diotic and dichotic tone-in-noise detection using both
stimulus-based signal processing and physiological
models. For stimulus-based envelope cues, a modified
envelope slope model was used for the diotic condi-
tion and the binaural slope of the interaural envelope
difference model for the dichotic condition. Stimulus-
based models do not include key nonlinear transfor-
mations in the auditory periphery such as compres-
sion, rate and dynamic range adaptation, and rate
saturation, all of which affect the encoding of the
stimulus envelope. For physiological envelope cues,
stimuli were passed through models for the auditory
nerve (AN), cochlear nucleus, and inferior colliculus
(IC). The AN and cochlear nucleus models included
appropriate modulation gain, another transformation
of the stimulus envelope that is not typically included
in stimulus-based models. A model IC cell was
simulated with a linear band-pass modulation filter.
The average discharge rate and response fluctuations
of the model IC cell were compared to human
performance. Previous studies have predicted a signif-
icant amount of the variance across reproducible
noise maskers in listeners’ detection using stimulus-

based envelope cues. In this study, a physiological
model that includes neural mechanisms that affect
encoding of the stimulus envelope predicts a similar
amount of the variance in listeners’ performance
across noise maskers.
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INTRODUCTION

Hearing in noise is a challenge for listeners both with
and without hearing loss, yet the healthy auditory
system accomplishes this task with remarkable ability.
Previous studies using stimulus-based signal-process-
ing strategies have identified envelope-based cues that
play an important role in detection. The goal of this
study was to determine whether nonlinear physiolog-
ical models, which both distort and enhance envelope
cues, can perform as well as the simple stimulus-based
models in predicting listeners’ detailed performance.

Early studies of tone-in-noise detection (e.g.,
Blodgett et al. 1958, 1962; Dolan and Robinson
1967) used random noises for each trial to obtain
listeners’ detection thresholds. Two listening condi-
tions have been tested most extensively (Fig. 1): the
diotic condition, in which identical noise-alone or
tone-plus-noise stimuli are presented to the two ears,
and the dichotic condition, in which out-of-phase
tones and in-phase noises are presented to the two
ears for the tone-plus-noise trials.

Reproducible noises, a set of pre-generated ran-
dom noises, have been used to explore listeners’
detailed detection performance across different noise
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waveforms (Pfafflin and Mathews 1966; Gilkey et al.
1985; Siegel and Colburn 1983; Isabelle and Colburn
1991; Evilsizer et al. 2002; Davidson et al. 2006; Mao
et al. 2013). Listeners’ responses vary across repeti-
tions of any given stimulus, due to unknown factors
which are referred to as internal noise that are
assumed to be independent across trials. Each repro-
ducible noise waveform is tested multiple times to
yield average response patterns that reduce the effects
of internal noise. Listeners’ performance can be
described in terms of the set of hit (correct identifi-
cation of “tone present”) and false alarm (FA) rates
for each reproducible noise, referred to as a detection
pattern (Davidson et al. 2006) (Fig. 2). Individuals’
detection patterns are highly consistent over time
(Gilkey et al. 1985; Isabelle and Colburn 1991;
Evilsizer et al. 2002; Davidson et al. 2006) and, in
many conditions, across listeners, suggesting the use
of similar strategies and cues. Several models have
been proposed to predict listeners’ performance
using specific cues. In each model, a decision variable
(DV) is computed based on a feature of the stimulus,
and DVs from the set of reproducible noises are
compared to listeners’ detection patterns.

For diotic detection, energy within a critical band
(Fletcher 1940) predicts a significant amount of the
variance in listeners’ performance across different
maskers (Davidson et al. 2009; Mao et al. 2013).
However, the energy cue cannot explain performance
in roving-level conditions, in which the overall sound
level varies in each trial (Kidd et al. 1989). An
envelope slope (ES) cue (Richards 1992; Zhang
2004) is robust for the roving-level condition and
predicts a significant amount of the variance in
listeners’ detection patterns (Davidson et al. 2009;

Mao et al. 2013). Models based on temporal fine
structure such as the phase opponency model
(Carney et al. 2002) also predict a smaller but
significant portion of the variance in detection
patterns. A recent study shows that predictions based
on an optimal combination of energy and temporal
cues approach the predictable variance in detection
patterns (the common variance among different
listeners’ performance) for the diotic condition
(Mao et al. 2013).

FIG. 2. Detection pattern (hit and FA rates) of the average listener
for diotic narrowband waveforms. The horizontal axis shows noise
index; the insets show examples of tone-plus-noise (top) and noise-
alone (bottom) waveforms. Note that listeners’ responses vary across
reproducible waveforms; responses were highly consistent within
and across individual listeners for this stimulus condition.

A

B

FIG. 1. A schematic diagram illustrates two basic listening conditions: A diotic condition, NOSO, and B dichotic condition, NOSπ . Note that
the tone is inverted in the lower right panel (after Moore 2003).
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For dichotic detection, interaural level difference
(ILD) and/or interaural time difference (ITD) cues
have been used to predict listeners’ performance
(Davidson et al. 2009; Isabelle 1995); however, these
predictions were substantially lower than the predict-
able variance. A binaural envelope slope cue, the
slope of the interaural envelope difference (SIED),
yields significantly better predictions than ILD and/or
ITD cues (Mao and Carney 2014). Thus, among
stimulus-based models, those using envelope cues
are most successful in predicting listeners’ perfor-
mance for both diotic and dichotic conditions.

Envelope cues are important for detection in noise,
but these cues are affected by every stage of neural
processing. Nonlinearities in the auditory periphery
that affect envelopes, including compression, rate
saturation, and rate and dynamic range adaptation,
are included in recent computational models for the
auditory nerve (AN) (Zilany and Bruce 2006, 2007;
Zilany et al. 2009, 2014; Zilany and Carney 2010). Dau
et al. (1996) and Breebaart et al. (2001) simulated
auditory signal processing for masked detection using
models that included linear band-pass filters, rectifi-
cation, and adaptation. The current study combined
recent nonlinear AN models with models for envelope
processing in the cochlear nucleus and inferior
colliculus (IC) (Nelson and Carney 2004), where
envelope tuning is first observed along the ascending
auditory pathway (reviewed in Joris et al. 2004). Using
the detailed detection performance available from
reproducible noise studies, it was possible to investi-
gate the physiological processing of envelope cues for
masked detection and to test the hypothesis that
physiological models can perform as well as the
simpler signal-processing-based models in predicting
listeners’ performance. For physiological models,
responses were assessed based on the average dis-
charge rate and on temporal fluctuations in the
responses of monaural and binaural model IC cells.
Given the success of the stimulus-based ES and SIED
models for predicting listeners’ performance, these
models served as benchmarks for the physiological
models to investigate the effectiveness of cues extract-
ed using models with nonlinear neural mechanisms
that influence envelope coding.

METHODS

In this study, given that envelope cues for tone-in-
noise detection are processed in the auditory pathway,
it was hypothesized that cues obtained with basic
neural mechanisms of the responses from the model
IC cells yield similar predictions as the stimulus-based
envelope cues for predicting listeners’ detection
performance.

Datasets

Listeners’ detection performance for diotic and
dichotic tone-in-noise detection was obtained from
previous experiments (Davidson et al. 2006; Evilsizer
et al. 2002; Mao and Carney 2014). Detection in the
presence of reproducible noise maskers was tested on
each listener in these studies. Each single-interval trial
had a 50 % chance of being either a noise-alone or
tone-plus-noise trial, and the masker waveform was
randomly chosen from the set of reproducible
waveforms. Listeners responded “tone present” or “tone
not present”, and their performance was described in
terms of hit rate (proportion of correct response of
tone present for tone-plus-noise waveforms) and FA
rate (proportion of responding tone present for
noise-alone waveforms) for each reproducible masker
waveform. The set of hit and FA rates across the
ensemble of maskers is referred to as a detection
pattern (Davidson et al. 2006). Figure 2 shows the
detection pattern of the average listener (i.e., aver-
aged performance across individual listeners) for
diotic narrowband waveforms.

Data from diotic and dichotic listening conditions
were used in this study. Both narrowband (452–
552 Hz) and wideband (100–3,000 Hz) waveforms
were used for diotic and dichotic conditions. The
narrowband maskers were created by extracting the
100-Hz band of the spectrum from 452 to 552 Hz
from the wideband maskers. The spectrum level of
the noise waveform was 40 dB sound pressure level
(SPL) (overall noise level was 60 dB SPL for narrow-
band waveforms and approximately 75 dB SPL for
wideband waveforms). For the predictions here, the
500-Hz tone level was set to each listener’s threshold.
Listeners’ detection thresholds for the dichotic con-
dition were approximately 10 dB lower than those in
the diotic condition. This decrease in threshold, the
well-known binaural masking level difference (Moore
2003), was due to the binaural differences introduced
in the dichotic condition. In this study, data from a
total of eight listeners for the diotic condition (S1–S4
from Evilsizer et al. 2002 and S5–S8 from Davidson
et al. 2006) and six listeners for the dichotic condition
(S1–S4 from Evilsizer et al. 2002 and S9 and S10 from
Mao and Carney 2014) were analyzed.

Diotic Models for Tone-in-Noise Detection

Two types of envelope-based cues were used in this study:
the modified stimulus-based ES cue and the physiolog-
ically based envelope cue from model IC responses.

Stimulus-Based Model. The original ES model (Richards
1992; Zhang 2004; Davidson et al. 2009) quantifies
changes in envelope fluctuations. Because the addi-
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tion of a tone to a narrowband noise waveform results
in a decrease of the envelope fluctuations, a low value
for the DV indicates that the testing waveform is more
likely to be a tone-plus-noise stimulus. By inspecting
the frequency components of envelopes from tone-
plus-noise and noise-alone stimuli, it was determined
that the largest differences in envelope energy were
within 50–150 Hz (Mao et al. 2013). Thus, a sixth-
order band-pass filter with a center frequency of
100 Hz (Q=1) was used to extract the envelope
frequency range of interest. Figure 3A shows the
schematic diagram of the modified ES model. The
Hilbert transform is used to compute the analytic
signal from the output of a fourth-order gammatone
filter (center frequency of 500 Hz). The envelope is
obtained from the analytic signal, and the DV of the
model was calculated as the integral of the half-wave
rectified slope of the envelope. The difference
between this modified model and the original ES
model (Richards 1992; Zhang 2004; Davidson et al.
2009) is that a tenth-order low-pass filter (cutoff
frequency at 250 Hz, aiming to exclude the high
frequency fine-structure components) is replaced by

the band-pass filter to extract envelope cues from the
most informative frequency range. A previous study
showed that predictions based on the modified ES
model (Mao et al. 2013) were more consistent with
listeners’ performance than those using the original
ES model.

Physiological Model. In the physiological model, the
s t imulus was pas sed through a ser ie s of
phenomenological models along the ascending
auditory pathway (Fig. 3B). First, a human version of
the AN model (Zilany et al. 2009, 2014; Ibrahim and
Bruce 2010) was used to obtain the AN synapse
output. The input to the AN model was first processed
by a middle ear filter, followed by a set of band-pass
filter paths that provided inputs to the inner hair cell
(IHC). The IHC response provided the input to the
synapse model, which provided the final model AN
response. This AN model has been shown to simulate
responses to a range of different stimuli accurately,
including pure tones, forward masked stimuli, and
amplitude-modulated (AM) stimuli (Zilany et al.
2009). Next, model AN responses were used as inputs
to a cochlear nucleus (CN) model (Nelson and
Carney 2004). Inhibitory and excitatory AN responses
tuned to the same frequency were processed through
low-pass filters representing convolution with postsyn-
aptic potential waveforms and were then weighted by
excitatory and inhibitory strengths and combined to
provide the response of the CN model. For the
purposes of the current study, the function of the
CN model was to provide modest temporal tuning
(i.e., increased synchrony to the envelope) as ob-
served for several cell types in the anteroventral
cochlear nucleus (Frisina et al. 1990; Gai and Carney
2006, 2008); no attempt was made to match the model
to a particular cell type or CF (Gai and Carney 2006).
Increased synchrony was accomplished using an
inhibitory strength that was 0.6 times the excitatory
strength. Higher values of the inhibitory input
strength would yield stronger synchrony to the
envelope (e.g., appropriate for onset cells), but little
or no sustained response to noise stimuli, which was
important for studying responses to the reproducible
maskers. Thus, an intermediate value of inhibitory
strength that resulted in improved synchrony but still
yielded sustained responses was used for all simula-
tions here. This value was the same as that used for the
CN stage of the same-frequency inhibitory-excitatory
(SFIE) model in Nelson and Carney (2004).

Krishna and Semple (2000) and Nelson and Carney
(2007) showed that approximately half of the cells in
the IC have band-pass tuning to AM. The IC cell is
simulated with a modulation filter to represent this
tuning in the model. Specifically, the IC responses are
modeled by a band-pass modulation filter, with a
peak, or best modulation frequency (BMF) that

BA

FIG. 3. Schematic diagrams of the monaural envelope models. A
Stimulus-based modified ES model. The envelope was obtained from
the analytic waveform computed from the Hilbert transform of a
fourth-order gammatone-filtered waveform; a sixth-order band-pass
filter with center frequency of 100 Hz was used to extract the
envelope frequency range of interest. Cue values were computed as
the integral of the half-wave rectified slope of the envelope
fluctuations. B Physiological envelope model. The stimulus was
passed through the AN and CN phenomenological models and the
IC modulation filter to obtain the synapse output. The neural
envelope cue was computed based on the rate and fluctuation of
the model synapse output.
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receives its input from the synapse output of the CN
model. The SFIE-type IC model used by Nelson and
Carney (2004) acts as a modulation filter, and a number
of center frequencies can be achieved by carefully
choosing time constants for the excitatory and inhibitory
inputs. The Q value of the SFIE-type model is approxi-
mately 1.5. Preliminary results showed that better
predictions were obtained with a broader filter. In this
study, a sixth-order band-pass filter was used that allowed
more flexible adjustment of the center frequency, as
compared to the original SFIE model, and a Q value of 1
was used (see Appendix). The order of the filter used
here was determined by the phase range obtained from
physiological recordings of IC cells in awake rabbits
(unpublished observations). Two basic neural mecha-
nisms were used to obtain envelope cues from the
physiological model: average discharge rate, which was
computed as the averaged synapse output, and ameasure
related to the fluctuations of the model’s peri-stimulus
time histograms, which was obtained from the integral of
the half-wave rectified derivative of the model response.

Dichotic Models for Tone-in-Noise Detection

Similar to the diotic condition, both stimulus-based and
physiological envelopemodels were used in the dichotic
condition. For noise-alone trials in the dichotic condi-
tion, listeners were presented with identical noise
stimuli to the two ears; thus, there were no binaural
stimulus differences in the noise-alone trials. Stimulus-
based models that depend on binaural differences
cannot make any predictions for dichotic noise-alone
trials. As a result, only hit rates were predicted for the
stimulus-based models in the dichotic condition. In
contrast, for the physiological model, binaural differ-
ences were available in models that included cell inputs
with mismatched center frequencies, and thus, FA rates
could be predicted in that case.

Stimulus-Based Model. For the dichotic condition,
binaural differences occur because of the addition of
out-of-phase tones to in-phase noises at the two ears.
The SIED model (Mao and Carney 2014) focuses on
the binaural envelope difference cues. Figure 4A
shows a schematic diagram of the SIED model, in
which envelopes from the contralateral and ipsilateral
sides are extracted from the analytic signal computed
from a fourth-order gammatone-filtered stimulus. The
binaural envelope difference was calculated based on
the difference between the computed monaural
envelopes. Specifically, the SIED cue value was
calculated as the time integral of the half-wave
rectified slope of the envelope differences. It has
been shown that the SIED cue represents a nonlinear
combination of interaural time and level differences
(Mao and Carney 2014).

Physiological Model. Computation of the dichotic
physiological envelope cue is shown in Figure 4B.
Similar to the diotic physiological model (Fig. 3B),
binaural stimuli are first passed through a series of
phenomenological cell models along each monaural
pathway. Model synapse outputs are obtained from AN
and CN models for both contralateral and ipsilateral
sides. The excitatory response from the contralateral
CN model is combined with a delayed (2 ms) inhibitory
response from the ipsilateral CNmodel via an inhibitory
interneuron. The combination of the CN outputs
represents the binaural difference, which includes both
interaural time and level differences. The combined
excitatory and inhibitory inputs are sent to the IC
modulation filter. For the IC model, a band-pass
modulation filter centered at 50 Hz was used; this
modulation frequency contains the largest envelope
differences related to tone presence in the dichotic
condition (Mao and Carney 2014). The dichotic phys-
iological model envelope cues based on either rate or
response fluctuations were obtained from the model IC
synapse output.

Evaluation of Model Predictions

Model predictions based on envelope cues were
evaluated by comparing them to listeners’ detection
patterns. For each model, a DV was computed for
each waveform. The proportion of the variance in the
detection pattern explained by the model was com-
puted as the squared Pearson product-moment corre-
lation coefficient between the DVs and the z-score of
listeners’ detection patterns (Davidson et al. 2009;
Mao et al. 2013). The variance predicted by each
model was compared with the significance level
(pG0.05). In addition, the variances explained by the
stimulus-based and physiological models were com-
pared to test the hypothesis that stimulus-based and
physiological envelope cues could predict similar
amounts of the variances in listeners’ responses.

RESULTS

In this section, model predictions using stimulus-
based and physiological envelope cues are shown.
Model AN fibers with different center frequencies and
IC band-pass modulation filters with different best
modulation frequencies were used in the physiologi-
cal models. Basic neural mechanisms were used to
compute cues from the IC model responses: rate and
synchrony from the synapse output and fluctuations
of the model responses. Predictions computed using
synchrony cues are not shown here because synchrony
to the 500-Hz tone was not significantly correlated to
listeners’ detection patterns.

MAO AND CARNEY: Tone-in-Noise Detection Using Envelope Cues 125



Detection patterns were highly correlated across differ-
ent pairs of listeners in the diotic narrowband and
wideband and dichotic wideband conditions (Mao et al.
2013;Mao andCarney 2014), indicating that listeners used
a similar strategy to detect tones in noise in each of these
conditions. In this study,model predictions are only shown
for the average listeners in these three conditions. For the
dichotic narrowband condition, in which listeners’ pat-
terns were not significantly correlated (Mao and Carney
2014), model predictions are shown for individual
listeners.Model predictions using stimulus-based envelope
cues were reported in previous studies (Mao et al. 2013;
Mao and Carney 2014). Here, quantitative comparisons of
stimulus-based and physiological envelope cues are shown
in Tables 1 and 2.

Diotic Physiological Cues

Figure 5(A–C) shows model predictions of average
listeners’ narrowband detection patterns using
stimulus-based envelope cues, average rates, and

fluctuations computed from the model IC cell
responses. Predictions based on the same cues for
the average listeners’ wideband detection patterns
are shown in Figure 5(D–F). In each panel, the x-
axis shows the model center frequencies and the y-
axis shows the proportion of variance in the
detection pattern that is explained by the model.

In both narrowband and wideband conditions, the
trends of model predictions across different frequen-
cy channels were similar, with the highest correlation
to listeners’ detection patterns obtained at or near the
500-Hz target tone frequency. In addition, maximal
predictions from the stimulus-based envelope cue and
the physiological rate and fluctuations cues were
similar in these two conditions (Fig. 5(A–C) for
narrowband; Fig. 5(D–F) for wideband). In the
narrowband condition, the frequency range that
yielded the highest correlation to listeners’ hit rates
was approximately 530 Hz for both stimulus-based and
physiological cues. The reason that the maximal
correlation to listeners’ performance occurred for
the 530-Hz channel was likely due to the phase

FIG. 4. A schematic diagram of the dichotic envelope models. A
Dichotic stimulus-based SIED cue. Envelope was extracted using
analytic signal computed from the Hilbert transform of the fourth-
order gammatone-filtered waveforms. The SIED cue was computed
as the time integral of the half-wave rectified slope of the envelope
difference at the two ears. B Dichotic physiological envelope cue.
Binaural stimuli were passed through the AN and CN models;

excitatory contralateral and delayed inhibitory ipsilateral CN outputs
were combined to compute the binaural envelope difference.
Responses from the CN outputs were sent to the IC cell. The IC cell
was simulated with a band-pass modulation filter, and the envelope
cue from the IC cell was computed based on the average rate and
fluctuation of the model’s response.
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properties of the gammatone filter, as no significant
difference in envelope energy was observed across
these channels. In the wideband condition, maximal
correlations to listeners’ detection patterns were
obtained from model cells tuned near the frequency
of the 500-Hz tone.

Dichotic Physiological Cues

For the stimulus-based SIED cue, FA rates cannot be
predicted because there are no interaural differences
in the identical noise-alone stimuli that were present-
ed to the listener. In the physiological models,
assuming that model IC cells receive inputs from AN
synapse outputs with mismatched center frequencies
(Joris et al. 2006), predictions of both hit and FA rates
can be computed. In this section, each figure shows
dichotic model predictions with different combina-
tions of mismatched center frequencies. As described
previously, the average listener was analyzed in the
wideband condition because listeners’ detection pat-
terns were highly correlated with each other, and
individual listeners were analyzed for the narrowband
condition because different listeners apparently use
different strategies for detection of tones narrowband
stimuli. In particular, different binaural combinations
of frequency channels provide better predictions for
different individual listeners in the narrowband
dichotic condition (Mao and Carney 2014).

In Figure 6, dichotic model predictions of hit and
FA rates for the average listener in the wideband
condition (A, B) and three individual listeners in the
narrowband condition [S1 (C, D), S3 (E, F), and S4
(G, H)] are shown. These individual listeners were
chosen because their results were representative of
the three other listeners. In each panel, the axes show
the center frequencies of the model cells that
received stimuli presented to the left and right ears.
Predictions for the binaural models that receive
matched 500-Hz frequency channels from both ears

are shown at the lower left of each panel; the other
predictions are for binaural combinations of different
(mismatched) frequency channels from the two ears.

For the wideband condition, the trends of model
predictions using mismatched AN inputs are similar:
the highest correlation of hit rate was observed for
model cells that received left and right inputs with AN
tuning near the tone frequency of 500 Hz; for FA
rates, predictions with ipsilateral inputs around 500
Hz were high (Fig. 6(A, B)). For the narrowband
condition, the trends in the predictions varied across
listeners: some were best predicted by frequency
channels around 500 Hz, and others were best
predicted by frequency channels away from the tone
frequency for both ears (Fig. 6(C–G)). For instance,
S3’s detection patterns were best predicted by rate
information from frequency channels near 500 Hz,
and S4’s hit rates were best predicted by frequency
channels that were approximately one critical band-
width apart. The diversity in these results implies that
different listeners use different strategies for narrow-
band tone-in-noise detection, which also may explain

TABLE 1
Stimulus-based and physiological model predictions of diotic and dichotic tone-in-noise detection patterns for the average

listener

Narrowband condition Wideband condition

Stimulus-based
ES

Physiological
rate

Physiological
fluctuations

Stimulus-based
ES

Physiological
rate

Physiological
fluctuations

Diotic condition
Hit 0.53 0.50 0.54 0.50 0.53 0.48
FA 0.46 0.32 0.33 0.38 0.52 0.46

Dichotic condition (hit) See Table 2 0.53 0.46 0.52

The values listed indicate the proportion of variance explained by each model; the values in italics indicate predictions that are statistically significant (r2≥0.16;
pG0.05). For these values, the center frequency for the model cell was 500 Hz and the best modulation frequency for the IC band-pass modulation filter was 100 Hz
in the diotic condition and 50 Hz for the dichotic condition

TABLE 2
Stimulus-based and physiological model predictions for
individual listeners’ hit rates in the dichotic narrowband

condition

Model
predictions

Stimulus-based
SIED cue

Physiological
rate

Physiological
fluctuations

Hit Hit FA Hit FA

S1 0.18 0.31 0.23 0.30 0.22
S2 0.31 0.15 0.36 0.22 0.36
S3 0.00 0.26* 0.28 0.31* 0.24
S4 0.16 0.52* 0.56 0.50* 0.29
S5 0.10 0.28 0.41 0.38 0.30
S6 0.13 0.14 0.22 0.12 0.15

The values listed indicate the maximum value of the percent variance
accounted for within the range of CFs in Figures 6 and 7. Values in italics
indicate statistical significance (r2≥0.16; pG0.05)

*pG0.05, indicating predictions that were significantly improved compared
to the stimulus-based SIED cue
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the low correlations between listeners’ detection
patterns for this condition. In both narrowband and
wideband conditions, model predictions were not
symmetric around the matched center frequencies
of 500 Hz. This is partly due to the fact that the
physiological cues were obtained by combining posi-
tive contralateral and negative ipsilateral CN inputs;
exchanging the contralateral and ipsilateral inputs
yields slightly different results (i.e., they are not
mirror symmetric) because of the differences across
reproducible waveforms.

Predictions based on the model response fluctuations
for the average listener in the wideband (Fig. 7(A, B)) and
individual listeners in the narrowband condition [S1, Fig.
7(C, D); S3, (E, F); and S4, (G, H)] are shown in Figure 7.
The overall trends in Figure 7 are similar to the results
from Figure 6. Listeners’ detection patterns were best
predicted by combining frequency channels both tuned
near 500Hz in the wideband condition, whereas different
combinations of frequency channels yielded better pre-
dictions of listeners’ patterns in the narrowband condi-

tion. However, there are some detailed differences
between the trends in Figures 6 and 7. In the wideband
condition, for fluctuation cues, the best frequency
channels are located closer to 500 Hz compared with rate
cues, though predictions from 600-Hz contralateral and
400-Hz ipsilateral inputs also yielded good predictions.
For the narrowband condition, model predictions for the
dichotic conditions based onmodel response fluctuations
yielded a substantially higher correlation for some
listeners’ patterns than predictions using the rate cue.

Comparisons of model predictions for the average
listeners using stimulus-based and physiological cues are
shown in Table 1. Table 2 shows predictions for
individuals in the dichotic narrowband conditions, be-
cause the average listener was not used in this condition.
Both hit and FA rates were predicted using the physio-
logical envelope cues for both diotic and dichotic
conditions. For the stimulus-based cues, hit and FA rates
were predicted for the diotic condition, whereas only the
hit rate for the dichotic condition could be predicted. As
shown from the table, both types of physiological

F

E

C

B

DA

FIG. 5. Stimulus-based and physiological model predictions of the
average listener’s hit (triangles) and FA (circles) rates based on stimulus-
based envelope cues (A narrowband, D wideband), average rate (B
narrowband, E wideband), and fluctuations (C narrowband, F wide-

band) computed from themodel IC cell responses. The x-axis shows the
center frequencies of the model cells, and the y-axis shows the
proportion of variance explained by the model. The black dotted line
indicates the level required for significant predictions (pG0.05).
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FIG. 6. Physiological model predictions of the average listener’s
wideband hit and FA rates (A, B) and individual listeners’ narrow-
band hit and FA rates (S1: C, D; S3: E, F; and S4: G, H) based on the
average rate of the model IC synapse output. The x-axis shows the

center frequencies of model cells receiving the stimuli presented to
the left ear, and y-axis shows the difference of center frequencies of
model cells at right ears with respect to the left ears. The grayscale
value shows the proportion of variance explained by the model.
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FIG. 7. Physiological model predictions of the average listener’s
wideband hit and FA rates (A, B) and individual listeners’ narrow-
band hit and FA rates (S1: C, D; S3: E, F; and S4: G, H) based on
fluctuations of the model IC synapse output. The x-axis shows the

center frequencies of model cells receiving the stimuli presented to
the left ear, and y-axis shows the difference of center frequencies of
model cells at right ears with respect to the left ears. The grayscale
value shows the proportion of variance explained by the model.
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envelopemodels predicted similar amounts of variance of
the average listeners’ detection patterns in the wideband
condition, and these predictions were similar to the
stimulus-based cues. For the narrowband dichotic condi-
tion, predictions from fluctuation cues were slightly, but
not significantly better than rate cues for some listeners,
and predictions for S3 and S4 from these physiological
cues were significantly improved in comparison to the
stimulus-based SIED cue. Predictions were comparable
(S6) or slightly higher (S1 and S5) for three other listeners
and lower (S2) for only one listener. The improved
predictions of the physiological model are likely due to
the modulation gain that is present in this model, but not
in the stimulus-based models. Modulation gain, in either
the synchrony or rate responses, is present at every level of
the physiological model.

DISCUSSION

Physiological and stimulus-based models that rely on
envelope cues were tested with listeners’ detection
patterns for diotic and dichotic reproducible noises.
The physiological models included peripheral nonlin-
earities that distort envelopes cues, such as cochlear
compression and saturation in the responses of hair
cells and auditory nerve synapses. These models also
include mechanisms that distort, but enhance, the
envelopes, including adaptation in the auditory nerve,
dynamic range adaptation, and tuning for amplitude
modulation rate at the level of the IC (Zilany et al.
2009; Zilany and Carney 2010; Nelson and Carney
2004). The physiological models explained compara-
ble or greater amounts of variance in most listeners’
detection patterns as compared to the stimulus-based
models, for both diotic and dichotic conditions.

In previous studies, model predictions for diotic and
dichotic reproducible noises were computed from
different types of cues. For the diotic condition,
commonly used models are based on energy (e.g.,
Fletcher 1940; Gilkey and Robinson 1986), envelope
(Richards 1992; Zhang 2004; Davidson et al. 2006), fine-
structure (Carney et al. 2002), and template-matching-
based temporal cues (Dau et al. 1996; Breebaart et al.
2001). For the dichotic condition, models are based on
interaural cues, such as energy-based equalization and
cancellation (Durlach 1963), the normalized cross-
correlation (Isabelle 1995), interaural level and time
difference cues (Isabelle 1995), and different types of
linear combinations of interaural level and time differ-
ences (Isabelle and Colburn 1987, 2004; Goupell and
Hartmann 2007; Davidson et al. 2009).

In the current study, physiological monaural and
binaural envelope cues were analyzed, motivated by
the robustness of stimulus-based envelope cues for
predicting listeners’ performance in both diotic and

dichotic conditions (Richards 1992; Davidson et al.
2006; Mao et al. 2013; Mao and Carney 2014). The
physiological envelope cues studied here were based
on the average rate and response fluctuations com-
puted from a physiological model for the auditory
pathway up to the level of the IC. The rate computa-
tion from the model IC responses can be interpreted
as the response energy from the envelope-sensitive
cell, and the fluctuations of the IC responses are
similar to the envelope slope cues used in the
stimulus-based models. In addition, the synchrony of
IC responses to the 500-Hz tone and synchronized
rate (the product of synchrony and rate) values were
also computed, but the correlations between DVs
based on these metrics and listeners’ detection
performance were not significant.

For predictions in the diotic condition, both the
average rate and the response fluctuation of the IC
model yielded maximal correlations to listeners’
detection patterns that were similar to those for
stimulus-based envelope cues. For the dichotic wide-
band condition, envelope slope-related cues estimated
from response fluctuations resulted in slightly, but not
significantly, better predictions than the energy of the
envelope, estimated from model rates. In addition,
the physiological fluctuation cues better predicted
listeners’ narrowband dichotic condition than did rate
cues. Results from basic neural mechanisms involved
in envelope processing suggest that physiological
envelope cues are as reliable as the stimulus-based
envelope cues in predicting listeners’ tone-in-noise
detection results.

The results in Figures 6 and 7 indicate that for the
dichotic wideband condition, for which listeners’
patterns were highly correlated, similar frequency
channels were used across listeners to detect tones in
noise. In general, the frequency channels tuned near
the target frequency of 500-Hz provided the best
predictions for the wideband condition. In contrast,
for the dichotic narrowband condition, different
combinations of frequency channels yielded the
highest correlations for different listeners’ patterns.
Similar results were observed when predicting dich-
otic detection patterns using the stimulus-based SIED
cue with gammatone filters that had mismatched
center frequencies (Mao and Carney 2014). Both
results suggest that different listeners use different
combinations of frequency channels for the dichotic
narrowband condition.

Although predictions of listeners’ detection pat-
terns based on envelope cues explained a significant
amount of listeners’ performance in the current study,
these predictions were lower than the predictable
variance for the diotic condition (Mao et al. 2013).
The predictable variance describes the proportion of
the variation in detection patterns that is common
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In this study, the hypothesis that envelope cues
available in a physiological model were as reliable as
stimulus-based envelope cues in predicting listeners’
tone-in-noise detection patterns was tested. In conclu-
sion, predictions from physiological cues were similar
to stimulus-based cues in diotic wideband and nar-
rowband and dichotic wideband conditions (Table 1).
For the dichotic narrowband condition, in which
different listeners apparently use different strategies,
predictions from physiological cues explained compa-
rable amounts, and in some cases significantly more,
of the variance of listeners’ detection patterns than
the stimulus-based binaural envelope cue (Table 2).
Based on these results, changes in physiological
mechanisms that would affect the representation of
envelopes, including sensorineural hearing loss and
aging, would be expected to explain some of the
deficits of these listeners in masked detection. It is
interesting that these envelope-based cues may play
the most important role for detection of low-
frequency signals, such as the 500-Hz tone used here,
given that fine structure is typically assumed to
dominate coding of these signals.
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APPENDIX

The sixth-order band-pass filter (H) was computed by
cascading three second-order band-pass filters (H1,
H2, and H3). The formula for each second-order
band-pass filter (Hi) is

H i zð Þ ¼ 1−α i

2
1−z−2

1−β i 1þ α ið Þz−1 þ α i z−2
ðA1Þ

where β is related to the center frequency, fi, of Hi

by

β i ¼ cos 2π f i
� �

; ðA2Þ

and α is related to the 3-dB bandwidth, Wi, by

α i ¼ 1−sin 2πW ið Þ
cos 2πW ið Þ : ðA3Þ
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