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Abstract The aldosterone–mineralocorticoid receptor

(MR) system serves as the major regulator of fluid home-

ostasis, and is an important drug target for the treatment of

hypertension, heart failure, and chronic kidney disease.

While the ligand aldosterone plays a central role in facil-

itating MR activity, recent studies have revealed that MR

signaling is modulated through distinct mechanisms at the

levels of the receptor and the downstream targets. Notably,

phosphorylation of the ligand-binding domain in MR reg-

ulates the ability of the receptor to bind to ligand in renal

intercalated cells, providing an additional layer of regula-

tion that allows the cell-selective control of MR signaling.

These mechanisms are involved in the context-dependent

effects of aldosterone in the distal nephron. In this article,

the recent progress in the understanding of mechanisms

regulating the action of aldosterone is discussed, focusing

on the connecting tubules and collecting duct in the kidney.
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Introduction

Steroid hormone aldosterone and its receptor the miner-

alocorticoid receptor (MR) are the central regulators of

fluid homeostasis in the body. Mutations in genes encoding

the constituents of the aldosterone–MR axis can result in

both hypotension and hypertension, clearly illustrating the

predominance of this system in regulating blood pressure

in humans [1].

Aldosterone is synthesized in the zona glomerulosa cells

of the adrenal gland. Once produced, aldosterone enters the

systemic circulation and binds to MR in target tissues,

inducing downstream signaling. While the recent advances

in high-throughput sequencing technology have facilitated

the discovery of molecules mediating aldosterone biosyn-

thesis in the adrenal gland [2–6], accumulating studies have

also provided insights into how the kidney responds to the

elevated plasma aldosterone to produce appropriate

homeostatic responses. I here review recent key progress in

our understanding of the mechanisms modulating the

action of aldosterone in the kidney, especially focusing on

electrolyte transport machinery in the connecting tubules

(CNT) and collecting duct (CD).

Na–Cl transport mechanisms in CNT and CD

In the kidney, more than 99 % of salt filtered in the glo-

meruli is reabsorbed by the tubular cells. Although a major

part of this process occurs at the level of proximal con-

voluted tubules, fine tuning of the total amount of salt

reabsorption occurs in the aldosterone-sensitive distal

nephron (ASDN). Among the cells lining the ASDN, one

of the best characterized targets of aldosterone is the

principal cells in CNT and CD, which express the
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amiloride-sensitive epithelial Na? channel (ENaC) and are

responsible for electrogenic Na? reabsorption. Although

MR can bind to both aldosterone and cortisol, selective

binding of aldosterone to MR in principal cells are ensured

by the expression of 11b-hydroxysteroid dehydrogenase

type 2 (11bHSD2), catalyzing cortisol to inactive corti-

sone. Upon binding of aldosterone, MR undergoes con-

formational change, translocates to the nucleus, and

regulates transcription of target genes including SGK1 and

SCNN1A. SGK1 (Serum and glucocorticoid-induced kinase

1), a Ser/Thr kinase, then phosphorylates ubiquitin ligase

NEDD4-2 (neuronal precursor cell expressed develop-

mentally downregulated 4-2), resulting in decreased asso-

ciation between NEDD4-2 and ENaC [7]. This in turn

decreases ubiquitination and degradation of ENaC,

increasing the number of the channel on the plasma

membrane. ENaC mutations in Liddle’s syndrome affect

the interaction of NEDD4-2 with ENaC, phenocopying the

downstream effects of aldosterone in principal cells [7].

Aldosterone regulates ENaC also via proteolytic cleavage

[8] and epigenetic modification [9].

In the extracellular fluids, the major cation is Na?,

whereas the major anion is Cl-. A large body of evidence

has indicated the importance of Cl- in regulating fluid

volume homeostasis. The dependence of blood pressure on

Cl- has been demonstrated in well-established models of

salt-sensitive hypertension, including DOCA-salt model

[10], Dahl salt-sensitive strain [11], and angiotensin II

infusion model [12]. Consistently, clinical studies have

shown that the anionic component of sodium salt influ-

ences its ability to increase blood pressure in hypertensive

subjects [13, 14]. In these studies, the pressor effect of high

sodium intake is most prominent when Na? is administered

as sodium chloride, but not as sodium bicarbonate nor

sodium phosphate [13, 14].

Among the renal Cl- flux pathways, accumulating data

highlight the role of intercalated cells. In the CNT and CD,

Cl- is reabsorbed either via paracellular route or tran-

scellular route [15]. In the former, Cl- is transported

through tight junctions consisting of several claudins [16].

In the latter, it has been known that the transcellular Cl-

flux occurs via the intercalated cells [17], and Wall et al.

revealed that this process is primarily mediated by

SLC26A4 (pendrin), a Cl-/HCO3
- exchanger selectively

present in b-intercalated cells [18, 19]. They found that Cl-

flux in the cortical CD disappears in mice lacking pendrin,

resulting in hypotension, especially when challenged with a

low Na–Cl diet [19]. Consistent with this finding, Solei-

mani et al. reported that the double knockout of pendrin

and Na–Cl cotransporter (NCC) results in severe volume

depletion [20], demonstrating the compensatory roles of

these Cl- flux mediators. Conversely, overexpression of

pendrin produces salt-dependent hypertension [21].

These observations from the basic studies are also of

clinical relevance. Pendred syndrome is an autosomal

recessive disorder featuring thyroid abnormality and hear-

ing impairment that results from the loss of function

mutations in SLC26A4. Although there seems to be no

apparent symptoms attributable to the kidney disorder at

baseline, these patients are actually extremely sensitive to

diuretics, and show severe chloride depletion in response to

thiazide therapy [22].

Importantly, H?-ATPase is also involved in fluid vol-

ume homeostasis. In intercalated cells, H?-ATPase con-

trols the membrane potential difference and critically

regulates the cell function [23]. B1 subunit of H?-ATPase

is predominantly present in the apical membrane of inter-

calated cells, mediating the acid secretion; mutations in

ATP6V1B1 (encoding B1 H?-ATPase) cause type I (distal)

renal tubular acidosis [24, 25]. The mouse model (At-

p6v1b1-/-) is also created [26], which consistently shows

impaired acid secretion in the kidney. Using this model,

Gueutin et al. recently reported that the Atp6v1b1 deletion

also results in renal loss of Na–Cl, K?, and water [27].

Notably, they reported that the levels of ENaC-a, ENaC-c,

aquaporin 2, and pendrin are reduced in the cortex (but not

in the medulla in the case of ENaC) in Atp6v1b1-/-, which

is abolished by the inhibition of prostaglandin E2 synthesis.

The authors further showed in the isolated microperfused

cortical CD that the inhibition of H?-ATPase by bafilo-

mycin A1 increases prostaglandin E2 levels [27]. Thus,

evidence indicates that H?-ATPase in intercalated cells, as

well as Cl-/HCO3
- exchanger, mediates Na–Cl and water

reabsorption, and intercalated cells and principal cells can

communicate via a paracrine mechanism involving pros-

taglandins. These studies clearly establish that intercalated

cells are key components of the kidney-fluid mechanism.

Thiazide diuretics are widely used to treat hypertension.

The primary target of thiazide is considered to NCC, which is

selectively present in distal convoluted tubules (DCTs).

However, Terada et al. showed that Na–Cl transport sensi-

tive to thiazide also occurs in the cortical CD [28]. The recent

study confirmed this observation, and demonstrated that

Na?-dependent Cl-/HCO3
- exchanger (NDCBE; encoded

by SLC4A8) is involved in this process [29]. In the proposed

model, NDCBE and pendrin are considered to act in tandem

to regulate Na–Cl reabsorption in b-intercalated cells.

Context-dependent action of aldosterone in CNT
and CD: possible role of intercalated cells

It has long been known that aldosterone is produced both in

hypovolemia and hyperkalemia [30]. In hypovolemia, the

activation of the renin–angiotensin system stimulates

aldosterone secretion from adrenal glomerulosa cells via
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AT1 receptor and Ca2? signaling [30]. Hyperkalemia also

increases aldosterone production, in this case by directly

depolarizing glomerulosa cells [31]. In the setting of volume

depletion, aldosterone increases Na–Cl reabsorption without

increasing K? secretion, whereas in the setting of hyper-

kalemia, aldosterone maximizes K? secretion without

increasing Na–Cl reabsorption. Thus, the kidney produces

distinct responses in hyperkalemia and in hypovolemia, even

though plasma aldosterone levels are similarly elevated.

A rational explanation has been that the amount of Na–

Cl delivered to the CNT and CD controls the actions of

aldosterone in these segments. In volume depletion, Na–Cl

reabsorption in more proximal portion of the renal tubules

(most importantly DCTs) reduces the amount of Na?

delivered to the CNT and CD, diminishing the electrogenic

Na? reabsorption via ENaC. Reduced ENaC activity

results in decreased K? secretion [32, 33], because potas-

sium secretion through ROMK (renal outer medullary K?

channel) in principal cells is primarily driven by the elec-

trochemical gradient created by Na? reabsorption [32, 33].

While this model well explains a mechanism of how the

kidney limits K? secretion in the setting of volume

depletion, more ‘‘active’’ mechanisms seem to be necessary

to optimize electrolyte transport in CNT and CD, given that

increased ENaC activity in high aldosterone status would

facilitate K? secretion as well as Cl- reabsorption [15].

As stated above, intercalated cells regulate Cl- flux in

CNT and CD. Despite the importance in blood pressure

homeostasis, however, little has been known about the reg-

ulation of this process. This is in sharp contrast to the well-

characterized Na? reabsorption machinery in principal cells.

Although previous studies demonstrated that MR is present

in intercalated cells [34, 35], they express much lower levels

of 11bHSD2 than principal cells [34, 36]. Nonetheless,

aldosterone seems capable of regulating electrolyte flux

mediators in these cells [37]; functional studies in the 1980s

have revealed that aldosterone stimulates acid secretion in

CNT and CD [38]. In b-intercalated cells, on the other hand,

mineralocorticoid DOCP increases Cl-/HCO3
- exchanger

pendrin at the apical membrane as evaluated by electron

microscopy [39]. Physiological significance of these obser-

vations has been obscure, especially in terms of acid–base

regulation. Interpretation of these data is further complicated

by the finding that pendrin expression is not altered by

DOCA in wild-type mice [40], suggesting the complex

regulation of MR signaling in intercalated cells.

Mechanisms modulating MR function

In addition to circulating ligands, a growing body of evi-

dence suggests that the signaling of nuclear receptors (in-

cluding MR) is modulated by multiple factors, including

receptor expression [41], recruitment of co-regulator

molecules [42, 43], and the interaction with other signaling

pathways [44]. Regarding mechanisms modifying MR

function, we have previously shown that the constitutive

activation of small GTPase Rac1 facilitates MR nuclear

accumulation and signaling, resulting in salt-sensitive

hypertension and chronic kidney disease [45, 46].

Post-translational modification can significantly modify

nuclear receptor activity [47]. Indeed, several studies have

indicated that MR undergoes phosphorylation [48, 49], and

that CDK5 and MAPK may be responsible for the phos-

phorylation [50, 51]. However, the precise roles of phos-

phorylation in regulating MR function have remained

largely unknown. Using phospho-proteomics [52], we have

comprehensively analyzed phosphorylation sites in full-

length human MR and identified 16 phosphorylation sites

(of which 14 sites are not previously described) [53]. After

the functional screening, we noted with interest the phos-

phorylation at S843, the only site present in the ligand-

binding domain. MR and GR evolved from a common MR-

like ancestor, and serine at this position is also conserved in

the ancestral corticoid receptor [54]. Previous studies have

indicated that the difference in ligand selectivity between

GR and MR is driven by two amino acid substitutions in

the ligand-binding domain, and interestingly, one of the

two substitutions is serine changing to proline at position

corresponding to S843 in human MR.

Binding assay using phosphomimetic MRS843E revealed

that phosphorylation severely impairs aldosterone binding,

increasing the dissociation constant by more than 100 fold.

This indicates that the phosphorylated form of MR is vir-

tually incapable of binding ligands at a physiological

concentration. Consistently, MRS843E is not activated by

either aldosterone or cortisol as assessed by luciferase

assay, and is exclusively cytoplasmic in the presence of a

sufficient amount of ligand. Together, these data demon-

strate an additional mechanism regulating nuclear receptor

signaling, whereby phosphorylation reversibly regulates

the ability of the receptor to bind to ligand.

Cell-selective regulation of MR by phosphorylation
in intercalated cells

To explore the in vivo significance of MR phosphorylated

at S843 (MRS843-P), we surveyed tissues using phospho-

specific antibodies. By Western blotting, MRS843-P is

identified in the kidney lysates but not in other tissues

known to express MR, including brain, heart, colon, and

vasculature. Surprisingly, immunofluorescent studies

revealed that MRS843-P is present in renal intercalated

cells, but not in principal cells nor DCT cells. Importantly,

MRS843-P is seen only in the cytoplasm, consistent with the
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in vitro analysis in COS-7 cells expressing phosphomimic

MR mutant.

Because aldosterone secretion is stimulated by the

activation of the renin-angiotensin system and separately

by hyperkalemia, we evaluated whether volume depletion

(by Na–Cl restriction and separately by genetic ablation of

NCC) and potassium loading change MRS843-P. We found

that hypovolemia via angiotensin II signaling reduces

MRS843-P levels, whereas potassium loading increases

MRS843-P. The decrease in MRS843-P in hypovolemic

condition is associated with the increase in nuclear accu-

mulation of MR in intercalated cells. Notably, consistent

with previous studies showing that aldosterone can regulate

H?-ATPase and pendrin, the upregulation of apical B1 H?-

ATPase and pendrin associated with MRS843-P dephos-

phorylation in volume depletion is blocked by MR antag-

onist spironolactone. Furthermore, constitutive

dephosphorylation of MRS843-P increases the sensitivity of

MR to aldosterone in intercalated cells [53]. Thus, volume

depletion induces MR dephosphorylation, which, in turn,

allows aldosterone signaling in intercalated cells, resulting

in the activation of Na–Cl transport mechanisms involving

these cells.

In the CNT and CD, Na? is reabsorbed via principal

cells, whereas Cl- is transported through paracellular or

transcellular pathways. Evidence indicates that H?-ATPase

is also involved in these processes [27]. Using a mathe-

matical model, Weinstein AM demonstrated physiological

conditions that maximize Na–Cl reabsorption in the corti-

cal CD, while minimally affecting the handling of other

ions (K?, H?, and HCO3
-) [15, 55]. According to the

model, activation of ion flux pathways in principal cells

increases both Cl- reabsorption and K? secretion, along

with the electrogenic Na? reabsorption. However, when

transporters in principal cells and those in intercalated cells

(both a- and b-intercalated cells) are activated simultane-

ously, maximal Na–Cl reabsorption occurs without signif-

icantly affecting K? or H? flux in the CD [15, 55]. Our

data provide insight into the mechanism of how the

activities of diverse electrolyte flux pathways in the distinct

cells are orchestrated to achieve appropriate homeostatic

responses.

Other mechanisms regulating balance
between Na–Cl reabsorption and K1 secretion
in the distal nephron

Accumulating data demonstrate that the alternation in fluid

volume or in electrolyte composition can modify the

function of renal tubular cells independently of aldos-

terone. Changes in potassium balance can directly modify

the function of thiazide-sensitive Na?–Cl- cotransporter

(NCC) in the DCT, which plays a key role in determining

the balance between NaCl reabsorption and K? secretion

[56, 57]. Recent studies demonstrated that these effects on

NCC are mediated by the change in serum K? levels,

which in turn modulates DCT cell membrane voltage [58].

Hyperpolarization of the cells enhances Cl- exit and finally

alters the function of WNK kinase, a Cl--sensing kinase

[58–60].

Angiotensin II signaling also regulates electrolyte flux

mediators in the distal nephron via mechanisms that do not

require aldosterone [61]. For example, angiotensin II

increases NCC phosphorylation in adrenalectomized rats

[62]. In mice lacking aldosterone synthase, angiotensin II

receptor blocker reduces ENaC at the plasma membrane,

indicating the compensatory and aldosterone-independent

action of angiotensin II signaling [63]. Recently, a novel

effector mechanism mediating AT1 receptor signaling in

the distal nephron has been discovered [64]. Kelch-like 3

(KLHL3) and cullin 3 (CUL3) are two partners in a cullin-

RING (really interesting new gene) E3 ubiquitin ligase

complex (CRL). In 2012, mutations in KLHL3 and CUL3

are demonstrated to cause pseudohypoaldosteronism type

II (PHAII, aka familial hypertensive hyperkalemia or

Gordon syndrome), accounting for *79 % of kindreds [65,

66]. Subsequently, it was demonstrated that KLHL3-CUL3

CRL bind and degradate WNK kinase [67–70] and claudin-

8, a regulator of paracellular Cl- flux [71]. Because

mutations in KLHL3 and CUL3 alter the balance between

Na–Cl reabsorption and K? secretion in the kidney,

resulting in hypertension and hyperkalemia, a key

remaining question was how this CRL is regulated in a

physiological context.

S433 in the Kelch domain of KLHL3 is recurrently

mutated in autosomal dominant form of PHAII [65, 66].

Interestingly, we found that this site is actually phospho-

rylated in cells and in vivo, and angiotensin II via protein

kinase C increases the phosphorylation [64], providing the

signal that prevents KLHL3/CUL3-mediated degradation

of WNK kinase. These mechanisms are also involved to

achieve the appropriate balance between Na–Cl reabsorp-

tion and K? secretion in the kidney. It is currently not

known whether aldosterone directly regulates the activity

of KLHL3/CUL3-CRL.

Aldosterone signaling in DCT cells: direct
or indirect effects?

In addition to CNT and CD, MR is highly present in DCT

cells in the distal nephron. While 11bHSD2 is present only

in the terminal portion of the DCT (DCT2) [72], aldos-

terone increases expression and activity of NCC [73, 74].

Ser/Thr kinases oxidative stress response kinase-1 (OSR1)
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and STE20/SPS1-related proline alanine-rich kinase

(SPAK), the upstream regulators of NCC [75], seem to be

involved in this process, because NCC induction in low salt

condition is accompanied by the phosphorylation of OSR1/

SPAK, which is blocked MR antagonist spironolactone

[76]. Given these data, it is generally accepted that aldos-

terone has a direct effect on NCC.

As noted previously, however, emerging evidence

points to the importance of K? as a powerful modulator of

DCT cell function. Potassium loading decreases NCC

phosphorylation in DCT even when plasma aldosterone is

elevated [56, 57]. Consistently, in a model of pseudohy-

poaldosteronism type I (PHAI) that lacks ENaCa in the

kidney, hyperkalemia determines the activity of NCC

regardless of salt wasting and high plasma aldosterone

[77]. Conversely, potassium restriction increases NCC

activity under aldosterone suppression [78]. Thus, an

important unanswered question is how much the effect of

aldosterone on NCC is mediated by the change in serum

K? levels. A very recent research from Dr. Ellison’s group

addressed this issue in detail [79]; using kidney-specific

MR knockout mice, the authors delineated the direct and

indirect effects of aldosterone in principal cells and in DCT

cells, respectively. They first found that both ENaC and

NCC were decreased in their salt-wasting model, which is

in line with the current understanding. Notably, however,

downregulation of the latter was reversed by restricting

dietary potassium. Conversely, potassium supplementation

completely prevented the upregulation of NCC (but not

ENaC) in aldosterone-infused animals. These data led

authors to conclude that in a state of aldosterone excess, the

mineralocorticoid stimulates ENaC directly, whereas low

K? levels increase NCC secondarily, causing salt retention

and hypertension [79]. These data indicate that a major part

of aldosterone effects on NCC is mediated by the changes

in serum K? levels. Given that the serum K? alters the

function of WNK kinase [58], it is worth testing whether

WNK-OSR1/SPAK-NCC cascade is regulated directly by

aldosterone or indirectly through changes in potassium

status. It is also interesting to delineate how intercalated

cell function and paracellular Cl- flux mediators are reg-

ulated in this context.

Summary and future directions

In this review, I have summarized recent advances in the

understanding of the mechanisms modifying the action of

aldosterone in the distal nephron. In the CNT and CD,

elevated circulating aldosterone increases MR signaling in

principal cells, whereas MR in intercalated cells is regu-

lated at an additional level, through the phosphorylation of

the ligand-binding domain in MR. The phosphorylation

levels are counter-regulated by angiotensin II and high

potassium, controlling Cl- flux mediators in intercalated

cells. In the DCT, serum potassium regulates NCC activity

independently of aldosterone and MR. Angiotensin II also

directly regulates Na–Cl transport mechanisms partly via

phosphorylating KLHL3. These mechanisms act in concert

to regulate the balance between Na–Cl reabsorption and

K? secretion in the distal nephron. In the DCT, changes in

serum potassium levels modulate NCC activity by altering

the resting membrane potential. Whether the same or

similar mechanisms mediate the effect of potassium on

MRS843-P levels remain to be determined. Future studies

are also required to determine the pathways and kinases

responsible for MR phosphorylation.

Aldosterone and MR are the important therapeutic tar-

gets in hypertension [80–82] and chronic heart failure [83].

Accumulating data also indicate that MR antagonists can

be protective against the chronic kidney disease [84–86].

Detailed characterization of the molecular mechanisms

regulating MR function in the kidney and in other tissues

may reveal new targets that might be exploited for thera-

peutic purposes.
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