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Abstract
Background  Chronic kidney disease (CKD) stage 3 was divided into two subgroups by eGFR (45 mL/ min 1.73 m2). There is 
difference in prevalence of CKD, racial differences, economic development, genetic, and environmental backgrounds between 
China and Western countries.
Methods  We used a computational intelligence model (CKD stage 3 Modeling, CSM) to distinguish CKD stage 3 with CKD 
stage 3a/3b by data distribution rules, pearson correlation coefficient (PCC), spearman correlation (SCC) analysis, logistic 
regression (LR), random forest (RF), support vector machine (SVM), and neural network (Nnet) to develop Prognostic Model 
for patients with CKD stage 3a/3b in South Central China. Furthermore, we used RF to discover risk factors of progression 
of CKD stage 3a and 3b to CKD stage 5. 1090 cases of CKD stage 3 patients in Xiangya Hospital were collected. Among 
them, 455 patients progressed to CKD stage 5 in a median follow-up of 4 years (IQR 4.295, 4.489).
Results  We found that the common risk factors for progression of CKD stage 3a/3b to CKD stage 5 included albumin, creatinine, 
total protein, etc. Proteinuria, direct bilirubin, hemoglobin, etc. accounted for the progression from stage CKD stage 3a to stage 5. The 
risk factors for CKD stage 3b progression to stage 5 included low-density lipoprotein cholesterol, diabetes, eosinophil percentage, etc.
Conclusions  CSM could be used as a point-of-care test to screen patients at high risk for disease progression, might allowing 
individualized therapeutic management.

Keywords  CKD stage 3 modeling · Chronic kidney disease · Computational intelligence · End-stage renal disease

Introduction

Chronic kidney disease (CKD), a major public health prob-
lem with an increasing incidence and prevalence year by 
year, affects 700 million people globally [1]. A recent study 
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projecting the future burden of CKD in the United States 
estimated that the prevalence of CKD (here defined as CKD 
stages 1–4) among those aged 30 years or older would 
increase from 13.2% in 2010 to 16.7% in 2030 [2]. In 2012, 
a survey including 47,204 adults from 13 provinces and cit-
ies in China showed that the total prevalence of CKD was 
10.8% [3]. It is estimated that the number of dialysis patients 
in China will increase at a rate of 20–30% per year. Namely, 
over 400, 000 Chinese patients will develop end-stage renal 
disease (ESRD) every year, which comprises a large part 
of the world’s ESRD population. This development will 
bring a heavy burden to public health and society, leading 
to a considerable challenge to medical and health undertak-
ings. The cost of dialysis treatment alone for one patient 
would be approximately $14,300 per year, whereas the per 
capita disposable income is $1210 in urban areas and $375 
in rural areas in China [4]. Early recognition and prevention 
of potential ESRD is therefore of significant importance.

In 2012, the Kidney Disease: improving Global Outcomes 
(KDIGO) guidelines recommended reclassifying CKD [5]. 
The classification divided CKD stage 3 into two subgroups 
by applying a cutoff point of the estimated glomerular filtra-
tion rate (eGFR) (45 mL/ min 01.73 m2). Hence, subjects 
with CKD stage 3a were considered low risk compared with 
patients with CKD stage 3b. This new classification was 
based on a meta-analysis performed in 45 cohorts involving 
over 1.5 million participants mainly from developed coun-
tries [5]. The incidence, prevalence, and progression of CKD 
vary within countries by ethnicity and social determinants of 
health, possibly through epigenetic influence [6]. The preva-
lence of CKD and the prevalence of diabetic CKD have both 
stabilized in the United States since the early 2000 s, sign-
aling a change in the epidemiology of CKD [7]. There are 
several populations around the world with an emerging risk 
of increasing CKD, including China (in the context of rapid 
urbanization and a rising incidence of diabetes) [7]. There-
fore, we cannot simply follow the guidelines from the data 
from developed countries. In addition, only a few studies 
have indicated that KDIGO staging is applicable to patients 
with CKD stage 3 in China [8] and have not observed differ-
ences in the prognosis between patients with stage 3a and 3b 
CKD. It is important to know whether the division of CKD 
stage 3 is suitable for Chinese patients.

Electronic medical records provide large-scale real-
world clinical data for the use in developing clinical deci-
sion systems. However, sophisticated methodology and 
analytical skills are required to handle the large-scale data-
sets necessary for the optimization of prediction accuracy 
[9]. With government incentives offered to clinical organi-
zations to transition from paper-based patient information 
to well-structured and managed digital form, there has 
been a tremendous explosion in the availability of patient-
centric healthcare data. Such data can be leveraged to open 

new avenues in advancing healthcare by improving patient 
care and creating new efficiencies in delivering care [10]. 
Besides, early prediction of deterioration can play an 
important role in supporting health care professionals, as 
an estimated 11 percent of hospital deaths follow a failure 
to promptly recognize and treat deteriorating patients [11]. 
Machine learning algorithms are well suited to analyze 
large, complex dataset [12], which can identify informa-
tion quickly, effectively and explore intrinsic relationship. 
To verify the staging for Chinese patients with CKD stage 
3 and built up an alerting model, we built our CKD3 stag-
ing modeling (CSM) approach and evaluated its reliability 
in a retrospective study involving CKD patients treated at 
Xiangya Hospital, one of the largest hospitals in South 
Central China. The CSM approach computes the cutoff 
point of the eGFR for staging of patients with CKD stage 3 
and possible risk factors for progression to ESRD based on 
the following three components: (1) identifying the cutoff 
points according to the data distribution; (2) verifying the 
demarcation point using an eGFR of 40–48 as the dividing 
points for stage 3a/3b CKD; and (3) assessing the risk fac-
tors of stage 3a/3b CKD by using RF analysis. This study 
is based on the Central South University medical big data 
project subject platform [13], using Spearman correlation 
coefficient (SCC) analysis, algorithms including LR, RF, 
SVMs, and Nnets, to explore whether the KDIGO stage 
criteria for patients in South Central China with stage 
3a/3b CKD are suitable. Moreover, we explored factors 
that influenced the prognosis of patients with stage 3a/3b 
CKD with the new criteria.

Materials and methods

Study design

We conducted a retrospective cohort study using the full text 
of clinical notes in the year when the patients first met the 
criteria for CKD stage 3 (30 ≤ eGFR < 60 mL/ min 1.73 m2). 
All the clinical data were extracted from the electronic medi-
cal records system (EMRS). The data were analyzed using 
the CSM system. All identified events were adjudicated 
through chart review.

CKD stage 3 modeling (CSM)

The CSM approach is a prediction model based on an artifi-
cial intelligence core intended to identify a new cutoff point 
of 43 in patients with CKD stage 3 and to distinguish the 
different factors related to progression of stage 3a/b CKD 
to ESRD (Fig. 1). The predictive model at the CSM core 
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is a machine learning model that was trained on a set of 
almost 50,049 clinical records; records were extracted from 
the clinical information system. The artificial neural network 
was trained to predict a suitable cutoff point for CKD stage 3 
among patient in South Central China and to identify influ-
ential factors for progression of CKD stage 3a/3b to CKD 
stage 5 based on the parameters listed in (Table 1). 

Population studied

Inpatients and outpatients with an eGFR between 30 and 
60 mL/min 1.73 m2 who were treated at Xiangya Hospital 
between August 1, 2010, and April 1, 2018 were included. 
One of the criteria for patient’s enrollment was that patients 
were followed up at least once a year. If the patient had 
multiple records in a year, each record would be obtained. 
The time of onset of CKD stage 3 was recorded as the first 
time CKD stage 3 was diagnosed. The time when the eGFR 
decreased to less than 15 mL/min 1.73 m2 was also recorded. 
The eGFR was determined with the CKD Epidemiology 
Collaboration equation (CKD-EPI) for Chinese patients 
with CKD [8]. We screened patients in with stage 3 and 
CKD stage 5, recorded the eGFR and the date they were first 
included in each cohort, extracted the intersection of both 
cohorts, and set the date they were first diagnosed with CKD 
stage 3 before progression to CKD stage 5. Concrete exclu-
sion criteria included the following: acute kidney injury 
(AKI) (2012 KDIGO guidelines); age < 18 or > 70 years; 
the first time CKD stage 3 was diagnosed that was later than 
the time of diagnosis of CKD stage 5; Incomplete clinical 

data; and hemodialysis, peritoneal dialysis, and kidney trans-
plantation patients.

Study outcomes

ESRD was defined as the initiation of irreversible devel-
opment of an eGFR < 15 mL/min 1.73 m2. The ultimate 
ascertainment of eGFR is based on the values from a central 
laboratory. ESRD events were adjudicated by an independ-
ent committee consisting of relevant specialist physicians.

Data collection

We obtained data from the EMRS of Xiangya hospital. 
We collected information on patient demographics (name, 
ID, age, sex), diagnosis, accompanying diseases (diabe-
tes, hypertension, and cardiovascular disease) and the 
laboratory data urine nitrite(NIT), urobilinogen(URO), 
bilirubinuria(BiL), urine specific gravity (SG), urine 
white blood cells(WBC), urine vitamin C(Vitamin C), 
glucosuria(Glu), proteinuria, ketonuria(Ket), urine pH(PH), 
neutrophil percentage(NeuTP), neutrophil count(NeuT), 
monocyte percentage(MONOP), monocyte count(MONO), 
basophil percentage(BASOP), basophil count(BASON), 
eosinophil percentage (EOP), eosinophil count(EON), mean 
corpuscular volume (MCV), mean platelet volume (MPV), 
mean corpuscular hemoglobin (MCH), mean corpuscular 
hemoglobin concentration (MCHC), white blood cell count 
(WBC), red blood cell volume distribution width (RDW), 

Fig. 1   Flow diagram of CKD stage model
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Table 1   Patient characteristics in the two categories of patients in the facility level analysis

Characteristic All POS NEG p value

Total no. of patients 1090 455 635
Chronic nephritis 518(47.5) 252(55.4) 266(41.9)  < 0.001a

Diabetic kidney disease 229(21) 143(31.4) 86(13.5)  < 0.001a

Others 343 (31.5) 60 (13.2) 283 (44.6)  < 0.001a

Urine nitrite (pos), no. (%) 18 (2.96) 10 (3.23) 8 (2.68) 0.81a

urobilinogen (pos), no. (%) 6 (0.99) 2 (0.65) 4 (1.34) 0.443a

Urine bilirubin (pos), no. (%) 19 (3.12) 9 (2.9) 10 (3.34) 0.818a

Urine specific gravity of urine, median (IQR) 1.017 (0.01) 1.016 (0.01) 1.018 (0.01)  < 0.001c

Urine white blood cell. (pos), no. (%) 120 (20.24) 48 (16.16) 72 (24.32) 0.014a

Urine vitamin C (pos), no. (%) 66 (13.69) 34 (13.82) 32 (13.56) 1a

Urine glucose (pos), no. (%) 80 (15.47) 64 (29.36) 16 (5.35)  < 0.001a

Urine protein (pos), no. (%) 378 (62.07) 268 (86.45) 110 (36.79)  < 0.001a

Urine ketone bodies (pos), no. (%) 20 (3.28) 8 (2.58) 12 (4.01) 0.368a

Urine_pH, median (IQR) 5.5 (1) 5.59 (1) 5.59 (1) 0.002c

Blood_HDL/TC, mean ± SD 0.26 ± 0.08 0.25 ± 0.08 0.27 ± 0.08 0.002b

Blood neutrophils percentage, mean ± SD 65.21 ± 11.15 66.58 ± 10.89 64.04 ± 11.25 0.001b

Blood neutrophils (× 109/L), mean ± SD 5.03 ± 2.62 5.25 ± 2.53 4.85 ± 2.69 0.028b

Serum LDL (mmol/L), mean ± SD 3.36 ± 1.35 3.58 ± 1.56 3.15 ± 1.05  < 0.001b

Blood monocyte percentage, mean ± SD 6.82 ± 3.03 6.75 ± 3.38 6.88 ± 2.7 0.57b

Blood monocyte (× 109/L), mean ± SD 0.5 ± 0.29 0.51 ± 0.32 0.5 ± 0.27 0.459b

Blood basophils percentage, mean ± SD 0.5 ± 0.44 0.51 ± 0.39 0.49 ± 0.48 0.534b

Blood basophils (× 109/L), median (IQR) 0.02 (0.06) 0.02 (0.05) 0.02 (0.07) 0.279b

Blood eosinophils percentage, mean ± SD 2.23 ± 2.28 2.46 ± 2.62 2.03 ± 1.94 0.009b

Blood eosinophils (× 109/L), mean ± SD 0.16 ± 0.2 0.18 ± 0.24 0.14 ± 0.15 0.003b

Blood mean corpuscular volume (MCV), mean ± SD 90.72 ± 6.77 89.86 ± 6.63 91.46 ± 6.81 0.001b

Blood mean platelet volume (MPV), mean ± SD 9.02 ± 1.49 9.05 ± 1.47 8.99 ± 1.51 0.548b

Blood mean corpuscular hemoglobin (MCH), mean ± SD 30.29 ± 2.38 29.93 ± 2.15 30.6 ± 2.52  < 0.001b

Blood mean corpuscular hemoglobin concentration (MCHC), mean ± SD 333.6 ± 13.4 332.5 ± 14.2 334.6 ± 12.3 0.033b

Serum urea (mmol/L), mean ± SD 7.72 ± 2.9 8.73 ± 3.43 6.99 ± 2.17  < 0.001b

Serum uric acid (umol/L), mean ± SD 419 ± 111.9 437 ± 111.9 406.1 ± 110.3  < 0.001b

Blood lymphocyte percentage, mean ± SD 25.25 ± 9.8 23.62 ± 9.13 26.63 ± 10.14  < 0.001b

Blood lymphocyte (× 109/L), mean ± SD 1.77 ± 0.74 1.73 ± 0.78 1.81 ± 0.7 0.174b

Blood white blood cell (WBC) (× 109/L), mean ± SD 7.5 ± 2.92 7.71 ± 2.83 7.32 ± 2.98 0.056b

Blood red blood cell volume distribution width (RDW), mean ± SD 14.1 ± 3.85 14.65 ± 5.27 13.65 ± 1.97 0.001b

Blood hematocrit (HCT), mean ± SD 37.1 ± 6.51 35.35 ± 6.56 38.57 ± 6.1  < 0.001b

Blood red blood cell (RBC) (× 1012/L), mean ± SD 4.09 ± 0.75 3.94 ± 0.76 4.23 ± 0.72  < 0.001b

Blood platelet volume distribution width (PDW), mean ± SD 16.74 ± 1.43 16.59 ± 1.73 16.89 ± 1.04 0.011b

Blood thrombocytocrit, median (IQR) 0.18 (0.07) 0.19 (0.07) 0.17 (0.07) 0.001b

Blood platelet (× 109/L), mean ± SD 199.38 ± 81.26 209.91 ± 79.53 190.42 ± 81.73 0.001b

Blood hemoglobin (g/L), mean ± SD 123.58 ± 22.22 117.56 ± 22.29 128.7 ± 20.86  < 0.001b

Serum total protein (TP) (g/L), mean ± SD 68.68 ± 9.74 64.79 ± 9.46 71.68 ± 8.86  < 0.001b

Serum chlorine (mmol/L), mean ± SD 104.7 ± 4.8 105.16 ± 5.2 104.01 ± 4.3 0.008b

Serum total bile acid (TBA) (umol/L), mean ± SD 5 ± 9.5 4.44 ± 5.53 5.51 ± 12 0.096b

Serum total bilirubin (TBIL) (umol/L), mean ± SD 10.47 ± 14.09 9.18 ± 18.96 11.49 ± 8.36 0.025b

Serum globulin (g/L), mean ± SD 28.73 ± 5.61 28.21 ± 4.74 29.13 ± 6.17 0.011b

Serum triglyceride (TG) (mmol/L), mean ± SD 2.38 ± 2.07 2.6 ± 2.4 2.15 ± 1.65 0.008b

Serum A/G, mean ± SD 1.43 ± 0.33 1.33 ± 0.32 1.51 ± 0.31  < 0.001b

Serum albumin (ALB) (g/L), mean ± SD 39.95 ± 7.31 36.57 ± 7.44 42.56 ± 6.04  < 0.001b

Serum direct bilirubin (umol/L), mean ± SD 4.12 ± 7.03 3.71 ± 9.85 4.43 ± 3.46 0.166b

Serum creatinine (sCr) (umol/L), mean ± SD 143.9 ± 35.41 161.9 ± 38.94 131.1 ± 25.93  < 0.001b
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hematocrit (HCT), red blood cell count (RBC), lymphocyte 
percentage (LYMPHP), lymphocyte count (LYMPHN), 
platelet volume distribution width (PDW), thrombocytocrit 
(PCT), platelet (PLT), hemoglobin (HGB), total bile acids 
(TBA), total bilirubin (TBIL), total protein (TP), albumin 
(ALB), globulin(GLB), albumin-to-globin ratio (A/G), 
direct bilirubin (DBIL), blood high-density lipoprotein 
cholesterol-to-total cholesterol (HDL/TC), low-density 
lipoprotein(LDL), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), cholesterol(TC), chloride(CL), tri-
glycerides (TG), high-density lipoprotein (HDL), serum cre-
atinine (sCr), urea(UREA), uric acid(URIC), glucose(Glu), 
calcium(Ca), sodium(Na), potassium(K), and eGFR. We 
defined baseline laboratory values for each laboratory test as 
the first available result on or after the first diagnosis of CKD 
stage 3. Hypertension was defined as a systolic blood pres-
sure (BP ≥ 140 mmHg and/or a diastolic BP ≥ 90 mmHg, or 
diagnosis of hypertension. Patients were considered to have 
diabetes mellitus if they had a fasting glucose ≥ 7.0 mmol/L; 
an HbA1c ≥ 6.5%; or diagnosis of diabetes. If ESRD did not 
occur by the average time of progression among patients 
with CKD stage 3, the observation was censored. This study 
was approved by the Ethics Committee of Xiangya Hospital, 
and the need for informed consent was waived. We adhered 
to the Declaration of Helsinki.

Data processing

Firstly, correlation analysis between different CKD stage 
3a/3b cutoff point and time progress in the study period was 

carried out. Secondly, the function cor. test () was used to 
calculate the PCC, SCC and their related p values. The LR 
also was used to calculate their related p values. Later, four 
models were built, including the linear and nonlinear mod-
els—LR, RF, SVM, and Nnet, for each CKD stage3a and 
CKD3b group. Logistic regression was another generalized 
linear model (GLM) procedure using the same basic for-
mula, but instead of the continuous Y, it was regressing for 
the probability of a categorical outcome. RF were conducted 
using the functions random forest () in the package “random 
forest”. SVM were conducted using the functions svm () in 
the package “e1071”. Nnet were conducted using the func-
tions nnet () in the package “nnet”. Fivefold cross-validation 
were used to evaluate the statistical models, LR, RF, SVM, 
and Nnet. In the fivefold cross-validation, the sample data 
are randomly partitioned into five equal groups. Each time, 
one group of data was retained as the validation data for 
testing the model, and the remaining four groups were used 
as training data. This process was then repeated five times, 
with each group used exactly once as the validation data. To 
reduce variability, five rounds of cross-validation were per-
formed using different partitions, and the validation results 
were averaged over the rounds. The performance of the 
model was evaluated based on the comparison between pre-
dicted and observed number of patients whether progressed 
into CKD stage 5. Thirdly, CSM continued to search risk 
factors of progression to ESRD in CKD stage 3a/3b patients 
by RF.

Table 1   (continued)

Characteristic All POS NEG p value

Serum cholesterol (mmol/L), mean ± SD 5.56 ± 1.68 5.82 ± 1.92 5.28 ± 1.33  < 0.001b

Serum glucose (mmol/L), mean ± SD 6.39 ± 2.98 7 ± 3.97 6.09 ± 2.3 0.007b

Serum ALT (U/L), mean ± SD 28.77 ± 59.35 27.98 ± 63.88 29.38 ± 55.58 0.729b

Serum AST (U/L), mean ± SD 29.58 ± 47.57 29.08 ± 42.16 30.04 ± 52.05 0.77b

Serum calcium (mmol/L) 2.24 ± 0.19 2.21 ± 0.18 2.28 ± 0.2  < 0.001b

Serum sodium (mmol/L) 141.45 ± 3.79 141.74 ± 3.97 141.02 ± 3.46 0.033b

Serum potassium (mmol/L) 4.1 ± 0.54 4.11 ± 0.59 4.1 ± 0.48 0.844b

Serum high-density lipoprotein (HDL) (mmol/L), mean ± SD 1.42 ± 0.49 1.42 ± 0.54 1.42 ± 0.44 0.912b

eGFR (ml/min/1.73m2), median (IQR) 45.6 (16.16) 40.79 (13.74) 49.04 (12.77)  < 0.001c

Male (sex), no. (%) 614 (56.3) 266 (58.4) 348 (54.8) 0.24a

Hypertension, no. (%) 333 (30.6) 183 (40.2) 150 (23.7)  < 0.001a

Cardiovascular disease, no. (%) 29 (2.7) 16 (3.5) 13 (2) 0.18 a

Age (year), mean ± SD 50.01 ± 11.39 47.9 ± 12.3 51.57 ± 10.41  < 0.001b

POS positive group, progression to ESRD
NEG negative group, no progression to ESRD
a Fisher’s exact test
b Unpaired t test
c Wilcoxon test
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Results

After applying the inclusion and exclusion criteria, we 
identified 1090 patients who constituted the analytic cohort 
(Table 1). Among them, 455 were confirmed to have devel-
oped ESRD during follow-up (positive group). The median 
follow-up time was 4.0 years [95% confidence interval (CI), 
4.295–4.489]. This work focuses on the use of machine 
learning to predict disease risk and model the contributing 
factors learned from an electronic health record dataset.

43 mL/ min 1.73 m2 may be the new cutoff point 
for predicting CKD stage 3 progression to ESRD 
among patients in South Central China

Hypothesis tests between the patients who progressed CKD 
stage 5 and those who did not were carried out for each 

feature. We analyzed the relationship between the eGFR and 
progression time by a scatter density map and contour line 
and found that two high density regions could be distin-
guished when the eGFR was 43 mL/min⋅1.73 m2 and when 
the eGFR was 45 mL/min⋅1.73 m2 (Fig. 2).

Furthermore, all patients’ samples were split into CKD 
stage 3a and CKD stage 3b groups by different eGFRs 
(range from 40 to 48 mL/min⋅1.73 m2). PCC and SCC 
were used to find the best values of eGFR to distinguish 
CKD stage 3a from 3b to progression to CKD stage 5. It 
is showed that when the eGFR is 43 mL/ min⋅1.73 m2, 
the correlation coefficient is the largest (Table 2). Fur-
ther, we used a logistic regression model to measure the 
eGFR divided CKD3 patients into two groups and the 
time of progression to CKD stage 5. We found that when 
CKD3 patients were classified by an eGFR of 43 mL/
min⋅1.73 m2, the regression coefficient and significance 
were prominent (Fig. 3, Table 3).

According to an eGFR of 40 and 48 mL/min⋅1.73 m2 as 
the dichotomy for stage 3a and CKD stage 3b, respectively, 
using four types of algorithms to distinguish stage 3a and 
3b CKD, a classification model and model performance 
comparison reference appendix were established. Based 
on the eGFR cutoff point of 43 mL/min⋅1.73 m2, Random 
Forest model performed the best for distinguishing stage 
3a and 3b CKD patients who would progress to ESRD. 
As shown in the figure below, for stage 3a and 3b CKD, 
this model had an accuracy of 85% and 77%, respectively, 
and an area under the curve (AUC) value of 88% and 
83%, respectively, which includes all the variable values 
in (Table 1) (Fig. 4a, b).

Screening predictors of CKD stage 3a/3b 
progression to CKD stage 5 by RF

After establishing a reliable forecast model, we used an 
RF to clarify the different risk factors for progression of 
stage 3a/3b CKD to CKD stage 5. The risk factors for stage 
3a/3b CKD were explored by modeling with an RF at an 
eGFR cutoff point of 43 mL/min 1.73 m2, and the results 
of the importance assessment and analysis of the model 
parameters are given (Fig. 5). The higher the value of 
mean decrease accuracy or mean decrease Gini score was, 
the higher the importance of the variable in the model.

Fig. 2   Scatter plot for finding the eGFR cutoff point. On the hori-
zontal axis was the time of progression (days), and on the vertical 
axis was the patient’s first eGFR value. The distribution rule for the 
eGFR value and the time of progression was given through the den-
sity curve, and it could be seen that the region with the highest den-
sity was close to the region with a distance of 45, and the region with 
the highest density was 43, which could better distinguish the density 
region

Table 2   Correlation between 
the eGFR and progression 
time by pearson and spearman 
correlation analysis

eGFR (mL/
min·1.73 m2)

40 41 42 43 44 45 46 47 48

SCC 0.230 0.226 0.223 0.233 0.210 0.197 0.193 0.191 0.171
PCC 0.230 0.226 0.224 0.232 0.210 0.198 0.197 0.192 0.17
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The common influencing factors of stage 3a/3b CKD 
progression to CKD stage 5 included serum SCR, eGFR, 
serum TP, serum TC, serum urea, serum albumin, serum 
TBIL, serum HDL proteinuria, age. Furthermore, serum 
DBIL, serum A/G, blood HGB, serum Ca, blood HCT, 
serum ALT, urine SG accounted for the progression of 
CKD stage 3a to CKD stage 5. The contributing factors for 
CKD stage 3b progression to CKD stage 5 included blood 
EOP, blood MCH), diabetic kidney disease, blood EON, 
serum Na, serum Cl.

Incidence rates of ESRD events according 
to the cutoff of the eGFR of 43 mL/min⋅1.73 m2

The incidence rates of ESRD events according to the cutoff of 
the eGFR of 43 mL/min⋅1.73 m2 are shown in (Table 4). Dur-
ing the median follow-up of 4.0 years (95% CI, 4.295–4.489), 
higher incidence rates of ESRD events were observed in 
CKD with a decreased eGFR (Table 4, Fig. 6, p for log-rank 
test < 0.001).

Discussion and conclusion

The KDIGO guidelines on CKD represent an extraordinary 
effort to summarize and synthesize evidence together with a 
thoughtful expression of the best practices and opinion [14]. 
One of the meaningful suggestions was the division of stage 
3a and 3b CKD. It was suggested that it would be clinically 
sound to subdivide CKD stage 3 into stages 3a (45–59 mL/ 
min 1.73 m2) and 3b (30–44 mL/ min 1.73 m2), as these two 
ranges may be associated with different clinical patterns and 
risks. It has recently been shown that patients with CKD and 
an eGFR < 45 mL/ min 1.73 m2, particularly older patients, 
experience faster disease progression [15]. Patients with CKD 
stage 3b should probably be referred earlier for specialized 
renal care [16]. Some have recommended that people with an 
eGFR category CKD stage 3a without associated markers of 
kidney damage (proteinuria or hematuria) should not neces-
sarily be considered to have CKD and should be considered for 
further evaluation and referral according to the clinical judg-
ment of the health care provider [17, 18].

CKD is a global health challenge, especially in low- and 
middle-income countries. China is a large developing coun-
try with different health care and primary care structures, 
and some recommendations by the international guidelines’ 
groups might not be relevant to the Chinese population. First, 
the prevalence of CKD stage 3 was 1.6% in China compared 
with 7.7% in the USA and 4.2% in Norway [3]. The findings 
described rise in the prevalence of diabetes in China [19, 20], 
a signal strongly forewarning a growing epidemic of CKD in 
China in the upcoming years to decades, perhaps analogous to 
trends seen in the United States from the 1980 s to early 2000 s 
[21]. Wen et al. reported the prevalence of CKD and its stages 
among the general population in Taiwan [22], where the eth-
nicity and living habits were the same as in Mainland China, 
but the economic development was better, and they found a 
higher proportion of lower eGFR (CKD stage 3 or worse) 
than that reported among the population in Mainland China 
[3]. With respect to CKD in China, there were twice as many 
people with proteinuria than those with a low eGFR, while 
in the US, the prevalence difference in a low eGFR and pro-
teinuria was much smaller than in China [23]. Taken together, 
with the different prevalence of CKD, racial differences, eco-
nomic development, genetic, and environmental backgrounds 
between China and Western countries, we should evaluate the 
guidelines according to our actual situation rather than simply 
adhering to the recommendations.

Fig.3   Correlation between the eGFR and progression time with logis-
tic regression measures. The figure shows the regression results. The 
estimated value of each coefficient is a point, the bold line represents 
a confidence interval for the standard error, and the thin line repre-
sents a confidence interval for twice the standard error. The vertical 
line is zero. To evaluate statistical significance, we evaluated whether 
the double confidence interval contained 0; if it did not, the result was 
statistically significant

Table 3   Correlation between 
the eGFR and progression time 
by logistic regression measures

eGFR (mL/min·1.73 m2) 40 41 42 43 44 45 46 47 48

p value 0.328 0.693 0.100 0.005** 0.221 0.070 0.806 0.356 0.359
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As the adoption of electronic health records continues to 
rise and a generation of individuals has their entire health his-
tories stored electronically, this approach provides a novel way 
to gain potential insights about the disease risk as a natural 
byproduct of care delivery and electronic health record docu-
mentation [24]. Mathematical and statistical tools developed 
in the field of artificial intelligence (AI) and machine learning 
are well poised to assist clinical researchers in deciphering 
complex predictive patterns in healthcare data [25]. It is chal-
lenging for humans to directly analyze these massive data; 
this is not only because of the massive time required and cares 
needed to avoid human errors, but also the ability to derive the 
insights or information in depth. Clearly, machine learning 
holds nonparallel advantages over humans in these domains 
[26]. Unlike the previous CKD stage 3 classification stud-
ies, this is the first study to use an unbiased machine learning 
approach using text from clinical notes to identify appropriate 
cutoff points for patients with CKD stage 3, determine differ-
ent risk factors for CKD stage 3a and 3b, more importantly, 
build a model to predict the possibility of progression to ESRD 
in a predetermined period. The face validity of this approach 
was confirmed by different calculation methods of AI. This 
study also conducts proposed methods to extract insights about 
performance trends that cannot be easily extrapolated using 
standard analyses and treats various influencing factors accord-
ing to the model set by the CSM approach.

In this computer-based retrospective analysis, we con-
firmed that it is clinically significant to divide CKD stage 
3 patients into CKD stage 3a and 3b. More importantly, 
machine learning, when applied to predictive modeling, 
can determine patterns of risk factors useful for improving 
prediction quality [27]. In this study, the identification of 
several well-established risk factors for ESRD in CKD stage 
3 patients, including age [1], proteinuria [1], diabetic kid-
ney disease [1], eGFR [1], serum ALB [2], creatinine [28], 
blood urea [29], hematocrit [2], serum cholesterol [30], HDL 
cholesterol [31], HGB [27], TBIL [32], DBIL [33], serum 
ALT [34], serum Na [35], serum Cl [35],and serum calcium 
[36] were indicated by machine learning. In addition, the 
machine learning method also identified some risk factors 
that have not been previously described, such as A/G, MCH, 
urine SG, TP, EOP, and EON future research is needed to 
determine the possible role of these factors in the progres-
sion of CKD.

In addition, there are different factors associated with 
progression from stage 3a and 3b CKD to CKD stage 5. 
Apart from common factors of CKD stage 3 progression to 
CKD stage 5, serum DBIL, serum A/G, blood HGB, serum 
Ca, blood HCT, serum ALT, urine SG accounted for the 
progression from CKD stage 3a to CKD stage 5. The con-
tributing factors for CKD stage 3b progression to CKD stage 

Fig. 4   a Comparison of unified models with different algorithms in 
CKD stage 3a patients. b Comparison of unified models with differ-
ent algorithms in CKD stage 3b patients. The figure shows the regres-
sion results. The estimated value of each coefficient is a point, the 
bold line represents a confidence interval for the standard error, and 
the thin line represents a confidence interval for twice the standard 
error. Random forest, support vector machine, logistic regression, 
and neural network algorithms were used to construct a classifica-
tion model to predict whether patients with 43  <  eGFR  <  60  mL/
min⋅1.73  m2 would progress to CKD stage 5. The random for-
est model had the largest AUC value (0.8783), indicating that the 
model has the best prediction effect. b The estimated value of each 
coefficient is a point, the bold line represents a confidence inter-
val for the standard error, and the thin line represents a confidence 
interval for twice the standard error. Random forest, support vector 
machine, logistic regression and neural network algorithms were used 
to construct a classification model to predict whether patients with 
30 ≤ eGFR  <  43  mL/min⋅1.73  m2 would progress to CKD stage 5. 
The random forest model had the largest AUC value (0.8292), indi-
cating that the model had the best prediction effect
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5 include blood EOP, blood MCH), diabetic kidney disease, 
blood EON, serum Na, serum Cl. These findings may remind 
clinicians to pay attention to different factors in patients with 
stage 3a and 3b CKD.

This is the first study to use an unbiased approach 
using text from clinical notes to identify predictors of 

progression to ESRD among CKD stage 3 patients. Our 
work confirmed that it is reasonable to divide CKD stage 3 
into stage 3a and 3b. Besides, eGFR cutoff point of 43 mL/
min 1.73 m2 is a suitable cutoff point by predicting pro-
gression to ESRD in Central South Chinese patients using 
different machine learning methods. More important, our 

Fig. 5   a Important variables 
in the model of patients with 
CKD stage 3a who progressed 
to CKD stage 5 by random 
forest. b Important variables in 
the model of patients with stage 
3b CKD who progressed to 
CKD stage 5 by random forest. 
Serum albumin, proteinuria, 
serum TP, serum TBIL, serum 
DBIL serum A/G, blood HGB, 
serum Ca, eGFR, blood HCT, 
serum TC, serum ALT, serum 
HDL, urine SG, serum SCR, 
serum urea, age accounted for 
the progression from stage 3a 
CKD to CKD stage 5. Serum 
SCR, eGFR, serum TP, serum 
TC, serum urea, EOP, serum 
ALB, blood MCH, serum TBIL, 
Diabetes, blood EON, serum 
Na, serum HDL, serum Cl, 
proteinuria, age accounted for 
the progression from stage 3b 
CKD to CKD stage 5

Table 4   Relationship between 
the cutoff point of the eGFR for 
stage 3 CKD patients of 43 ml/
min·1.73 m2 and ESRD event 
rates

eGFR cutoff (mL/min 1.7 m2) Number of events p for log-rank

ESRD events  < 0.0001
Stage 3a CKD (43 < eGFR < 60) (N = 647) 167 (25.8%)
Stage 3b CKD (30 < eGFR < 43) (N = 443) 288 (65.0%)
Total 455 (41.74%)
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findings may provide clinical proof of the beneficial effects 
of deploying the CSM approach in everyday practice as 
part of routine nephrological practice. As the adoption of 
electronic health records continues to rise and a genera-
tion of individuals has their entire health histories stored 
electronically, this approach provides a novel way to gain 
potential insights about disease risk as a natural byproduct 
of care delivery and electronic health record documen-
tation [24]. As systems analytics, big data, and machine 
learning, among others, come online and become more 
widely available, we may be able to tackle CKD more 
holistically, efficiently, and satisfactorily.

This study has some limitations. The primary limitation 
of this study is that its findings are drawn from a single 
tertiary hospital, which may have idiosyncrasies in docu-
mentation style and patient characteristics that may differ 
from other institutions. Validating this analysis in other 
cohorts is needed. This approach was successful in trans-
lating the clinical narrative into a tool for the discovery of 
possible predictors that have not been previously linked to 
kidney failure. Second, if low-risk patients were systemati-
cally excluded from these cohorts due to lack of follow-up 
creatinine testing, then estimates from the resulting models 
could overestimate risk of advanced chronic kidney disease. 
Third, the kidney disease outcome evaluated in this paper 
was progression to ESRD, future prospective studies may 
also include death or cardiovascular events as other out-
comes either. Fourth, based on the retrospective study, we 
cannot collect the treatment information correctly. We will 
conduct prospective research to collect more detailed data 
to replicate our findings and approach in multicenters and 

determine the cutoff point of different stage of CKD in the 
future.

In summary, our findings confirm a new cutoff point for 
CKD stage 3 by computational intelligence, which is dif-
ferent from a previous study. The CSM approach provides 
a novel tool to identify the different influencing factors for 
stage 3a/3b CKD progression to CKD stage 5. The CSM 
approach may be adapted and used in the management of 
other chronic diseases in which international guidelines 
require confirmation in different populations.
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