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ABSTRACT

When a pure tone or low-numbered harmonic is
presented to a listener, the resulting travelling wave in
the cochlea slows down at the portion of the basilar
membrane (BM) tuned to the input frequency due to
the filtering properties of the BM. This slowing is
reflected in the phase of the response of neurons
across the auditory nerve (AN) array. It has been
suggested that the auditory system exploits these
across-channel timing differences to encode the pitch
of both pure tones and resolved harmonics in
complex tones. Here, we report a quantitative analysis
of previously published data on the response of
guinea pig AN fibres, of a range of characteristic
frequencies, to pure tones of different frequencies
and levels. We conclude that although the use of
across-channel timing cues provides an a priori
attractive and plausible means of encoding pitch,
many of the most obvious metrics for using that cue
produce pitch estimates that are strongly influenced
by the overall level and therefore are unlikely to
provide a straightforward means for encoding the
pitch of pure tones.
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INTRODUCTION

Traditionally, theories of how the auditory system
encodes pitch have focused on either the variation in
firing rate across auditory nerve (AN) fibres having
different characteristic frequencies (CFs; Zwicker
1970), or on the temporal pattern of firing (“phase
locking”) of neurons responding to the sound
(Schouten 1940; Wever 1949; Siebert 1970; Cariani
and Delgutte 1996). Proponents of each class of
theory have pointed to potential weaknesses of the
other. Rate—place representations may suffer from the
facts that the firing rates of the majority of AN fibres
are saturated at high stimulation levels, and that the
locus of maximum firing rate may change with level
(e.g. Kim et al. 1980; Chatterjee and Zwislocki 1997;
Versteegh et al. 2011). As a result, rate—place profiles
may become degraded and/or shifted at high levels,
even though psychophysical experiments indicate
good performance and strong pitch at those levels
(e.g. Wier et al. 1977). Phase-locking cues are immune
to these distortions, but the method for processing
this temporal information, without requiring the long
neural delay lines assumed by some influential
“autocorrelation”based models (Licklider 1951;
Meddis and Hewitt 1991; Meddis and O’Mard
1997), remains a matter of debate (de Cheveigné and
Pressnitzer 2006; Meddis and O’Mard 2006; Schnupp et
al. 2010). In addition, although most temporal theorists
assume that the frequency of a pure tone is encoded
primarily by phase locking for frequencies up to at least
2,000 Hz (the frequency at which phase locking usually
starts to drop in the mammalian species studied to
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date), there is evidence that neurons in the auditory
cortex phase lock only up to much lower frequen-
cies (e.g. Eggermont 1991; Wang et al. 2008),
leading to the suggestion that phase locking must
be recoded into some other representation at, or
below, the auditory cortex.

The pros and cons of the above arguments have
been debated extensively elsewhere (Moore 2003; de
Cheveigné 2005; Plack 2005). Here, we simply note
that the various potential weaknesses of the two
traditional approaches have led to considerable
interest in an alternative class of explanation, whereby
the auditory system performs an instantaneous com-
parison of the temporal pattern of firing in auditory
neurons having different CFs (Loeb et al. 1983;
Shamma 1985; Carney 1994; Heinz et al. 2001; Carney
et al. 2002; Colburn et al. 2003; Oxenham et al. 2004;
Loeb 2005; Moore and Carlyon 2005; Cedolin and
Delgutte 2010). This idea stems from the fact that the
phase of AN responses varies across CF in a manner
that varies with the input frequency. It can be
illustrated with reference to Figure 1, reprinted from
an article by Kim et al. (1980), who recorded the
responses of cat AN fibres having a wide range of CFs
to a two-tone complex having component frequen-
cies, f1=2,100 Hz and £=2,700 Hz. The figure shows
two sets of curves, each of which represents the phase
of the AN response to one of the components. In each
case, the phase is roughly constant over a range of
high-frequency CFs, and there is a steep phase
transition (PT) at CFs near the frequency of each
tonal component (shown by the small arrows); similar
results have been more recently obtained by van der
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FIG. 1. From Kim et al. (1980), with permission. Phase of AN
response to a 2,100+2,700-Hz complex at levels ranging from 4 to
74 dB SPL. There are two sets of curves, corresponding to each
component; the curves within each set are for different sound levels
and, at the scale shown here, appear to overlap. Note that, unlike all
the other Figs. in this article, CF decreases from high to low along the
abscissa.
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Heijden and Joris (2006) using a different technique.
To a first approximation, this pattern of results can be
explained by the facts that a filter introduces a delay
as the frequency of the input passes through its
resonance, that the size of this delay is greater for
narrow than for broad filters, and that the bandwidths
of basilar membrane (BM) filters (as estimated from,
e.g. tuning curves), when expressed in hertz, are
narrower at the apex than at the base. A consequence
of the variation in phase with CF is that neurons with
CFs much higher than the input frequency fire at
approximately the same time as each other, whereas
those close to the input frequency fire out of phase.
This is illustrated in Figure 2 which shows schematic
“neurograms” to 1,000- and 1,200-Hz pure tones
(these neurograms were not derived from the cat
data obtained by Kim et al. and shown in Figure 1, but
were based on fits to data obtained from another
species as described in “Modelling approach™).

A number of authors have described neural
mechanisms by which the auditory system might
exploit these across-channel phase differences, both
for the perception of pitch, the detection of tones in
noise, the coding of sound level, and for enhancing
spectral representations of complex sounds (Loeb et
al. 1983; Shamma 1985; Carney 1994; Heinz et al.
2001; Carney et al. 2002; Colburn et al. 2003; Loeb
2005; Cedolin and Delgutte 2010). Examples include
the subtraction of the outputs of nearby channels
(Shamma 1985; Cedolin and Delgutte 2010), the
processing of channels whose outputs are de-correlat-
ed due to the presence of a narrowband sound
(Carney et al. 2002), and the detection of co-
incidences between the outputs of channels having
different CFs (Loeb et al. 1983; Loeb 2005). In each
case, the proposed mechanisms allow for phase lock-
ing to be recoded, at an early stage of auditory
processing, into some other (e.g. rate—place) repre-
sentation and obviate the need for processes, such as
autocorrelation, that may require long central delay
lines for computation. At the same time, these across-
channel timing cues are largely immune to the effects
of firing rate saturation and could therefore combine
the strengths of temporal and rate—place models
whilst avoiding some of the drawbacks of each
(Cedolin and Delgutte 2010).

Another appealing feature, noted by Shamma
(1985) and by Cedolin and Delgutte (2010), is that
PT cues may be level-invariant. This is illustrated in
Figure 1 in which the sets of curves for each tone
frequency contain individual curves for input levels of
between 4 and 74 dB SPL, which substantially overlap.
However, as discussed above, PTs arise from the
filtering properties of the BM; these are known to be
nonlinear, and so one might expect some level
dependence in them too. Furthermore, it has been
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FIG. 2. Schematic “neurograms” where the firing time of
neurons in each CF channel are estimated from the arc-tangent
fits to the CF-vs. phase curves, described in the text, for 1,000-
Hz (A) and 1,200-Hz (B) pure tones. Bright colours (red, yellow)
indicate a high instantaneous firing rate; darker colours (dark
blue) correspond to instantaneous firing rates close to zero.
Following Colburn et al. (2003), the instantaneous firing rate was
approximated as a scaled exponential function of the input
waveform where the scaling factor was chosen to yield a
synchronization index of 0.81. Because the purpose of this
figure is to illustrate specifically the phase effects and the

known for some time that the phase response of the
BM and of individual neurons varies with the input
level (Anderson et al. 1971; Rhode 1971); in fact, the
slopes of the lines in Figure 1 are slightly shallower at
higher levels, reflecting the broader frequency tuning
at those levels (Kim, personal communication). More-
over, changes in this slope with level, arising from
the operation of the cochlear amplifier and the
consequent change in tuning, have been proposed
as a means by which the sound level is encoded by
the auditory system (Carney 1994; Heinz et al.
2001; Colburn et al. 2003), suggesting that PT cues
may not provide a level-independent cue to pitch.
The present study investigates this issue in an
attempt to determine whether PTs can support a
level-iindependent code for pure-tone pitch and
evaluates four possible ways that phase transitions
could be processed in order to provide such a
level-independent code.

LEVEL DEPENDENCE OF PHASE TRANSITION
CUES FOR PURE-TONE PITCH

Modelling approach

The phase transition data reported by Kim et al.
(1980), and shown in Figure 1, provide an important
demonstration of the presence of across-channel
timing information in the AN. Here, we report the
results of a quantitative treatment of some more
recent data, reported by Palmer and Shackleton
(2009), and which those authors generously shared
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relative timing of neural responses to tones of different frequen-
cies, the effects of peripheral frequency selectivity on the firing
rate are not shown. The panel on the right of the plot shows the
mean across time of the absolute value of the difference in
instantaneous rate between nearby simulated auditory channels,
similar to Cedolin and Delgutte (2010). The two resulting mean
absolute valued difference functions (one for the 1,000-Hz pure
tone and the other for the 1,200-Hz pure tone) have been
normalized so that their maximum peak amplitude equals 1.
Note that the peak corresponds to a higher CF for the 1,200-Hz
than for the 1,000-Hz tone.

with us. They measured the amplitude and phase
responses of individual AN fibres of the anaesthetized
guinea pig (GP) in response to tones of different
frequencies and levels. Fortunately, those data were
obtained for a range of fibre CFs, permitting a
reanalysis in terms of the response across CFs to a
tone of a given frequency and level. Our analysis
differs from previous approaches that were based on
simulated neural responses produced using models of
the auditory periphery (Shamma 1985; Carney et al.
2002) or that estimated the response of neurons of
different CFs to a given stimulus by recording from an
individual neuron in response to a range of stimuli
(Cedolin and Delgutte 2010). This allowed us to
obtain direct measurements of the variation of firing
phase with CF and to avoid having to make some of
the simplifying assumptions associated with those
alternative approaches.

Another feature of our approach is that we do not
focus on trying to model the magnitude of behaviour-
ally obtained frequency difference limens (FDLs), for
two reasons, both of which apply quite generally to
attempts to model perception using neural responses.
First, the absolute size of predicted FDLs will be
influenced by the noise present in the physiological
data on which the predictions are based, by the need
to combine measurements from several animals, and
by assumptions concerning the number of neurons
involved and the degree of statistical independence of
their responses. Second, the neural data are from a
species whose behavioural FDLs are larger than in
humans, may vary with frequency in a different way,
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and may be influenced by non-sensory factors such as
attention (Heffner et al. 1971; Hienz et al. 1993).
Instead, we concentrate on determining whether
across-channel timing cues could provide a level-
independent code for the frequency of a pure tone.
We do so because, although the pitch of pure tones in
humans does vary with sound level, this variation is
small and is of the order of only a few per cent
(Stevens 1935; Walliser 1969; Verschuure and van
Meeteren 1975). A cue that varied substantially with
the overall level would not, we assume, provide a
useful means of encoding pitch, and we make the
additional assumption that this will be true for the GP
as well as for humans. Specifically, we compare the
extent to which the predictions of each potential
coding scheme vary with input level and with input
frequency, f. Note that although “noise” in the data
may obscure the effects of either f or level, it is
unlikely to cause effects that are not significant to
appear so. Note also that we are comparing the size of
two effects—f; and level—both of which are subject to
the same measurement noise. Hence, the noise is
unlikely to distort our estimate of the relative size of
the two effects. Our analysis shows that many ways of
processing PT cues—described in detail in “Behaviour
of four cross-channel phase difference models”—are,
in fact, strongly level-dependent. As such, those
methods are unlikely, by themselves, to provide a
robust level-independent code for the pitch of pure
tones. A possible exception is a scheme that compares
AN fibres that have different CFs and that respond
out of phase to each other (cf. Carney et al. 2002); the
plausibility of this scheme is discussed.

The analyses that follow use data obtained by
Palmer and Shackleton (2009), and the reader is
referred to that original article for experimental
details. Stimuli were 50-ms sinusoids presented at a
rate of 5 Hz to urethane-anaesthetized adult
pigmented GPs. The phases and firing rates of
the responses to these stimuli were then extracted,
as a function of AN fibre CF, for a range of input
levels. The data were typically obtained at 10-dB
intervals; in the majority of cases, these levels
corresponded (within 1 dB) to those specified in
our analyses. The stimulus frequency spacing was
in steps of 1.5 semitones from the CF of the
considered AN fibre. Where the levels and fre-
quencies specified in an analysis did not corre-
spond exactly to those available in the data, phases
and firing rates for a given input were estimated by
linear interpolation from the values at the next
highest and the next lowest levels and frequency
where the measurements were obtained.

As noted above, estimates of the accuracy of any
code will be affected by details specific to the method
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of data collection and to assumptions made in the
modelling process. Hence, although plots of our
model predictions are accompanied by error bars,
these provide a guide to the statistical significance of
the effects that we discuss, but do not indicate how
small a frequency difference should be detectable by
the GP.

Behaviour of four cross-channel phase difference
models

Local subtraction model. Perhaps the simplest scheme
for estimating the frequency (and therefore, the
pitch) of pure tones, that takes advantage of the PT,
is one in which an array of “second-order” neurons
subtracts the response of each AN fibre from that of a
fibre having a “neighbouring” CF. If the function
relating phase to CF in the first-order (AN) neurons
has a slope that is locally steeper over some region
compared with surrounding regions, there will be a
corresponding local maximum in the output of the
second-order array. This concept is illustrated in
Fig. 3, where part A) shows a schematic phase-vs-CF
curve and where part B) shows the output of a
hypothetical second-order array. It is also illustrated
in Figure 2 which shows some schematic “neurograms”
to 1,000- and 1,200-Hz pure tones, with the results of a
local subtraction algorithm shown to the right of the
plot. Note that the neurograms in Figure 2 include the
effects of peripheral filtering on response phase, but
not on its magnitude (firing rate). Note also that the
phase-vs.-CF functions shown in Figure 3 and in all
remaining plots in this article show CF increasing from
low to high along the abscissa, opposite to the
convention adopted by Kim et al. and shown in
Figure 1.

As mentioned above, for this “local subtraction”
scheme to provide a useable measure of input
frequency, the phasevs.-CF function must show a
local increase in slope over some fairly narrow range
of CFs, and this maximum should vary monotonically
with the input frequency. To check whether this was
the case, we first calculated arc-tangent fits to the
functions relating phase in cycles to log;,(CF) for
input levels of 50, 70 and 90 dB SPL and for f ranging
from 250 to 2,000 Hz. The fitted functions took the
form y=A+B-arctan(x/ C), where y is the phase of the
simulated response of a fibre having CF=x and A, B,
and C are free parameters. Those data and fits are
shown in the top panels of Figure 4 where the
different colours in each panel show data for different
signal frequencies at a single level (fits to the 70 dB
SPL data were also used to generate the “neurograms”
in Fig. 2). The bottom panels of Figure 4 show an
implementation of the “local subtraction” scheme in
which the phases in each “bin” are subtracted from
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FIG. 3. The top row shows a schematic implementation of the
local subtraction scheme. A Schematic representation of a phase-vs.-
log1o CF curve consisting of a shallow portion plus a steeper portion
having a region where the slope is locally maximal. B Output of an
array of second-order neurons, whereby the instantaneous output of
cells at a given CF are subtracted from that of their neighbour. This
subtraction is implemented by subtracting the phases of adjacent

those of its neighbour; the bin widths use here
correspond to units of 0.1 log;((CF). It can be seen
that these functions do indeed show local maxima,
which, although quite broad, generally vary monoton-
ically with frequency, as illustrated for each level by
the different curves in Figure 5. However, Figure 5
also shows that these “peak differences” are unfortu-
nately not invariant with level. For example, every
estimate at 90 dB SPL is higher than the corresponding
value for the same input frequency at 50 or 70 dB SPL.
Although the exact size of the level effect is rendered
uncertain by the variability in our estimates, both it and
the effect of frequency were significant when the peak
difference values for three levels (50, 70,90 dB SPL) and
for ten values of f spaced in units of 0.1 log;, f were
entered into a generalized linear model (level: F; o5=
42.02, P<0.0001; frequency: I, 95=42.02, P<0.0001). For
this and the other metrics described in this section, we
derived a simple summary of the relative effects of f; and
level by comparing its variation with f from 250 to
1,189 Hz, averaged over level, to its variation with level
averaged across that same range of f. For the peak
difference measure, the variation with level was 0.7
octaves, more than half the 1.24-octave effect of .

Our implementation of the local subtraction
scheme is a simplification for at least two reasons.
First, the neural responses in any one AN fibre will
not occur at exactly the same phase on every cycle,
and, even on the same cycle, it is likely that different
neurons with the same CF will fire at slightly different
times. Second, any second-order neuron that sub-
tracts the inputs from two adjacent channels will
impose some smoothing due to variability in synaptic

channels. The bottom row shows the knee point model. C Phase-vs.-
CF function consisting of a shallow and a steep portion. D Output of
an array of second-order neurons, whereby the instantaneous output
of cells at a given CF are subtracted from that of their neighbour. E
Output of an array of third-order neurons operating on the different
between adjacent second-order neurons shown in (D).

transmission times. This does not negate our assump-
tion that the output of such a subtraction will on
average increase monotonically with the phase differ-
ence between the two input AN channels. Further-
more, assuming that, for a given f, the smoothing is
the same at all CFs, the output of the local subtraction
algorithm will have peaks in the same locations as
those shown in the bottom row of Figure 4. It does,
however, have one potential implication for our
evaluation of the local subtraction scheme, which is
based on the subtraction of phases rather than of
simulated spike trains. This is that if any component
of “neural smoothing” has a time constant that is
constant in milliseconds rather than in radians, its
effects would be greater for higher-frequency than for
lower-frequency tones. As a result, the output of the
subtraction operation would have peaks that, com-
pared with those shown in the bottom row of Figure 4,
would be relatively higher for low than for high f.

A model based on the local subtraction idea was
recently applied by Cedolin and Delgutte (2010) to
the responses of cat AN fibers to harmonic complex
tones. An advantage of this approach is that the
across-channel timing comparisons are performed
locally, and, where a complex tone consists of low-
numbered harmonics, can be performed between AN
fibers responding to the same harmonic (Cedolin and
Delgutte 2010). This is important because it generates
predictions consistent with the fact that the pitch of
low-numbered harmonics is independent of their
relative phase (Houtsma and Smurzynski 1990;
Shackleton and Carlyon 1994) and because it would
allow phase comparisons to be performed even when
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FIG. 5. Peaks in the “phase difference curves” (bottom panels of
Fig. 4) as a function of stimulus frequency for three different levels.
The peaks were estimated using the “robust regression” algorithm in
Matlab (version 7.7.0, R2008b, The MathWorks, Natick, MA), which
uses iteratively reweighted least squares with a bisquare weighting
function. Error bars show 95% confidence limits.

vertical dashed lines intersect the abscissa at CFs equal to the
(colour-coded) input frequency. Left, middle, and top columns are for
input levels of 50, 70 and 90 dB SPL, respectively.

energy from other sound sources is present elsewhere
in the spectrum. We compare Cedolin and Delgutte’s
findings to the results of our analyses in “Comparison
with other data”. Although neither we, nor they, could
specify exactly which neurons might perform this
subtraction, Cedolin and Delgutte suggested the
dorsal cochlear nucleus as one possible site.

CF-at-knee point model. A second possible code for
frequency that makes use of the PT involves
estimating f; from the location of the transition
between the steep and shallow portions of the
functions shown in Figure 1 and in the top panels of
Figure 4. This could be implemented by an array of
“third-order” neurons that subtract the outputs of
adjacent “second-order” neurons (Figure 3C-E). This
“third-order” array would show a maximum when the
second derivative of the phase-vs.-CF function is
maximal. To estimate this “knee point”, we refitted
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the data shown in Figure 4 with “broken-stick”
functions consisting of two straight lines, one of
which was constrained to have a zero slope.
Examples of this fit for two frequencies and levels
are shown in Figure 6. When applied to the same
range of f as shown in Figure 4, this “broken-stick”
model yields almost exactly the same RMS error of fit
(all frequency and level conditions combined) as the
“arc-tangent” model described above: 0.2791 cycles
for the broken-stick fit model vs. 0.2796 for the arc-
tangent fit. The knee point varies monotonically with
Js but, as Figure 7 shows, is not independent of level.
For example, the knee point for a 250-Hz, 90-dB tone
occurs at a place in the AN array having a higher CF
than that for a 500-Hz, 50-dB tone. The effect of level,
averaged across f;, was 0.8 octaves, more than half the
1.33-octave effect of f.

Phase transition slope model. Loeb et al. (1983)
proposed a model consisting of an array of detectors
in the medial superior olive, with each detector
receiving inputs from pairs of AN fibers that were
separated along the BM by a fixed amount. They
pointed out that the maximum output would occur in
those detectors whose input AN fibers responded with
phases that differed by one wavelength (although they
also noted that optimal discrimination might be based
on other phase differences). This “critical distance”
depends on the slope of the function relating phase in
cycles to log;o(CF). As shown in Figures 1, 4, and 6,
this slope is not constant as a function of CF but,
rather, increases markedly for CFs below the knee
point. Here, we focus on the slope of the steep
portion as a possible cue for f. This slope will depend
on the bandwidths of the peripheral filters through
which the stimulus is passed (Heinz et al. 2001; Shera
et al. 2010); a filter introduces a delay as the

Phase (cycles)

250Hz 60dB
250Hz 90dB
500Hz 60dB
500Hz 90dB
stimulus freq

® + 0 %0

100 EIEID 4IE|EI EEIEI 1SIIJE| SEbD
CF (Hz)
FIG. 6. Broken-stick fits to phase transition data for =250 (blue)
and 500 Hz (red) and for input levels of 60 dB SPL (circles) and 90 dB
SPL (asterisks). The broken-stick fits are shown by dotted and solid
lines for levels of 60 and 90 dB SPL, respectively.
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frequency. The curves shown are derived from the best-fitting model

described in the text for input frequencies spaced 3 semitones apart,
starting at 250 Hz, and with levels of 50, 70 and 90 dB SPL.

frequency of the input passes through its resonance,
and the size of this delay is greater for narrow than for
broad filters. As the slope is measured in terms of the
logarithm of CF (which is roughly proportional to the
distance along the BM), it will vary with the bandwidth
of the analysing filters relative to their centre
frequencies. This last point can be explained by
considering a 1,000-Hz tone passed through a filter
centred on, say 1,200 Hz and a 2,000-Hz tone passed
through a filter centred on 2,400 Hz. If the
bandwidths of the filters are a constant proportion
of their centre frequencies, then each tone will be at
the same relative position on the filter’s transfer
function and the phase delays (in cycles) will be
equal.

As shown in Figure 8, the slopes vary as functions
both of level and of f. The slopes are slightly
shallower (less negative) at lower frequencies, pre-
sumably because, in the GP, the relative bandwidths of
frequency tuning curves (e.g. as summarized by Shera
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FIG. 8. Slope of the phase transition as a function of level and
input frequency. The curves shown are derived from the best-fitting
model described in the text for input frequencies spaced 3 semitones
apart, starting at 250 Hz, and with levels of 50, 70 and 90 dB SPL.
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et al. 2002) are broader at low frequencies. The slopes
also become shallower (less negative) with increases
in level, as would be expected with the decrease in
frequency selectivity at high levels (Rhode 1971;
Robles et al. 1986). Both of these effects were
sufficiently reliable to produce significant main effects
when the slope values for three levels (50, 70, 90 dB
SPL) and for ten values of f spaced in units of 0.1
logio f; were entered into a generalized linear model
(effect of f: Fj93=28.9, P<0.00001; effect of level:
I ,05=22.1, P<0.00001). Averaged across f, slopes
varied by a factor of 1.67 across level, approaching the
factor of 2.07 for the variation with f. Hence, any
attempt to estimate f; based on a metric related to the
slope—for example by estimating the difference along
the AN array between fibers that responded in phase—
would be strongly influenced by the input level.

Model involving a comparison of phase above and below
the knee point. One potential decoding method is
illustrated in Figure 9 which shows “broken-stick” fits
to stimuli at two frequencies and levels (shown in
Fig. 6), shifted so that the horizontal portions are
aligned. The shift is performed because the animal
has, of course, no idea about “absolute” phase and
can only compare the relative phase across fibers. It
can be seen that the CF at which the phase is n
radians lower than that at the knee point (indicated
by the black horizontal dotted lines) appears to be
similar at the two levels for each frequency. Figure 10
shows this value, which we term the “z shift point”, as
a function of f for input levels of 50, 70 and 90 dB
SPL. It increases monotonically with f and has modest
error bars. A generalized linear model revealed a
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FIG. 9. “Broken-stick” fits to the phase transition curves for
input frequencies of 250 and 500 Hz and levels of 60 and
90 dB SPL. The 90-dB curves have been shifted upwards so that
their horizontal portion overlaps with that of the 60-dB curves.
The horizontal dashed lines show the phases that are half a
cycle lower than at the knee point.
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FIG. 10. Value of the “z shift point” as a function of level and input
frequency. The curves shown are derived from the best-fitting model

described in the text for input frequencies spaced 3 semitones apart,
starting at 250 Hz, and with levels of 50, 70 and 90 dB SPL.

significant effect of f ([ 95=524, P<0.0001), but not
of level (F95=0.23, P=0.633). Unlike the other
measures described here, the effect of level,
averaged across f, was much smaller (0.23 octaves)
than the effect of f, which was 2.19 octaves; this, in
turn, was close to the range of input frequencies
(250-1,189 Hz) which was 2.24 octaves.

A matter that would still need to be resolved is how
the auditory system would extract this metric. A
possibly important fact is that the phase at and above
the knee point is fairly constant over a wide range of
CFs, and so is the phase at which most AN fibers are
firing. Therefore, “all” that the auditory system has to
do is to find those fibers that are firing out of phase
(by m radians) with the “most common” phase.
However, phase is only “fairly” constant at CFs above
the knee point. The data of Kim et al. (Fig. 1) show
that, if one looks over a much wider range of CFs than
in the data of Palmer et al., the phase delay does
decrease gradually as one moves to more basal
regions. Therefore, the issue arises as to which
portion of the AN array is used as the “fairly constant”
reference. An alternative would be for the system to
measure the CF corresponding to knee point, perhaps
using a simple metric as in Figure 3C-E and to exploit
this information to identify the m shift point. An
important drawback is that the “z shift point” and the
knee point are often far apart (more than an octave
difference in CF; Fig. 9), raising the issue of how the
brain would extract this cue when more than one
sound is present. Furthermore, when more than one
tone is present, basal fibers will respond to a mixture
of both, and the auditory system would have to extract
the temporal pattern corresponding to each one.
Evidence from the perception of spectrally overlap-
ping mixtures of unresolved harmonics suggests that
the brain is poor at extracting two periodicities from
the same set of AN fibers (Carlyon 1996a, b).
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DISCUSSION
Use of firing rate profiles

The analyses described in “Level dependence of
phase transition cues for pure-tone pitch” focused
solely on across-channel timing information. It is,
however, possible that the auditory system uses a
coding scheme that combines information on both
the timing and the rate of firing across channels.
Although it is beyond the scope of this article to
perform such a combined analysis, some preliminary
considerations suggest that it may not be useful in
overcoming the effects of level on the various
codes considered above. Figure 11 shows the firing
rate profiles, defined as firing rate as a function of
CF, normalized so that the spontaneous and
maximum rates for each neuron scaled to between
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FIG. 11. Normalized firing rate as a function of CF. Input:
1,000 Hz tone with a level of 60 dB SPL (A) or 90 dB SPL (B). The
vertical blue line indicates CF=input frequency. The solid black lines
are second-order polynomial fits.
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0 and 1, respectively. Those data were then fit by
second-order polynomials. The polynomial fits,
although imperfect, capture the main features of
the data. Note that although the profile at 60 dB
SPL. has a bandpass characteristic, the one at
90 dB SPL appears largely flat over the >3 octave
range of CFs from which measures were obtained.
Saturation of AN rate-level functions almost cer-
tainly accounts for at least part of this effect, and it
is possible that a bandpass curve could be obtained
by considering only those neurons with low spon-
taneous firing rates, which are relatively resistant to
such effects (cf. Sachs et al. 1983). However, this
would invoke selective processing of low spontane-
ous rate fibers, the necessity of which has been a
major reason for questioning the validity of purely
rate—place accounts (e.g. Carney 1994).

Comparison with other data

van der Heijden and Joris (2006) measured the
amplitude and phase characteristics at different apical
locations of the cat cochlea by recording the
responses to inharmonic complex tones from cat AN
fibers having a range of CFs. Their technique was
designed to remove nonlinear contributions to the
AN response arising from the transduction process
(e.g. half-wave rectification and firing rate saturation).
Measurements were obtained for stimuli at relatively
low levels (within 35 dB of each fibre’s threshold) and
were not presented separately for different levels.
Their data, like those presented here, reveal phase-vs.-
CF functions that are quite flat for CFs much higher
than the input frequency, combined with a steeply
sloping portion around CF. As also shown here, they
found that the slope is steeper at higher frequencies:
approximately —2.1 and —3.5 cycles/log;,(CF) at 200
and 1,000 Hz, respectively. These slopes are somewhat
steeper than those shown in Figure 8, probably due to
the lower level used by them and/or to species
differences. A visual inspection of some cat data
presented by Kim et al. (1979) reveals a slope of
about —2 cycles/log;o(CF) at L=45 dB SPL for f=
620 Hz. The data of Kim et al. 1980, plotted in
Figure 1, show substantially steeper slopes of about 6
cycles/log;((CF), presumably reflecting the higher f
of 2,100 Hz and the marked increase in the Qo ap
values of cat AN fibers as CF is increased above about
1,000 Hz (Palmer 1995; Shera et al. 2002). In general,
the results of Kim et al. and of van der Heijden and
Joris agree reasonably well with those described here
despite the fact that both of those earlier data sets
were obtained in the cat, whereas Palmer and
Shackleton’s data were obtained in the GP. In
addition, van der Heijden and Joris noted that they
deliberately restricted their measures to fairly low



168

levels because increasing level could have a “drastic”
effect on the phase measurements. This is consistent
with evidence from recordings of individual neurons
innervating the cochlear apex showing that level
affects group delay in a frequency-dependent manner
(Versteegh et al. 2011) and with the present evidence
that PTs are strongly affected by level. Hence,
although there will undoubtedly be quantitative differ-
ences between species, the general form of phase
transition data is similar.

Cedolin and Delgutte (2010) measured the response
of individual AN fibers to harmonic complex tones
whose fundamental frequency (f9) ranged from about
0.2 to about 0.7 times the neuron’s CF. They invoked the
principle of “scaling invariance” (Zweig 1976) to
calculate, for each set of such measurements, the
predicted amplitude and phase response of an array of
neurons, with different CFs, to a complex of a given I,
They then calculated not only the predicted rate—place
profile but also a metric similar to the simple “local
subtraction” method described above; the response of
each “channel” was instantaneously subtracted from
that of its neighbour and the absolute value of this
difference then integrated over time. The variation in
this summary statistic across CF, termed the “mean
absolute spatial derivative (MASD)”, produced peaks at
CFs corresponding to the low-numbered harmonics.
They found that for CFs between 1,350 and 2,800 Hz,
the MASD provided a better representation of the F
than did a simple rate—place profile, but that the reverse
was true at higher CFs, presumably due to the roll-oft in
phase locking at high frequencies. In addition, they
estimated the best frequency (BF) of each neuron,
based both on the rate—place and MASD profiles, and
reported that these BFs varied less consistently with level
for the MASD-based than for the rate-based measure.
They also concluded that the accuracy of the [
representation did deteriorate slightly with increasing
stimulus level, but that the significance of this deterio-
ration was less than that observed for the rate—place
model.

Cedolin and Delgutte’s conclusion that their
MASD model provided a relatively level-independent
cue to pitch seems, at least at first sight, to be at
variance with the substantial level dependence ob-
served in our analyses of Palmer and Shackleton’s GP
data and by van der Heijden and Joris’s observation
that level can have a large effect on the phase
transitions measured in the cat. One way of reconcil-
ing these two sets of findings would be if the response
of the BM were more linear for complex tones than
for the pure tones used by Palmer and Shackleton. In
addition, the range of sound levels studied by Cedolin
and Delgutte was generally lower than ours; 80% of
the data they reported were obtained at levels
between 25 and 65 dB SPL per component, whereas
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we report data for levels between 50 and 90 dB
SPL. It is also worth noting that Cedolin and
Delgutte focused on the finding that the PT cue
was less level-dependent than the rate-place representa-
tion, a finding that is not inconsistent with our
analysis. For example, Figure 11 shows that the rate
vs. CF profile at 90 dB SPL is flat, whereas the
“local subtraction” metric shown in Figure 5 does
show some variation with input frequency at that
level. Our focus is on whether there is an effect of
level at all and on whether this effect is substantially
less than the effect of input frequency.

Scaling invariance

Our analysis also sheds light on the validity of the
“scaling invariance” assumption and on the impli-
cations of violations of this assumption for phase
transition cues. According to the principle of
scaling invariance, any PT curve in Figure 4 for a
given value of f can be obtained by taking the
curve for a frequency of x-f; and shifting it
horizontally by log;ox. Figure 12 illustrates this
point and shows the same general pattern for signal
levels of 50, 70 and 90 dB SPL (shown in different
panels). In each panel, the thin red curve shows the
arc-tangent fit to the PT curve for (=500 Hz, and
the thick red curve shows that function shifted to
the right by 1.6 octaves. The thin dotted black curve
shows the PT response to a pure tone 1.6 octaves
higher than 500 Hz—i.e. =1,516 Hz, and the thick
dotted black curve shows this function shifted
vertically so that it coincides with the red curve at
its rightmost point, corresponding to a CF of 2 kHz,
in order to facilitate visual comparison. If scaling
invariance holds, then the thick red and black
curves should be identical, which they are not.
Rather, at a point 1.6 octaves below that at which
we forced them to have the same phase, they differ
by between 0.45 and 0.54 cycles. What this means is
that over a frequency range (1.6 octaves) which was
the same as that used by Cedolin and Delgutte to
study the responses of each cat AN fibre, there is a
substantial deviation from scaling invariance as
measured in the GP. Although a marked deviation
from scaling invariance has been observed when
comparing the phase lag at the base and apex of
the cat cochlea (van der Heijden and Joris 2006),
we cannot be sure that the failure of scaling
invariance over the relatively local range of 1.6
octaves, observed here for the GP, would necessarily
occur for the cat. However, it is worth noting that
the variation in the relative bandwidths of frequency
tuning curves with CF is roughly similar in the two
species (Shera et al. 2002).
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FIG. 12. lllustration of the failure of scaling invariance. Each panel
shows fits to the data obtained at one level (50 dB SPL (A), 70 dB SPL
(B) and 90 dB SPL (C)). In each panel, the thin red line and the thin
dotted black line show the arc-tangent fits from Figure 4 for input
frequencies of 500 and 1,516 Hz, respectively; these frequencies are
1.6 octaves apart. The thick red solid line shows the fit to the 500-Hz
data shifted rightwards by 1.6 octaves. The thick dotted black line
shows the fit to the 1516-Hz data shifted upwards so that it coincides
with the shifted 500-Hz fit at a CF of 2,000 Hz. If scaling invariance
held, these two curves should overlap completely.
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Level dependence of across-channel phase cues

In the Introduction, we noted that the nonlinear-
ity of the mechanical filtering properties of the
BM made it plausible that PTs, which arise from
those properties, would also be nonlinear and vary
with input level. The analyses described in “Level
dependence of phase transition cues for pure-tone
pitch” generally support this prediction. It is
possible that the phase effects we observed had
not only a mechanical but also a neural basis. One
potential influence of the amplitude response of
the BM to a pure tone on the PT arises from a
potential influence of level on the synaptic delay
between inner hair cells (IHCs) and the AN.
Recently, Versteegh et al. (2011) interpreted some
of their data on the level dependence of AN phase
responses in terms of evidence that larger input
amplitudes may cause AN fibres to fire earlier,
perhaps as a result of the effects of sound level on
vesicle release at the IHC synapse. If this is true
then, when, for a given input level, the inputs to
fibres with CFs remote from f; are reduced by BM
filtering, those AN fibres may be subject to slightly
different synaptic delays, thereby contributing to
the variation in the AN response phase as a
function of CF. Furthermore, because BM filtering
itself depends on the input level, the variation in
these “synaptic” effects across CF may also be
level-dependent.

Summary of PT cue analysis

1. For a given f, the function relating AN response
phase to log;o(CF) is very shallow for CFs much
higher than f and substantially steeper for CFs
around and below f. This PT curve shows a local
maximum, the position of which varies monoton-
ically with f. However, this position also varies with
level, and the average effect of a 40-dB level change
on its position is more than half that produced by
changing input frequency over a 2.24-octave range.

2. The “knee point”—the position on the PT curve at
which there is a marked increase in slope—also
varies monotonically with f and is also level-
dependent. The average effect of a 40-dB level
change is more than half that produced by
changing input frequency over a 2.24-octave range.

3. The slope of the PT curve varies slightly with
J» presumably as a result of the variation in
relative tuning with CF in the GP. It becomes
shallower with increasing input level, presumably
reflecting the worsening of frequency selectivity
with increasing level observed here. The average
effect of a 40-dB level change approached that
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produced by changing input frequency over a
2.24-octave range.

4. Models based on co-incidence detection are de-
pendent on the slope of the phase-vs.-CF function.
Over the steep part of that function, this slope is
level-dependent and its variation with f is slight
and depends on variations in relative bandwidth
with CF—a variation that may be absent above
500 Hz in humans (Baker and Rosen 2006).
Therefore, to the extent that such models assume
that phase difterences are compared over the steep
part of the function, they do not predict a robust,
level-independent code for frequency.

5. The CF at which the phase of the AN response is
exactly out of phase with that at the knee point varies
monotonically with f. Unlike the other potential
codes described here, its variation with level was not
significant overall. The average effect of a 40-dB level
change was only about one tenth that produced by
changing input frequency over a 2.24-octave range.
However, this code requires the auditory system to
compare channels with well-separated CFs, and it is
not obvious how it could be used when more than
one tonal component is present.

Overall summary and conclusions

Our analysis of Palmer and Shackleton’s (2009) GP
data suggests that straightforward methods for extract-
ing pure-tone frequency from PTs—such as the “local
subtraction” and “knee point” metrics—are likely to
be too strongly affected by level to provide a robust
code. Perhaps the strongest candidate code that we
observed was the CF at which neurons fire out of
phase with those at and basal to the knee point; this
metric varied substantially and monotonically with f
and was not substantially influenced by level. Howev-
er, this code requires a comparison of AN fibres
having quite different CFs, and it is less than clear how
it could be implemented by the auditory system,
particularly when more than one sound is present. A
caveat that the present analyses shares with most other
published studies is that the neural responses were
obtained in an anaesthetized preparation.

Overall, our conclusion is therefore that although
across-channel timing information provides a theoret-
cally attractive neural code to pure-tone frequency
(subjectively, pitch), the way in which it is extracted is
unlikely to be straightforward. One possible conclusion
is that across-channel timing cues are not used at all. At
present, the most likely alternatives are either that the
auditory system can estimate a quantity akin to the m-shift
point, which entails comparing phase information across
quite wellseparated portions of the AN array, or uses one
of the more “local” codes described here whilst control-
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ling for the sometimes substantial effects of overall level,
for example, by estimating total firing rate.
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