
Research Article

Modeling the Time-Varying and Level-Dependent Effects
of the Medial Olivocochlear Reflex in Auditory Nerve
Responses

CHRISTOPHER J. SMALT,1 MICHAEL G. HEINZ,2,3 AND ELIZABETH A. STRICKLAND
2

1School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
2Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
3Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA

Received: 10 March 2013; Accepted: 17 November 2013; Online publication: 5 December 2013

ABSTRACT

The medial olivocochlear reflex (MOCR) has been
hypothesized to provide benefit for listening in noisy
environments. This advantage can be attributed to a
feedback mechanism that suppresses auditory nerve
(AN) firing in continuous background noise, resulting
in increased sensitivity to a tone or speech. MOC
neurons synapse on outer hair cells (OHCs), and their
activity effectively reduces cochlear gain. The compu-
tational model developed in this study implements the
time-varying, characteristic frequency (CF) and level-
dependent effects of the MOCR within the framework
of a well-established model for normal and hearing-
impaired AN responses. A second-order linear system
was used to model the time-course of the MOCR using
physiological data in humans. The stimulus-level-
dependent parameters of the efferent pathway were
estimated by fitting AN sensitivity derived from
responses in decerebrate cats using a tone-in-noise
paradigm. The resulting model uses a binaural, time-
varying, CF-dependent, level-dependent OHC gain
reduction for both ipsilateral and contralateral stimuli
that improves detection of a tone in noise, similarly to
recorded AN responses. The MOCR may be impor-
tant for speech recognition in continuous background
noise as well as for protection from acoustic trauma.
Further study of this model and its efferent feedback
loop may improve our understanding of the effects of

sensorineural hearing loss in noisy situations, a
condition in which hearing aids currently struggle to
restore normal speech perception.

Keywords: time-varying efferent feedback, cochlear
gain reduction, outer hair cell, binaural, efferent
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INTRODUCTION

The auditory system has the acute ability to encode
communication sounds in quiet and across a wide range
of background noise levels, despite the limited dynamic
range of individual neurons. One mechanism that may
help the auditory system to code sounds in varying
background noise levels is dynamic range adaptation
(Dean et al. 2005; Wen et al. 2009). Some dynamic range
adaptation may be produced by the medial olivocochlear
reflex (MOCR), which is mediated by a feedback loop
from the level of the superior olivary complex to the outer
hair cells (OHCs) (Guinan 2006). This feedback loop
reduces the gain of the active process in the cochlea. It is a
bilateral loop, so sound in one ear elicits both an ipsilateral
and a contralateral MOCR (Gifford and Guinan 1987).

Several recent studies have incorporated aspects of
the MOCR into auditory nerve (AN) models (Ferry
and Meddis 2007; Messing et al. 2009; Brown et al.
2010; Chintanpalli et al. 2012). Typically, these have
included only the ipsilateral MOCR. To accurately
characterize the effects of the MOCR, it is important
to determine the amount of gain reduction from both
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the ipsilateral and contralateral pathways of this bilateral
reflex. The magnitude of the gain reduction produced
by the MOCR has been measured at the level of the
basilar membrane and AN in anesthetized animals by
shocking the MOC efferents (Gifford and Guinan 1987;
Murugasu and Russell 1996). From these and other
data, the maximum MOCR strength for the ipsilateral,
contralateral, and bilateral pathways has been estimated
for anesthetized cat. Data on the relative strength of the
ipsilateral and contralateral MOCR are also available
from measurements of otoacoustic emissions (OAEs)
(Liberman et al. 1996). However, these may not be
directly interpreted as changes in cochlear gain due to
the complicated nature of the multiple OAE-generating
mechanisms (Shera and Guinan 1999). Furthermore,
the amplitude changes seen in OAEs are smaller than
those seen in CAPs measured in the same animals
(Kawase et al. 1993; Puria et al. 1996).

Most models simulating aspects of the MOCR have
primarily examined responses with efferents on or off.
However, it is important to include a realistic simula-
tion of the sluggish time-course of the MOCR. The
time-course has typically been measured using various
types of OAEs (e.g., Backus and Guinan 2006). Thus,
unlike the gain reduction data, time-course estimates
have been made not only in anesthetized animals but
also in awake animals, including humans.

A recent study (Chintanpalli et al. 2012) used a well-
established AN model based on cat data (Zilany and
Bruce 2006, 2007) to demonstrate the feasibility of
reducing OHC gain to simulate efferent effects in AN
responses to a tone in noise. While it is difficult
physiologically to avoid the ipsilateral efferent confound
on estimates of contralateral efferent strength (Kawase
et al. 1993), by fitting the ANmodel to the physiological
data it was possible to estimate the amount of gain
reduction from the ipsilateral and bilateral MOCR in
static conditions. In the present study, this AN model
was extended further by adjusting OHC gain as a
function of time (based on the MOCR time-course),
ipsilateral and contralateral stimulus levels, and center
frequency (CF). Model parameters were derived by
fitting the detection and discriminability data from AN
fiber responses to tones in the presence of ipsilateral
noise with and without continuous contralateral noise
(Kawase et al. 1993). As in the physiological data, model
responses demonstrated that contralateral noise can
improve detection and discrimination of tones in the
ipsilateral ear via OHC gain reduction that acts to
reduce the noise response and, consequently, to
increase the tone response. This dynamic level-depen-
dent extension of the AN model allows the relevance of
the MOCR in real-world conditions with temporally
varying sounds to be evaluated, along with the relevance
of the efferent system in cases of sensorineural hearing
loss involving OHC damage.

METHODS

Overview of the efferent pathway

A well-established cat auditory nerve model (Zilany and
Bruce 2006, 2007) was used to simulate AN synapse
output and basilar membrane responses. This model
has been thoroughly compared with physiological
responses to a variety of stimuli including tones, speech,
and noise (Carney 1993; Heinz et al. 2001; Zhang et al.
2001; Tan and Carney 2003, 2005; Zilany and Bruce
2006, 2007). The overall implementation of the AN
model uses time-varying nonlinear filters that predict
physiological responses from the cat auditory system
including compression, suppression, and broadened
tuning (for a review of other computational models, see
Lopez-Poveda 2005). The use of a single control path to
describe all of these nonlinearities means that hearing
loss related to OHC dysfunction can be adjusted by the
model parameter COHC (Heinz 2010). While this
parameter was originally included to simulate the effects
of hearing loss, decreasing OHC gain has previously
been used to model the effect of the MOC efferent
pathway (Ferry and Meddis 2007; Brown et al. 2010;
Jennings et al. 2011; Chintanpalli et al. 2012). Thus, by
varying the parameter COHC between 1 (full OHC gain)
and 0 (no OHC gain), the differing strength of the
MOCR can be simulated.

A schematic of the AN model is shown in Figure 1
and includes an efferent pathway that models the
feedback of the MOCR with the output adjusting
COHC at each time point of the model simulation
[COHC(t)]. The amount of gain reduction indirectly
depends on the input stimulus and the intermedi-
ate low-pass (LP) filter output OHCLP in the OHC
control pathway. The MOC feedback is stimulus
dependent and varies with time, a significant
improvement over the model introduced by
Chintanpalli et al. (2012), where the MOC feedback
was manually adjusted between discrete static
values. Using the control path filter as the input
to the efferent pathway assumes that the MOCR is
driven by activity in a given afferent input channel.
The tuning of the control path filter, a third-order
gammatone filter (Zhang et al. 2001), is broader
than that of the afferent C1 filter, similar to the
observed broader tuning characteristics of efferent
fibers (Liberman and Brown 1986; Lilaonitkul and
Guinan 2009, 2012). The time-varying signal
OHCLP(t) is the input to the efferent pathway of
the model, where it then is smoothed using an RMS
filter (see “MOCR time-course”), converted to a
decibel (dB) scale and then normalized in the level
dependence (LD) block. Once the input signal has
been normalized, the contributions of the ipsilateral
and contralateral pathways are scaled and combined
through addition.
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The contra LD block indicates the output of the
efferent LD block from a second (contralateral) instance
of the complete model. The two models are run
simultaneously and are interconnected through these
feedback lines. Initially, the ratio of ipsilateral to contra-
lateral pathway contributions was fixed to 2:1 in dB based
on the prevalence of physiological data (Guinan 2006);
however, this was configured as an adjustable parameter
in the model for reasons discussed below.

The next block of the efferent pathway models the
change in efferent innervation along different locations
in the cochlea by taking the summed binaural signal and
multiplying by a scalar function of CF. The MOCR time-
course block provides an exponential onset and decay
using a second-order linear system, which has been
shown to account for the level-independent nature of the
MOCR time-course (Backus and Guinan 2006). Finally,
the output of the time-coursemust be converted from a 0
to 1 scale (where 1 represents the maximum OHC gain
in dB for this CF) to COHC(t), producing the desired
threshold shift (Zilany and Bruce 2006, 2007).

Stimulus-level dependence of the efferent system

Since the strength of the MOCR is dependent on the
stimulus level, the efferent pathway in the model should
provide more gain reduction to the OHCs at higher

sound levels. The level dependence (LD) block of the
efferent pathway serves to define a threshold and
increasing portion with variable slope for the gain
reduction as a function of the input stimulus. By adjusting
the two parameters of the LD block, threshold and slope,
the amount of gain reduction in dB in the model can be
controlled as a function of stimulus level in dB.

Although the output value of the LD function can
exceed 1, the resulting sum after scaling the ipsilateral
and contralateral pathways is capped at 1 (full OHC gain
reduction). This restriction on the range of the function
comes from the restriction on the range of COHC,
ensuring that the output of the second-order system
modeling the time-course will produce valid gain
reduction values. This limit on the maximum efferent
gain reduction strength (see Table 1) is included as an
external model parameter to allow gain reduction to be
less than the total amount of OHC gain for a given CF,
i.e., to restrict the efferent system from completely
suppressing the active process of the OHCs if desired.
The function of the LD block in the model can be seen
by plotting the output of the efferent pathway COHC(t) at
an approximately steady state (0.75 s post-onset) as a
function of stimulus level (Fig. 2). The saturation point
of the efferent pathway is limited byOHC gain; we chose
to set the maximum efferent gain reduction strength to
1 for all the results that follow.
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FIG. 1. The auditory nerve model. The medial olivocochlear reflex
(MOCR) was simulated by adjusting the model parameter COHC on a
per sample basis to reduce outer hair cell (OHC) gain [COHC(t)]. The
amount of gain reduction at each sample is based on the level of the
LP output of the OHC block [OHCLP(t)] of the model entering the
pathway outlined in the EFFERENT block. The block labeled “Contra

Efferent Path LD” indicates the corresponding level-dependence (LD)
block in a second complete instance of the model corresponding to
the contralateral ear. (Figure adapted from Zilany and Bruce 2007,
with permission from the Journal of the Acoustical Society of
America).
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The parameters of the LD function were deter-
mined by relating cat physiology to the model using
signal detection theory (SDT) (Green and Swets
1966). This technique can be used effectively to relate
physiological data to both measured data, such as
auditory nerve data (Kawase et al. 1993), and simulat-
ed data, such as the AN model synapse output (Heinz
et al. 2002). This approach predicts a perceptual
sensitivity index, or d′ which is based on the stochastic
nature of the neural spike rate as measured physio-
logically and from the AN model. The higher the
value of d′ the more likely the signal is to be detected
in the noise; a value near 1 typically represents the
threshold (Green and Swets 1966). The distributions
of the tone and noise were obtained by averaging the
spike rates during the 50 ms of the tone and the noise
immediately following the tone (Kawase et al. 1993;
Chintanpalli et al. 2012). The sample mean of each
distribution was estimated by the number of spikes in
the physiological data over that time window. A
correction factor of 0.5 was included for the variance
since the spike count variability is known to be
approximately half of a Poisson random process
(Young and Barta 1986; Delgutte 1987). Eq. 1 shows
the result of this approximation for the detection of a
tone in noise, where subscript n indicates the noise
region, subscript t indicates the tone + noise region,
and r indicates the synapse output (in spikes per
second) of the auditory nerve model:

d 0 ¼ μ N jtð Þ−μ N jnð Þ
σ t

¼ N t − N nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

σ2
n þ σ2

t

� �r ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T r t − r nð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r n þ r t

p ð1Þ

Similarly to tone detection, d′ measures can also be
used to estimate sensitivity of discrimination, for
example, how well a 5-dB intensity increment in tone
intensity can be discriminated in background noise.
This metric was computed using the tone + noise

region of the stimulus, where L in Eq. 2 is a given
intensity level:

d 0 ¼ 2
ffiffiffiffi
T

p
r Lþ5 − r Lð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r Lþ5 þ r L
p ð2Þ

An unconstrained nonlinear minimization was
employed to determine parameters using fminsearch
in MATLAB (based on the interior point algorithm).
The objective function evaluated the sum of six
normalized root-mean-square errors consisting of the
d′ discrimination data from the Kawase et al. (1993)
study (μ) corresponding to the model data (x) at three
noise levels (10, 20, and 30 dB SL; parameter n) for
both binaural and ipsilateral stimulation (parameter s,
Eq. 3). This normalization of the mean squared error
weights each condition and stimulus type equally in

TABLE 1
Description of the parameters used in the AN model efferent pathway implementation. Parentheses indicate related

physiologically relevant values. Referenced dB values are computed at 8 kHz, when relevant

Parameter Description

Values

Kawase et al. (1993) fit 15:1 ratio 2:1 ratio

MOCRthreshold Gain reduction threshold (LD block) −130.5 dB (5 dB SL) −130.4 dB (5 dB SL)
MOCRslope Slope of level dependence function (LD block) 0.0164 (0.637 dB/dB) 0.0162 0.637 dB/dB)
MOCRratio[0] Ipsi pathway scaling parameter 0.4671 (15:1 in dB) 0.4464 (2:1 in dB)
MOCRratio[1] Contra pathway scaling parameter 0.0551 0.2321
MOCRmax Maximum OHC gain reduction 1 (55.4 dB max) 1 (55.4 dB max)
θ Parameter in CF gamma function 6.83 6.83
k Parameter in gamma function 1.79 1.79
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FIG. 2. Output of the efferent pathway of the model COHC(t) in dB
reduction in OHC gain, as a function of ipsilateral noise level in dB SL at
a CF of 8 kHz. The LD function of the efferent pathway produces two
regions of efferent gain reduction: a threshold and an increasing portion.
Not shown is a third saturation region at higher stimulus levels, which is
produced by the limitation of the maximumOHC gain, or a lower limit
that can be set in the model. Parameters for the LD block used in this
figure can be found in Table 1.
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terms of its energy. Only the discriminability data was
used for the model fitting due to the convenience that
the discriminability curve starts and ends at approxi-
mately d′=0. This means that larger discrepancies in d′
at high tone intensities are not overemphasized when
computing the mean squared error:

RMSE ¼
X
s¼0

1 X
n¼0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs;n − μs;n

� �2

μs;n
2

vuuut ð3Þ

Fitting the level dependence of the model was
achieved with three parameters (see Table 1): LD
threshold (MOCRthreshold), LD slope (MOCRslope),
and ipsilateral scaling (MOCRratio[0]).

Innervation as a function of CF

The efferent innervation block in the model was
implemented to reflect how innervation of OHCs by
efferent fibers varies along the length of the cochlea.
Liberman et al. (1990) reported that in the cat, efferent
innervation of the cochlea is highest in the region of 4–
10 kHz, and that electrical stimulation of the MOC
revealed a similar trend in the strength of efferent
response as a function of CF. To model this CF
dependence of the MOCR, where x corresponds to the
CF, a curve defining the gammadistribution function was
employed to scale efferent strength, as shown in Eq. 4:

f x; k; θð Þ ¼ 1
θk

1
Γ kð Þ x

k−1e−x=θ ; x; k; θ > 0 ð4Þ

The parameters θ and k were estimated using an
unconstrained nonlinear minimization where the
objective function consisted of the mean squared
error between the model synapse output and the
OCB stimulation effect from afferent AN fibers
(Guinan and Gifford 1988; Liberman et al. 1990). It
should be noted that the gamma function parameters
were estimated independently of and prior to the
level-dependent parameters of the model, since the
level dependence is irrelevant when using the
“shocks” setting of the model.

The result of adding the CF dependence block to the
efferent pathway is shown in Figure 3. Model gain
reduction based on synapse output was normalized by
the maximum efferent gain reduction possible over all
CFs resulting in gain reduction on a 0 to 1 scale (where
the frequency with the maximum gain reduction has a
value of 1), in order to match the data from the
Liberman et al. (1990) study. These data served as
validation of the AN model's efferent CF dependence.
To achieve the best physiological accuracy, it is impor-

tant that the synapse output of the model was used to fit
to the electrical stimulation data rather than simply
applying the function that fits the Liberman et al. (1990)
data in the efferent innervation block.

MOCR time-course

In order to simulate the gain reduction effects due to the
MOCR, it is necessary to model its build up and decay as
a function of time. Otoacoustic emission data from
Backus and Guinan (2006) demonstrate that the timing
of the MOCR is largely unaffected by the level of the
stimuli or by which ear was stimulated. Therefore, we
took the approach of using a single linear model of the
time-course and then determined the amount of gain
reduction separately by fitting the model to physiolog-
ical data. It was assumed based on these data that the
samemodel can be used for ipsilateral and contralateral
efferent feedback and that only the relative contribution
of each pathway should need to be adjusted (Backus and
Guinan 2006). A second-order linear system was used to
model the time-course, with parameters based on
measurements in humans using stimulus-frequency
otoacoustic emissions (Backus and Guinan 2006, Ap-
pendix C). The system is specified by the two time
constants of the system, τ1=63 ms and τ2=245 ms, and
two scalars c1 and c2 (Eq. 5):

y tð Þ ¼ c1 e t=τ1 þ c2 e t=τ2 ð5Þ

A 20-ms delay was also introduced into the system,
a result of the recursive RMS smoothing filter having a
window length of twice that delay (Eq. 6). The time
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FIG. 3. Normalized gain reduction as a function of characteristic
frequency. Physiological data (Liberman et al. 1990) obtained by
shocking the MOC bundle in cats is reported as red inverted triangles
on a 0 to 1 scale. Synapse output from the AN model with efferent
feedback was normalized to a 0 to 1 scale to match the Liberman et al.
(1990) data, and was generated using the “shocks” setting of the model.
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delay in the output corresponds to estimates of the
onset and offset delay in humans through otoacoustic
emission and behavioral data (Backus and Guinan
2006; Roverud and Strickland 2010; Jennings et al.
2011). The smoothing filter not only provides a delay
in the actual system but also helps to make sure that
the input to the LD function does not sharply
alternate between sections of the piecewise function
on a sample-by-sample basis.

y n½ � ¼ 1
N

Ny n − 1½ � þ x2 n½ � − x2 n − N½ �� �� � ð6Þ

Binaural contributions

The ipsilateral and contralateral pathways were first
constrained to add with a 2:1 ratio in dB, based on
existing physiological evidence from both efferent
innervation of OHCs and maximum gain reduction
possible as a result of electrical stimulation of the MOC
bundle (Guinan and Gifford 1988). The strength of
each pathway was also made a parameter in the model
in a second implementation. This implementation of
the model efferent pathway ensured that the ratio of
binaural contributions remained fairly constant across
CF, but the total amount of gain reduction in each
pathway would vary with CF.

The efferent pathway also includes a binary vector
parameter (for each ear) referred to as “shocks,”
which introduces the possibility of simulating electri-
cal stimulation by providing the maximum possible
gain reduction for the ipsilateral, contralateral, or
binaural channels. This is equivalent to setting the
contribution of the specified efferent channel (ipsi-
lateral, contralateral) to the maximum possible gain
reduction or any other fixed level as specified by the
binaural contribution parameters. The total gain
reduction possible would also be affected by the
blocks in the efferent model that followed the sum
of the two pathways, including the limit on maximum
efferent gain reduction and the CF dependence of
efferent innervation.

Stimuli

The input to the model was an acoustic waveform with
the output measured at either the level of the C1 filter
for BM or at the level of the synapse output of a single
fiber at the CF of the tone. The model simulated AN
fibers with spontaneous rates (SRs) of 50 spikes/s (i.e.,
high SR) (Sachs and Abbas 1974; Liberman 1978)
because for discriminability, only high-SR fiber data
were presented by Kawase et al. (1993).

Stimuli were chosen to closely match those used by
Kawase et al. (1993), with the bandwidth of the noise
extending from 0.1 to 20 kHz. The tone was an 8-kHz
sinusoid with a duration of 50 ms, including 3-ms cos2

onset and offset ramps. This CF was chosen since it is
known to elicit a large MOCR effect (see Fig. 3) and
because it was used in a previous modeling study
(Chintanpalli et al. 2012). Tones were generated from
−20 to 110 dB SPL in 5 dB steps. The broadband noise
had duration of 1 s with 5-ms cos2 ramps. Kawase et al.
(1993) used trains of tone bursts presented during
continuous noise (turned on 5 s before the first tone
burst). In the present study, a single tone burst was
presented with an onset at a delay of 750 ms from the
onset of the noise. The length of the preceding noise
is a trade-off between computational time and
allowing the MOCR to fully be activated by the noise
(Kawase et al. 1993); the response to the noise alone
was taken from a 50-ms time window after the tone
(i.e., 800 ms from noise onset) (Kawase et al. 1993;
Chintanpalli et al. 2012).

Noise levels in dB SL were calculated by first
estimating a noise threshold for the model by averaging
the rate-level functions of 50 (frozen) samples of noise at
levels from 0 to 120 dB SPL. The threshold level
corresponded to 10 % of the maximum synapse output
on the rate level function (Chintanpalli et al. 2012). The
tone levels were set in dB SL re: fiber threshold for the
tone, as in the data reported by Kawase et al. (1993), so
tone levels were calibrated to maximize the correlation
between the d′ measured physiologically and predicted
by the model.

RESULTS

Initial model fit

When first fitting the model, only three parameters
described in the methods section (LD slope, LD
threshold, and ipsilateral scaling) were used to fit
physiological data, while the relative strength of the
ipsilateral and contralateral pathways were fixed at a
ratio of 2:1 based on anatomical and functional
evidence. With this constraint in the model, a proper
fit of the physiological data was achieved for ipsilateral
stimulation (as shown in Fig. 4; optimal parameters
shown in Table 1). The Kawase et al. (1993) data are
plotted as symbols, where each panel corresponds to
increasing levels of ipsilateral noise (10, 20, and 30 dB
SL). The model simulation results are represented with
lines. The physiological data used for the model fitting
process are comprised of averages from many nerve
fibers. While it is clear that the model data with
ipsilateral noise only fit well to the physiology (Fig. 4,
red triangles and solid lines), the model does not
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capture the data with ipsilateral and contralateral noise
at high tone levels (blue circles and dashed lines).

Since the fit of the model was not optimal for the
binaural system, alternatives to the design were tested.
The model was implemented in several versions that
varied the location in the efferent pathway where the
binaural channels were combined (e.g., before or after
the nonlinear function). None of the other attempted
realizations of the model provided a better fit than
shown in Figure 4. Because the 2:1 binaural ratio was

only an estimate based mainly on anatomical and OAE
measurements, the strength of both the ipsilateral and
contralateral pathways were included as external model
parameters that the user can change. Instead of
restricting the ratio to be 2:1, we included the strength
of both pathways in a separate nonlinear optimization.
This allowed the model to better fit the physiological
data (Fig. 5), with the end result being a much reduced
contralateral strength and a ratio closer to 15:1 in terms
of dB of OHC gain reduction (Table 1).
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The limited strength of the contralateral pathway
in the Kawase et. al data was surprisingly small and was
not apparent before being modeled. One known
weakness in this AN data is that the tone levels were
presented sequentially in order of increasing level. As
shown by Guinan and Stankovic (1996), using sequen-
tial levels can depress the response at high levels. As
noted in Chintanpalli et al. (2012), this depression at
high levels could lead to an underestimation of the
amount of gain reduction by the MOCR. This could
also lead to an overestimate of the ratio, since the
added effect of the contralateral pathway might also
be underestimated. Therefore, although the 15:1 ratio
is not consistent with previous anatomical and func-
tional estimates, there are potential reasons for this
discrepancy when the model was fit to this tone-in-
noise AN data set, as discussed further below.

Time-varying level-dependent effect of the MOCR

In order to visualize the time-course of the model, a
tone-in-noise paradigm was used to demonstrate the
effect of the efferent feedback as a function of time
(Fig. 6). The response of the efferent pathway is
displayed by plotting its input OHCLP(t) (gray) and
output COHC(t) (black). The top row includes no
ipsilateral noise and a fixed level of contralateral
noise. This condition makes it clear that a strong

enough tone will evoke the ipsilateral MOCR (see the
increase in activity following the tone in the middle
and right panels), although it does not improve
detectability in this case. Once ipsilateral noise is
included, as in the second and third rows, the
additional gain reduction from adding contralateral
noise is differentially less. The efferent input
OHCLP(t) shows a decrease over time in the response
to the noise amplitude as the MOCR strength
increases, demonstrating that the efferent pathway
has the effect of turning down the noise and
improving the SNR between the tone and noise
responses. At mid-noise levels (middle row), the
efferent response evoked by the tone improves
detectability by turning down the noise in the interval
following the tone. Thus, even in this simple task,
including the time-course of the MOCR is important.
A binaural contribution ratio of 2:1 was used in these
simulations, which can be seen in the asymptotic value
in the bottom left panel (30 dB SL noise in both
channels) where the ipsilateral gain reduction is twice
the contralateral gain reduction.

Effect of the MOCR on basilar membrane output

In addition to understanding how OHC gain changes
as a function of stimulus level and time, we also
sought to observe the direct output of the basilar
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FIG. 6. Waveform corresponding to the
amount of OHC gain reduction as a
function of time for three noise (dB SL,
rows) and tone levels (dB SPL, columns).
These waveforms are presented for ipsilat-
eral noise only (solid black line) and both
ipsilateral noise and 30 dB SPL contralateral
noise (dotted line). The input to the ipsilat-
eral efferent block is also shown in gray,
where the tone begins at 0.5 s. A binaural
contribution ratio of 2:1 was used in these
simulations, which can be seen in the
asymptotic value in the bottom left panel
(30 dB SL noise in both ears).
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membrane. Figure 7 shows how the RMS BM output
of the AN model changes as a function of time and
the contralateral stimulus level. The stimulus consists
of an ipsilateral probe tone beginning at −0.5 s and a
contralateral noise beginning at 0 s with a duration of
2.5 s. An exponential rise and decay can be observed
in the BM change over time. The dB increase in BM
RMS change is approximately proportional with the
dB change in contralateral noise level. This trend
follows similar estimates of this function in human
SFOAE data, as expected from using a second-order
linear system to model the MOCR time-course
(Backus and Guinan 2006).

Predictions for the BM displacement with and
without the efferent effect can be compared with
animal data collected using electrical stimulation of
the MOC bundle. With the AN model presented
here, we can use the “shocks” setting for both the
ipsilateral and contralateral ears and can simulate
maximum OHC gain reduction. Figure 8 shows a
“tuning” of the efferent feedback in the model, where
the simulated MOC feedback only has an effect when
a pure tone frequency is near the CF of 18 kHz. The
model response differs from that of Cooper and
Guinan (2006), which showed a differential effect of
the efferent response above (larger) and below
(smaller) CF.

Rate-level functions across varying levels of OHC
gain reduction

Figures 9 and 10 show AN fiber and model rate-level
functions, respectively, for a single high-SR fiber with
a CF of 8 kHz. The overall ipsilateral noise level was
fixed at 10 dB SL and the contralateral noise at
approximately 50 dB SL for all rate-level functions

shown. Figure 9 shows AN data as measured under
these conditions by Kawase et al. (1993), where blue
lines were measured with ipsilateral noise and green
lines with ipsilateral and contralateral noise. Each
noise in the physiological study was presented for 5 s
before the presentation of the first tone burst, thus
not allowing the time-course of the MOCR to be
evaluated. To illustrate the effect of the time-varying
MOCR on tone responses, each panel in Figure 10
(AN model data) represents an increase in the
duration of the noise prior to the onset of the tone.
Solid lines represent the AN model response to the
tone + noise condition, while the dotted lines
represent the response to noise alone immediately
following the tone. The strength of the efferent
pathways used was that of the best fit to the Kawase
et al. d′ data (15:1).

Looking first at the no-MOCR (red) functions, note
that the tone responses decreased as the preceding
noise durations increased due to neural adaptation in
the tone + noise window. This affects the tone more
than the noise, so the difference between the two
decreases. The ipsilateral MOCR (blue) model caused
both a decrease in the firing rate of the noise alone
and an increase in the firing to the tone + noise
condition as compared to the original model without
the MOCR (red). Adding contralateral noise at 50 dB
SL (green) further steepens the slope of the rate-level
functions due to increased efferent OHC gain reduc-
tion. When comparing the model in a long noise
duration condition (bottom right panel of Fig. 10)
with the physiology (Fig. 9), the same overall trend of
decompression of AN firing rate was observed.
Because the model includes a control condition with
no efferent feedback, the size of the ipsilateral
efferent effect can be observed. Note that the size of
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the ipsilateral effect (blue compared to red) is
substantially larger than the size of the contralateral
effect (green compared to blue) due to the large
optimal binaural ratio needed to fit the Kawase et al.
(1993) AN fiber tone-in-noise data.

DISCUSSION

The current study simulates the MOCR by dynamical-
ly reducing OHC gain in the AN model and predicts
the antimasking effects of both ipsilateral and contra-
lateral noise on AN fibers as measured physiologically
(Kawase et al. 1993). This model improves upon a
previous model (Zilany and Bruce 2007; Chintanpalli
et al. 2012), allowing for stimulus-dependent, time-
varying control of the binaural efferent system. This
model also includes the ability to simulate shocking
the ipsilateral, contralateral, or bilateral MOC effer-
ents as has been done in several physiological studies
investigating the effect of efferent feedback (e.g.,
Gifford and Guinan 1987; Winslow and Sachs 1987).

The resulting model fits the general trends of the
time-varying, level-, and CF-dependent effects of the
MOCR that occur in published physiological data.

Ratio of ipsilateral and contralateral MOCR gain
reduction

Several studies have suggested that the relative strength
of the ipsilateral and contralateral pathways should be
approximately 2:1 as measured anatomically and phys-
iologically in animals (e.g., Liberman et al. 1996). When
forcing this constraint into the model, trends of the
simulated data generally matched those of Kawase et al.
(1993), but it was clear that the contribution of the
model MOCR was too large when adding contralateral
noise at low ipsilateral noise levels (Fig. 4). Referring to
Figure 6 from Chintanpalli et al. (2012), which plots
model detectability (d′) with various amounts of OHC
gain reduction as well as the physiological AN data, it is
clear that the difference in gain reduction between the
no-MOCRmodel and the ipsi condition in the Kawase et
al. (1993) data is far greater than twice the difference
between ipsi and ipsi + contra conditions. This means
that starting from the Zilany and Bruce (2007) model, a
fixed 2:1 ratio in terms of dB gain reduction could not
provide a proper fit for the Kawase et al. (1993) data set.
Guinan and Gifford (1988) showed that electrical
stimulation produced 20–25 dB of ipsilateral gain
reduction and 8–10 dB of contralateral gain reduction.
In contrast, comparisons between model predictions
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and physiological data in Figure 6 from Chintanpalli et
al. (2012) suggest that for a 30-dB SL ipsilateral noise
only a maximum of ~3 dB additional gain reduction is
necessary to account for the effects of a 50-dB SL
contralateral noise on tone-in-noise detectability, where-
as up to 20 dB of gain reduction is needed to account for
the ipsilateral ear detectability data.

Although the binaural ratio required to fit the AN
tone-in-noise data from Kawase et al. (1993) is much
larger than direct estimates based on anatomical and
functional measures that generally fall between 2:1 and
1:1 (e.g., Liberman et al. 1996; Gifford and Guinan
1987; Lilaonitkul and Guinan 2009), there are other
neural data that show surprisingly small contralateral
effects. For example, May and Sachs (1992) showed that
the background noise-induced effects on CF tone rate-
level functions (both the horizontal shift and compres-
sion)measured in AN fibers from anesthetized cats were
the same for binaural and ipsilateral noise stimulation,
suggestive of a small contralateral effect. Although their
conditions differed slightly from Kawase et al. (1993) in
that equal ipsilateral and contralateral noise levels were
used to simulate realistic binaural conditions, their data
appear consistent with a smaller than expected contri-
bution of contralateral noise, even when an intense 50-
dB SL contralateral noise was used in the Kawase et al.
(1993) study to demonstrate the presence of a contra-
lateral effect on tone-in-noise detection.

Thus, it is possible that other factors beyond the
ratio of anatomical connections may affect the
functional binaural ratio for tasks involving complex
stimuli, such as tones in noise. The data from
Lilaonitkul and Guinan (2009) support this idea by
demonstrating in human subjects that the binaural ratio
can vary between 1:1 and 2:1 depending on whether
broadband or narrowband noise was used to elicit
MOCR activity. Thus, the idea of a fixed 2:1 binaural
ratio that has evolved from anatomical and physiological
studies in animals may be an oversimplification of the
true ratio of functional OHC gain reduction from the
ipsilateral and contralateral MOCR pathways, particu-
larly for complex stimuli such as signals in noise for
which the MOCR is often hypothesized to provide
important perceptual benefits.

The specific discrepancy highlighted in the present
modeling study may have resulted (at least in part)
from the paradigm used to measure these AN data.
One potential criticism of the Kawase et al. (1993)
study is that the presentation paradigm included
sequentially increasing tone levels. If the interstimulus
interval was too small, the MOCR activated by the
previous tone could affect that of the next stimulus
(Guinan and Stankovic 1996). This would tend to
depress the firing rates at higher levels, making
detectability estimates plateau at a lower tone level.
In the present study, the 2:1 ratio predicts higher

0

200

400

600

800

−20 0 20 40 60
0

200

400

600

800

−20 0 20 40 60 −20 0 20 40 60 −20 0 20 40 60

S
p

ik
e 

R
at

e 
(s

p
ik

es
/s

)

Noise Length 0 s Noise Length 0.02 s Noise Length 0.04 s Noise Length 0.1s 

Noise Length 0.2 s Noise Length 0.4 s Noise Length 0.6 s Noise Length 0.8s 

ipsi
ipsi+contra

no-MOCR

Tone Level (dB SPL)
FIG. 10. Rate-level functions as simulated with the auditory nerve
model with (blue and green; best fit 15:1 binaural ratio) andwithout (red)
efferent feedback. Each panel moving left to right shows increasing
length of the 10-dB SL ipsilateral noise (with the duration preceding the
tone ranging from 0 to 800 ms). Dotted lines represent the response in
the noise-alone window immediately following the tone, while solid

lines represent the response to tone + noise. TheMOCR (blue and green)
increases the separation between the firing rates of noise alone and tone
+ noise, which decompresses the rate-level functions and leads to
improved detection and discriminability of the tone. Contralateral noise
was presented at 50 dB SL for the ipsi + contra condition.

SMALT ET AL.: Modeling Time-Varying Level-Dependent MOCR Effects 169



discriminability than is seen in the neural data,
consistent with this effect. Future modeling work
could pass a series of stimuli as a single waveform
input to the model using the exact presentation order
from the Kawase et al. (1993) study to determine the
effect of sequential presentation. Depending on the
implementation of the model and computer system
used, memory issues could be a limitation for
extremely long stimulus lengths. However, it is
uncertain if this effect would significantly change the
binaural ratio since the tones are presented to the
ipsilateral channel only.

For both OAE and anatomical data, a direct relation-
ship to the functional change in OHC gain in each
pathway cannot be established directly. In addition,
OAE paradigms often have to use nonoptimal stimuli to
measure the effect of the ipsilateral efferent pathway.
Typically, the amount of gain change would be com-
mensurate with the shift in stimulus level (ΔL) needed
to achieve the same input–output function. This level
shift (ΔL) is a useful metric because the shift is
measured from the linear response of the system, so
the ΔL is equivalent to the amount of gain reduction in
dB. The value of this shiftΔL was varied in the model by
adjusting the maximum efferent gain reduction param-
eter in the system and using the “shocks” option.
Figure 11 (right panel) compares the contralateral and
ipsilateral rate-level function shifts from the AN model
to the expected ratios based on cat OAE data (Liberman
et al. 1996). Thus, it appears that our implementation of
the scaling between the ipsilateral and contralateral
pathways is appropriate to produce the desired ratio of
ΔL shifts. However, the Liberman et al. data compare
the change in OAE output in dB, not the shift in input
stimulus level in dB for ipsilateral and contralateral
stimulation. Thus, if BM compression were present, dB
changes in output (e.g., OAEs) would not translate
directly to dB changes in input (e.g., horizontal shifts in
response-level curves). Another important difference
may be that in the Liberman et al. (1996) study, the cats
were anesthetized. Regardless of these discrepancies in
the binaural ratio parameter, it is clear that the model
accounts for the major time-varying, level-dependent,
and CF-dependent trends that have been measured in
physiological studies of the MOCR. Because of the
uncertainty of the exact binaural ratio and that OAE
evidence suggests that this ratiomay differ across species
(Guinan 2006), the efferent pathway binaural ratio was
left as an adjustable parameter in the model to facilitate
further testing, including the possibility of using “hu-
man” values.

Comparison with other models

This study is an extension of previous work with the
AN model simulating the MOCR (Chintanpalli et al.

2012), where it was first demonstrated that the Kawase
et al. (1993) data could be fit if the appropriate OHC
gain reduction as a function of stimulus level was
determined. The current study applied this concept
and integrated it into a fully developed model, the
first computational model incorporating binaural
physiologically based time-dependent feedback at the
level of the auditory nerve. We found that the level
dependence of the model efferent pathway produces
a similar trend as the optimal gain calculated by
Chintanpalli et al. (2012), as evidenced by the fit to
the Kawase et al. (1993) data. In the Chintanpalli et al.
study, the optimal gain analysis (their Figs. 11 and 12)
was based on maximizing the total dynamic range for
discriminability based on the combination of re-
sponses from single high-SR, medium-SR, and low-SR
fibers. The correspondence between that study and
the results of the present study (Fig. 2) are useful,
since the present study was limited to fitting the data
from the high-SR fibers described in the Kawase et al.
(1993) study. The values of optimal gain reduction in
the Chintanpalli et al. study were nearly identical to
the values in the present study for noise levels of 10
and 20 dB SL, growing nearly linearly. For higher
noise levels, gain reduction values were also similar
between the two studies, being slightly larger in the
previous study up to a level of 40 dB (based on the 40-
dB gain reduction cap used in that study). This level
was chosen (somewhat arbitrarily in the previous
study) as the cap to avoid including larger levels of
gain reduction than were thought to be physiological-
ly realistic. The gain reduction values in the current
study continue to increase (Fig. 2) because the only
limit used was the maximum OHC gain. A smaller
limit on the maximum gain reduction can easily be
imposed in the present model by setting the maxi-
mum efferent gain reduction parameter of the model
(see Table 1). Such an approach was taken by
Jennings et al. (2011) in modeling human behavioral
results that may be related to MOCR feedback.

Another study (Clark et al. 2012) that used the
Meddis (2006) auditory nerve model also implement-
ed a gain reduction that varies with time, but the
physiological accuracy of their time-course was not
clear. As part of our modeling effort, we tested using
the low-pass filter used by Clark et al. (2012) as the
time-course block at the beginning of our efferent
pathway. There were several issues with this imple-
mentation, including that qualitatively the time-course
of the efferent pathway output did not match that of
Backus and Guinan (2006) after passing the output
through any nonlinear function to impose level
dependencies. Another issue addressed in the present
model is that the level dependence and maximum
amount of gain reduction possible by the system itself
is both CF dependent and based on physiological
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data. In the Clark et al. (2012) study, the constraints
on the CF dependence of the amount of gain
reduction was not described. For example, their
Figure 2 shows 40 dB of gain reduction at the
relatively low center frequency of 500 Hz, which is
not supported by physiological data (Guinan and
Gifford 1988; Liberman et al. 1990).

Another important strength of the present model is
that it is the first truly binaural auditory model where
the efferent feedback is both crossed and uncrossed
between ears. This is an important development given
that a large portion of the physiological data measur-

ing the MOCR uses contralateral stimuli; therefore,
this work is critical for the modeling of physiological
data that uses contralateral noise stimulation.

One possible drawback of our proposed AN model
with efferent feedback is that it is based on the 2006–
2007 Zilany and Bruce model and does not include
the power-law dynamics that were implemented in a
later version (Zilany et al. 2009). Since the MOCR is
another form of adaptation to a longer duration
stimulus, it could be argued that the power-law
dynamics are all that are required to explain the
efferent feedback. Although we did not implement
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the dynamic efferent pathway in the 2009 model, we
compared the newer model with the physiological
data obtained in the Kawase et al. (1993) study
(Fig. 12). It is clear from this figure that the 2009
model does not fit the physiological tone-in-noise
data, and moreover, the fit is not significantly better as
compared to the 2006 model without any OHC gain
reduction. Thus, it appears that OHC gain reduction
(simulating the MOCR) is needed to account for the
AN tone-in-noise detection and discrimination data.

CONCLUSION

The auditory nerve model with the new efferent
pathway can enable further study of the complex
nature of the MOCR within the peripheral auditory
system, including the bilateral interaction for stimuli
presented to both ears. The model accounts for the
major time-varying, level-dependent, and CF-depen-
dent trends in physiological studies of the MOCR.
Furthermore, the model includes the ability to
“shock” the system by statically applying the maximum
efferent gain reduction in the system, which allows
direct comparison to previous physiological studies
that have used electrical stimulation to study the
MOCR. These advances enable the modeling of many
past and future experiments that quantify the MOCR,
a system thought to be especially relevant for speech
recognition in noisy situations as well as for protection
from acoustic trauma. Further study of this model and
its efferent feedback loop may also contribute to our
understanding of the impact of sensorineural hearing
loss on hearing in noise.
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