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Abstract A broad range of genetic and non-genetic factors

can lead to kidney injury that manifests as focal segmental

glomerulosclerosis (FSGS), which can be classified into

primary (idiopathic) and secondary forms. Previous genetic

approaches to familial or sporadic cases of FSGS or ster-

oid-resistant nephrotic syndrome identified causal muta-

tions in a subset of genes. Recently, next-generation

sequencing (NGS) approaches are becoming a part of a

standard assessment in medical genetics. Current knowl-

edge of the comprehensive genomic information is

changing the way we think about FSGS and draws atten-

tion not only to identification of novel causal genes, but

also to potential roles for combinations of mutations in

multiple genes, mutations with complex inheritance, and

susceptibility genes with variable penetrance carrying rel-

atively minor but significant effects. This review provides

an update on recent advances in the genetic analysis of

FSGS and highlights the potential as well as the new

challenges of NGS for diagnosis and mechanism-based

treatment of FSGS.

Keywords Focal segmental glomerulosclerosis � Steroid-
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Introduction

Focal segmental glomerulosclerosis (FSGS) is a group of

clinicopathological entities sharing the common feature of

glomerular lesion within a subset of glomeruli (i.e., focal)

involving only a portion of the glomerular tuft (i.e., seg-

mental) [1]. Clinically, FSGS is a common cause of ster-

oid-resistant nephrotic syndrome (SRNS) with

approximately 30–50% of adults with FSGS being unre-

sponsive to steroid therapy, and exhibits a large overlap

with clinical diagnosis of SRNS in children and adults.

A broad range of genetic and non-genetic factors can

lead to kidney injury that manifests as FSGS, which can be

broadly classified into primary (idiopathic) and secondary

forms [1, 2] (Table 1). Typical primary FSGS, character-

ized by the presence of nephrotic syndrome with an

observable FSGS lesion by light microscopy and wide-

spread foot process effacement by electron microscopy

(EM) [3, 4], presents with the highest rate of progression to

end-stage renal disease. Secondary FSGS, commonly

characterized by the absence of nephrotic syndrome and

presence of segmental foot process effacement by EM [3],

occurs as an adaptive structural–functional response to

known etiologic causes including genetic defects, viral

infections, drugs, toxins, and responses mediated by altered

glomerular hemodynamics [2].

In both primary and secondary FSGS, data from human

and experimental studies indicate that podocyte injury,

depletion (podocytopenia), and subsequent damage to

parietal epithelial cells are pivotal events [5, 6] in the

morphogenesis of characteristic segmental lesions.

While damage to podocytes underlies all forms of

FSGS, the etiology of podocyte injury and pathogenesis of

primary FSGS have posed a conundrum for decades.

Several studies have revealed that circulating factors within
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patient plasma can cause podocyte damage in vitro [7–9].

One case of recovery from FSGS after retransplantation of

an allograft that failed in the first recipient as the result of

recurrent primary FSGS [10], yielded clinical evidence of

one or more specific disease-causing circulating factors in

primary FSGS patients. Indeed, FSGS recurs in about 30%

of patients after renal transplantation, further emphasizing

the role of a circulating factor. Despite vigorous investi-

gation of several candidate factors, to date, no single

molecule has been consistently identified as the causal

pathogenic element in primary FSGS [11–13]. Further,

there is a complete lack of information about the genetic

background of primary FSGS.

In contrast, recent genetic approaches to patients with

familial or hereditary FSGS identified primal causal

mutations in a subset of genes. The aim of this review is to

provide an update on recent advances in the genetic anal-

ysis of FSGS and highlight the potential of this transla-

tional approach for diagnosis and treatment of FSGS.

Monogenic cause of FSGS/SRNS

The field of research into the genetic cause of nephrotic

syndrome arose from the discovery of podocyte proteins

that play crucial roles in glomerular filtration. The first

gene identified was the nephrin gene (NPHS1), whose

mutations cause Finnish-type congenital nephrotic syn-

drome (CNS) [14]. Since the discovery of NPHS1 in 1998,

the list of causative genes has grown rapidly (Table 2).

Many of these genes were first identified by positional

cloning or homozygosity mapping in families affected by

CNS, SRNS or familial FSGS, and can roughly be divided

into two clinical categories: early-onset recessive forms of

FSGS/SRNS/CNS, and late-onset autosomal dominant

forms of FSGS/SRNS.

Causative genes for the recessive type are mainly

expressed in podocytes, where they are involved either

directly or indirectly in organization of the slit diaphragm

(SD) and actin cytoskeleton (Table 2). Nephrin, a mem-

brane-spanning glycoprotein, is the major component of

SD [14]. Podocin, encoded by NPHS2, is a lipid raft

component of SD [15] that interacts with nephrin [16]. In

addition to providing a structural framework for the fil-

tration barrier, SD components such as nephrin and podo-

cin also play important roles as a signaling platform [17].

Recent analyses have identified nuclear pore complex

components to be essential for glomerular permselectivity,

with biallelic mutations of nuclear proteins 93, 107 and 205

(NUP93/107/205) and exportin 5 (XPO5) causing SRNS

through aberrant Smad signaling [18, 19]. Genetic causes

of autosomal dominant forms of FSGS/SRNS include

mutations in molecules associated with cytoskeletal orga-

nization of podocytes [actinin alpha 4 (ACTN4), inverted

formin 2 (INF2), anillin (ANLN), and Rho GTPase Acti-

vating Protein 24 (ARHGAP24), SD proteins [transient

receptor potential cation channel subfamily C member 6

(TRPC6)], and transcription factors [Wilms tumor 1 (WT1)

and LIM homeobox transcription factor 1 beta (LMX1B)].

Some genes capable of causing hereditary FSGS/SRNS

may have roles in multiple cell types and often impose

phenotypic effects in extrarenal systems. Thus, genes can

also be divided clinically based on whether genetic forms

are accompanied by extrarenal manifestations (Table 2).

Indeed, a number of clinically meaningful extrarenal phe-

notypes exist, many of which are prominent and often

diagnostic. Examples include microcoria in patients with

laminin beta 2 (LAMB2) [20] mutations, coloboma in

patients with paired box gene 2 (PAX2) [21] mutations,

Denys–Drash syndrome (pseudohermaphroditism and

Wilms tumor) or Frasier syndrome (streak gonads and

pseudohermaphroditism) in patients with WT1 mutations

[22], and nail–patella syndrome in individuals with LMX1B

mutations [23]. Other extrarenal phenotypes include

mitochondrial cytopathies, and bone or neurological

disorders.

Notably, recent reports revealed that in patients with a

mutation of these pleiotropic genes, FSGS may be the only

presenting manifestation. For example, specific mutations

within the homeodomain of LMX1B have been shown to

cause isolated nephropathy without nail, patellar or skeletal

abnormalities [23]. Similarly, some missense mutations of

LAMB2 were observed in congenital and infantile steroid-

resistant nephrotic syndromes without apparent eye

anomaly [24]. Biallelic crumbs 2 (CRB2) mutations cause

both isolated early-onset SRNS and a severe phenotype

manifesting as congenital nephrotic syndrome, exhibiting

renal microcysts complicated by marked cerebral ven-

triculomegaly, gray matter heterotopia, and elevated levels

of maternal serum alpha-fetoprotein and amniotic fluid

alpha-fetoprotein [25–27]. Although mechanisms

Table 1 Classification of FSGS

Mechanism

Primary FSGS Circulating factor(s) (yet unidentified)

Secondary

Adaptive FSGS Reduced renal mass or functioning

glomerular number

Genetic FSGS High-penetrant genetic mutations in

genes crucial for podocyte function

APOL1 FSGS Low-penetrant APOL1 variation

Infection/inflammation-

associated FSGS

Direct effect on podocytes or glomerular

components/cytokine?

Medication-associated

FSGS

Direct effect of drugs on podocytes
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underlying the organ specificity of these mutations remain

largely unclear, diagnosis based on genetic cause will have

clinical significance in treatment of nephropathy and

potential undiagnosed extrarenal phenotypes.

Benefits of gene identification in clinical settings

As with other clinical tests, it is crucial for clinicians to con-

sider the needs and rationale of genetic testing for the care of

each patient with FSGS. If correctly performed, genetic test-

ing of FSGS patients can be beneficial in several ways.

First, identification of a mutation is important for genetic

counseling, as determining the mode of inheritance can

facilitate family counseling regarding future pregnancies.

Second, mutations in some genes causing syndromic

nephrotic syndrome would dictate further screening of

extrarenal phenotypes. For example, upon identification of a

mutation within theWT1 gene, a clinician should investigate

the gender genotype of females to exclude an XY genotype

with pseudohermaphroditism, and the patient should be

screened for development of a Wilms tumor or gonadoblas-

toma [28]. Third, renal prognoses can differ on the presence of

genetic abnormalities. In children and young adults with

FSGS/SRNS, patients with identified gene mutations

demonstrate a higher likelihood to progress more quickly to

end-stage renal failure [29]. The result of mutational analysis

can be evaluated based on the clinical course of patients with

the same mutation described in the literature if exists.

The results of genetic testing can also affect treatment of

FSGS. Indeed, the discovery of a causative mutation in

FSGS/SRNS genes strongly suggests that the nephrotic

Table 2 Genetic causes of FSGS

Isolated NS Isolated or syndromic NS Syndromic NS

Autosomal recessive

NPHS1 CRB2 (Ventriculomegaly) PDSS2 (Encephalomyopathy)

NPHS2 COQ2 (Encephalopathy) MTTL1 (MELAS syndrome)

NPHS3 COQ6 (Deafness) SCARB2 (Epilepsy)

CD2AP ADCK4 (Seizure) SMARCAL1 (Schimke immunoosseous dysplasia)

PTPRO LAMB2 (Pierson syndrome) ITGB4 (Junctional epidermolysis bullosa), (pyloric

atresia)

MYOIE COL4A3 (Alport syndrome) CD151 (Pretibial epidermolysis bullosa), (deafness)

EMP2 COL4A4 (Alport syndrome) ZMPSTE24 (Mandibuloacral dysplasia)

FAT1 CFH (aHUS/C3 Glomerulopathy) ITGA3 (Interstitial lung disease), (epidermolysis

bullosa)

ARHGDIA CUBN (Anemia) WDR73 (Galloway–Mowat syndrome)

KANK1 SGPL1 (Hypogonadism), (adrenal insufficiency)

KANK2 LMNA (Lipodystrophy)

KANK4

TTC21B

NUP93

NUP107

NUP205

XPOS

MAGI2

Autosomal dominant

ACTN4 WT1 (Wilms tumor),

(hermaphroditism), (genital

anomalies)

MYH9 (Epstein syndrome)

ANLN LMX1B (Nail–patella syndrome)

ARHGAP24 INF2 (Charcot–Marie–Tooth disease)

TRPC6 PAX2 (Renal coloboma syndrome)

X-linked

COL4A5 (Alport syndrome) GLA (Fabry disease)

Note that genes can be divided both by mode of inheritance, and by presence or absence of extrarenal manifestations. Several genes have been

identified to cause both isolated FSGS in which mutations are associated with manifestations only in kidney or syndromic FSGS in which

mutations are also associated with extrarenal manifestations
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syndrome is steroid resistant. Regarding response to

immunosuppressive therapy, there are arguments both for

and against efficacy. Indeed, the mechanism of action by

which cyclosporine A (CsA) is beneficial may be non-

immune, as direct effects on podocytes have been

demonstrated in vitro and in animal models [30]. However,

efficacy of immunosuppressive therapy is significantly

different in SRNS patients with or without mutations, as

none [31] or only 3% [32] with genetic SRNS experienced

complete remission. Although several hereditary SRNS

cases have been reported to at least partially respond to

CsA [33–37], caution should be warranted when consid-

ering administration of immunosuppressive drugs in these

patients due to possible renal toxicity. Long-term effects of

immunosuppression therapy in asymptomatic proteinuric

patients with causative mutation have not been established.

The identification of a monogenic cause can even open

new therapeutic possibilities in a limited but potentially

significant number of patients. In patients with mutations in

coenzyme Q2 (COQ2), COQ6, coenzyme Q8B (ADCK4), or

decaprenyl diphosphate synthase subunit 2 (PDSS2), genes

involved in CoQ10 biosynthesis, early initiation of CoQ10

supplementation may be beneficial to reduce proteinuria

and FSGS progression [38–41]. However, the efficacy of

CoQ10 treatment needs to be evaluated in a larger number

of patients with mutations in these genes. In patients with

CUBN mutations, vitamin B12 treatment may improve

megaloblastic anemia which can be unnoticed before

molecular diagnosis.

Finally, in the setting of an FSGS patient undergoing

kidney transplant, the likelihood of posttransplant recur-

rence is very low in patients with gene mutation [42, 43],

possibly as the result of exclusion of primary FSGS, which

is supposedly caused by circulating factor in plasma.

However, this does not hold true for all cases. In patients

with Fin-major/Fin-major mutations in NPHS1 gene, the

posttransplant recurrence rate is as high as 30% [44–46],

mainly due to posttransplant production of anti-nephrin

antibodies.

Modality of genetic analysis by next-generation
sequencing

Sanger sequencing has been the ‘gold standard’ in diag-

nostics as it has high specificity and sensitivity. However,

diagnosis of genetic nephrotic syndrome, which can result

from single or multiple mutations in more than 50 candi-

date genes, entails significant cost and effort using con-

ventional methods.

Recent advances in the simultaneous sequencing of

short DNA fragments have provided a revolutionary new

approach for medical genetics by drastically decreasing the

cost, improving the accuracy, and greatly increasing the

speed of generating sequence data [47]. Major advantages

of this method include higher yield of positive results

arising from parallel and comprehensive analysis of all

known and even unknown genes. Three representative

next-generation sequencing (NGS) approaches for gene

analysis have been applied in clinical settings: (1) targeted

enrichment of a gene set (gene panel); (2) whole-exome

sequencing (WES), and (3) whole-genome sequencing

(WGS), in which the entire genome is sequenced without

employing methods for sequence selection [48, 49]

(Table 3).

While WGS is an unbiased approach for detecting

genetic variations in both exons and introns, the inherent

complexity of decoding the resulting massive data set

(approximately 50-times larger than WES) and higher

associated costs currently limit clinical utility in most

settings. In WES, every exon of every protein-coding gene

is enriched by one of several capture methods, sequenced

by NGS, and then analyzed. As a focused and economical

approach, WES is currently the more popular platform for

discovery of rare-disease-causing genes. In gene panels, a

system of amplification is used to isolate or enrich target

regions. Panels can be optimized for coverage of target

sequences, and consequently have higher read depth and

accuracy compared with typical WES or WGS outputs,

which improves the quality of sequencing. The other

advantage of employing gene panels for clinical use is the

reduced cost compared with WES or WGS. However, gene

panels cannot reveal mutations in new genes not included

within the panel, so panels must be updated regularly.

Genetic analysis of FSGS/SRNS using NGS

Recently, several groups have used NGS to analyze the

prevalence of genetic defects in large nephrotic syndrome

cohorts. Representative reports are listed in Table 4. Some

studies used WES, while others used gene panels analyzing

from 20 to over 50 genes in a large number of individuals

at a much lower cost per sample than traditional Sanger

sequencing [50].

These investigations revealed that a high fraction of

SRNS manifesting in childhood is caused by single-gene

mutations. An earlier study analyzing 36 patients revealed

that 70% of patients with familial cases and 15% of spo-

radic cases had a definitive or probable pathogenic variant

identified [51]. The most comprehensive panel analysis of

27 known SRNS-causing genes in an international cohort

detected a single-gene cause of disease in 29.5% of fami-

lies [52].

However, there are several reasons why it is difficult to

calculate true prevalence rates of gene abnormalities in
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nephrotic syndrome cohorts. First, with the exception of

one recent study by a United Kingdom-based group that

recruited SRNS patients as a national cohort in an unbiased

manner [29], many studies are designed for discovery of

variants rather than unbiased estimation of true effect sizes.

Second, many papers present data on cohorts with over-

lapping patient groups. Often, they include patients in

whom gene analysis for a certain gene has already been

performed with a negative result, or those in whom

mutations were identified by conventional Sanger

sequencing prior to NGS analysis. Third, each research

group used different statistical and functional criteria for

assessing the causality of mutations, resulting in possible

discrepancies between interpretations of each variant.

The most important and defined factor for prevalence of

gene mutation in FSGS/SRNS is the age of patients, with

the fraction of detecting single-gene causation being

inversely correlated to age of manifestation. In the largest

cohort, proportions of gene identification were 69.4, 49.7,

25.3, 17.8, and 10.8% in patients with disease manifesting

during the first 3 months of life, 4–12 months, 1–6, 7–12,

and 13–18 years, respectively [52, 53]. This study also

revealed that causative genes differed significantly by age

of manifestation. The most common causative genes

identified within the first 3 months of life included NPHS1,

NPHS2, WT1 and LAMB2; whereas, NPHS2 was the most

frequent gene mutated in individuals with onset of SRNS

between 1–16 years [52]. In an analysis of adult patients

with FSGS/SRNS, Gast et al. found collagen (COL4A3–5)

mutations to be most frequent, with identification in 38%

of families with familial FSGS and 3% with sporadic FSGS

[54]. Generally, mutations in dominant genes are rarely

observed in early childhood, but more frequent in early

adulthood.

Attention must also be given to ethnic groups within the

cohort, as causative genes differ significantly by race. For

example, in Chinese pediatric SRNS patients, ADCK4 was

the most commonly mutated gene, while only 3.33% of

patients exhibited an NPHS2 mutation [55]. Rarity of

NPHS2 mutations in Japanese pediatric patients with CNS

or FSGS/SRNS has also been reported [56–58].

Complexity of gene variations associated
with FSGS/SRNS

As the success rate for detecting causal variants is far from

complete, attention has also been given to potential roles

for combinations of heterozygous mutations in multiple

genes and complex or non-Mendelian inheritance.

Table 3 Characterization of NGS methods for identification of causative mutations and comparison with Sanger sequencing

NGS Conventional method

WGS WES Targeted panel Sanger sequencing

Target Whole genome Whole exonic regions A set of targeted

genes

Only one segment (-1 kb)

Description Complete data set of an

individual’s genome

Comprehensive assessment of

exome

Succeed only if the

causative gene is

included in the panel

Gold standard test

Gene panel

coverage

[97.5% 90–95% -100% -

Analysis of new

disease genes

? ? - -

CNV calling ?

Calling of all structural

variants possible

?

Calling of moderately large

structural variants possible

? -

Incidental finding ? ? - -

Intronic variants ?

(interpretation often

challenging)

- - -

Cost and time High cost ([39 of WES) and

long analytic period

Considerably cheaper than

WGS

Cheaper than WES Cost- and labor-intensive to

perform multiple genes

Sensitivity and

specificity

Low Low High High

Indication Second line First line First line Essential for confirmation of

mutation

CNV copy number variation
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In agreement with the substantial number of proteins

required for properly functioning glomerular filtration, it is

an attractive hypothesis that protein-altering variants

within multiple known NS genes could lead to disease

pathogenesis or be involved in disease severity. For

example, NGS confronts us with the detection of sec-

ondary, possibly pathogenic variants. In the CNS/SRNS

cohort with causative mutations identified for 38% of

patients, a secondary variant within a different gene was

also identified in 22% of patients [59]; although it is dif-

ficult to evaluate whether this finding is by chance or has

any functional impact. Bullich et al. found two familial

cases with mutations in both an FSGS/SRNS gene and

COL4A3 [60], and this combination of mutations was

suspected to be related to increased disease severity. In

contrast, a study applying rare variant association testing of

21 genes implicated in monogenic nephrotic syndrome for

393 patients in the Nephrotic Syndrome Study Network

(NEPTUNE), led to the discovery that patients did not have

a significantly increased burden of variants in Mendelian

FSGS/SRNS genes compared with a reference cohort, nor

was there any evidence for oligogenicity [61]. However,

thus far, the possibility that rare variants insufficient to

cause Mendelian disease can contribute to FSGS/SRNS as

risk alleles and/or via oligogenicity cannot be dismissed.

Another example of complex inheritance is the p.R229Q

NPHS2 mutation. In contrast to typical early-onset SRNS

by other NPHS2 mutations, the p.R229Q mutation causes

SRNS with a median age at diagnosis of 13 years and

progression to ESRD by 26 years. Notably, homozygous

p.R229Q mutation itself does not cause FSGS, but

p.R229Q in conjunction with a additional disease-causing

NPHS2 mutation within 30 regions is sufficient for late-

onset SRNS [62, 63]. However, the pattern of inheritance is

much more complicated, as the additional mutation alters

heterodimerization and mislocalization of p.R229Q-en-

coded podocin, such that disease-associated 30 mutations

exert a dominant-negative effect on p.R229Q podocin,

while it behaves as a recessive allele when associated with

wild-type podocin. Therefore, the pathogenicity of a

mutation can be dependent on other combined mutations

within the gene or in other related genes.

Inheritance of FSGS characterized by variable
penetrance

Penetrance is defined as the percentage of individuals

having a particular mutation or genotype who exhibit a

phenotype related to the associated disorder or genotype.

Complete penetrance indicates that all individuals who

have the disease-causing mutation will exhibit clinical

symptoms of the disease. With increasing amounts of

extensive genomic data, questions regarding the incom-

plete penetrance of certain alleles for monogenic forms of

FSGS/SRNS have also been unraveled. For instance,

homozygous mutations in phospholipase C epsilon 1

(PLCE1, also known as NPHS3) were initially identified to

cause a nonsyndromic, autosomal recessive form of diffuse

mesangial sclerosis [33]. However, asymptomatic family

members of affected children bearing the same homozy-

gous mutation of PLCE1 have also been reported [64, 65],

indicating mutation of the PLCE1 gene is not sufficient to

cause diffuse mesangial sclerosis and, further, other mod-

ifier genes or environmental factors may play a role in the

variability of renal phenotypes observed in individuals

bearing PLCE1 mutations. Variable disease penetrance in

patients with mutations in INF2 has also been reported.

Within families with INF2 mutations, there are rare indi-

viduals who harbor the variant, but remain clinically

Table 4 Previous publications using NGS for diagnosis of FSGS/SRNS

Authors Year Journal Modality Number of

genes

Number of

patients

Gene detection

rate (%)

References

McCarthy et al. 2013 Clin J Am Soc Nephrol WES 24 36 19 [51]

Ding et al. 2014 J Am Soc Nephrol WES 24 62 29 [78]

Lovric et al. 2014 Clin J Am Soc Nephrol Gene panel 21 48 33 [50]

Giglio et al. 2015 J Am Soc Nephrol Gene panel 19 31 32.3 [31]

Bullich et al. 2015 Eur J Hum Genet Gene panel 26 25 36 [60]

Sadowski et al. 2015 J Am Soc Nephrol Gene panel 27 1783 29.5 [52]

Buscher et al. 2016 Clin J Am Soc Nephrol Gene panel 10 231 57 [32]

Gast et al. 2016 Nephrol Dial Transplant Gene panel 39 81 20 [54]

Weber et al. 2016 Pediatr Nephrol Gene panel 10 37 38 [59]

Bierzynska et al. 2017 Kidney Int WES 53 187 26.2 [29]

Wang et al. 2017 Pediatr Nephrol Gene panel 28 110 28.3 [55]
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unaffected into their sixth and seventh decades of life [66].

Estimating penetrance is often difficult because it is sen-

sitive to the clinical context and initial studies on index

cases are only designed for discovery of variants but not for

unbiased estimation of effect sizes. Thus, the true pene-

trance of variants in sporadically affected patients may be

less than that estimated by initial publications based on key

familial cases.

Genome-wide association studies (GWAS) have become

a powerful approach to searching for common genetic

variants capable of increasing susceptibility to complex

diseases or traits. In contrast to Mendelian diseases, which

have high penetrance and very rare allele frequency, alleles

identified by GWAS demonstrate mild or modest effect

sizes that cannot fully account for disease susceptibility.

Thus far, a broader role for genetic susceptibility of both

sporadic and familial cases of FSGS has been identified.

The most significant genetic contributors to FSGS sus-

ceptibility are two genetic variants in apolipoprotein L1

(APOL1) [2, 67]. The effect is largely recessive, and the

majority of individuals with two risk alleles do not exhibit

renal disease. Despite low penetrance, the demonstration of

kidney disease in transgenic mice expressing renal risk

variants (but not the reference allele) [68] combined with

the strength and consistency of genetic association is

highly supportive of the causal role of APOL1 genetic

variants for FSGS. APOL1-associated FSGS is a major

form of FSGS in sub-Saharan Africa, and approximately

one-third of FSGS in the United States is associated with

APOL1 variants. Notably, APOL1 risk alleles can be pre-

sent in subjects who do not self-identify as having African

ancestry [69]. Recent analysis identified other susceptibil-

ity genes that were validated to cause FSGS using mouse

models [70].

Difficulties for interpretation of NGS data

One of the most important steps of genetic diagnosis is to

determine whether or not the variation definitively caused

the disease. This is achieved by reliably separating genuine

disease-causing or disease-associated genetic variants from

the broader background of variants present in all human

genomes. These variants may be rare and potentially

functional, but may not actually be pathogenic [71]. If a

patient is incorrectly informed that one of his or her vari-

ants is causal when in fact it is benign, the incorrect

diagnosis causes adverse consequences to not only the

patient, but also the patient’s entire family and possible

descendants.

The American College of Medical Genetics and Geno-

mics (ACMG) and Association for Molecular Pathology

(AMP) developed an initial framework for interpretation of

sequence variants as a consensus based on expert opinion,

which has beenwidely used to classify variants as pathogenic

or likely pathogenic [72]. In a case of a patient carrying one

or more mutations identified in another family member as

disease-causing, the judgment may be simple, although not

decisive. It may be hard to decide the pathogenicity of a

mutation that has never before been observed and which has

not been studied biochemically or tested in an animal model.

Information should be gathered about whether the mutation

segregates with disease in a family, and the results of pre-

diction software programs, such as SIFT and Polyphen, that

evaluate likely pathogenicity of amino acid changes [73].

Regardless, these measures are not direct or perfect for

assessing pathogenicity.

Since their development, population-level reference data-

bases based on large human exome or genome sequencing

such as ExAC or gnomAD [74] including Asian, African,

Latino and other non-European ancestries have rapidly

become a standard tool for medical genetics. Unfortunately,

but inevitably, previous large-scale sequencing studies have

falsely annotated common variants as disease-causing. A

recent study revealed that about 10% of disease mutations in

commonly used databases are incorrect, suggesting disease

mutation annotations in such databases should be carefully

scrutinized [75]. More recently, genetic variants common

among African-Americans previously classified as disease-

causing for hypertrophic cardiomyopathy were shown to be

benign [76]. These misannotations stem from ascertainment

bias and methodological shortcomings, such as excluding

minority populations from control cohorts. Therefore, variant

reclassification of previously published mutations, particu-

larly for groups that have historically been understudied such

as individuals of Asian or African ancestry, is urgent.

It should also be noted that, conversely, filtering out

low-frequency variants may reduce sensitivity, as many

recessive disease alleles (such as p.R229Q in NPHS2) are

present at moderate frequencies in heterozygous or even

homozygous states in population databases.

Application of NGS for dissecting primary
and secondary FSGS

As a causative humoral factor for primary FSGS has not been

identified, there are no robust clinical indicators or biomarkers

for primary FSGS. Moreover, prediction of disease progres-

sion or response to medication cannot be defined by plasma
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analysis. Identification of a causative gene mutation in an

FSGS/SRNS patient implies that it results in structural defects

of patient podocytes, and excludes the involvement of

humoral factors. In contrast, it is unclear if the inability to

identify a definitive mutation serves as an indirect measure to

distinguish between primary and secondary FSGS.

Using morphometric analysis of podocyte foot processes

in patients diagnosed with primary FSGS and FSGS sec-

ondary to maladaptive responses, Deegens et al. [77]

observed differences in the degree of foot process efface-

ment. In cases of primary FSGS, effacement was most

severe, while foot processes were relatively preserved in

secondary cases with little overlap between the two groups.

Differences between clinical features, such as degree of

proteinuria or partial steroid responsiveness, of primary

and secondary FSGS have been proposed [3]. Over 90% of

patients with initial steroid sensitivity who underwent

kidney transplant had recurrence after transplantation,

suggesting the primary form of FSGS [78]. However, as

information about degree of foot process effacement, pro-

teinuria, and response to steroid therapy were not included

in the majority of previous studies employing NGS, it is

unknown whether these clinical parameters have predictive

value for mutation detection. Recent findings by a United

Kingdom-based group revealed no mutations in SRNS

patients with initial steroid sensitivity and secondary ster-

oid resistance. Moreover, these patients demonstrated the

highest risk of posttransplant recurrence [29], suggesting

major involvement of an as yet identified circulating factor,

but not genetic variation, in patients with initial steroid

sensitivity. Detailed analysis based on documentation of

clinical features and renal pathology may provide a means

to further stratify FSGS on possible pathogenesis factors.

Conclusion and perspectives

NGS has changed the landscape of FSGS, and nephrolo-

gists now have the ability to enable translation of NGS into

diagnostic tools. Based on potential benefits of mutation

identification include choice of appropriate therapy,

awareness of subclinical extrarenal manifestation, estima-

tion of prognosis (including posttransplant recurrence), and

family issues, gene analysis using NGS will be recom-

mended for the following FSGS/SRNS patients; (1) pedi-

atric and young adults; (2) patients with extrarenal

manifestation; (3) patients with family history of kidney

disease or extrarenal manifestation, and (4) patients

receiving kidney transplant. Future systematic studies

based on stratification of patients by genetic information

are needed to establish the application of NGS technologies

to care for FSGS. Given the heterogenic nature of FSGS,

the spread of NGS-based ‘‘bench to bedside’’ translational

approaches will provide breakthroughs for its diagnosis and

mechanism-based treatment.
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