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Introduction

The urine-concentrating mechanism performs one of the
most essential functions in water and electrolyte metabo-
lism during childhood development. In the fetal period,
the urine-diluting ability is mature. However, the urine-
concentrating mechanism undergoes profound develop-
ment during the neonatal period. During the weaning
period, the ability to concentrate urine reaches maturity,
and it is at this time that solid food, which is a more efficient
source of energy, is introduced.

In the neonate, because the ratio of body surface area to
mass is greater than in the adult, insensible water loss,
which can occur during various pathological conditions,
such as fever, vomiting, and diarrhea, is more likely to
cause dehydration. Therefore, a disruption of the urine-
concentrating mechanism in the neonatal period leads to an
immediate threat to life.

In this article, the basic ontogeny and phylogeny of the
urine-concentrating mechanism, the roles of the various
transport systems in the renal tubules, and their importance
during the development of the urine-concentrating mecha-
nism will be discussed.

Outline of the urine-concentrating mechanism

Relationship to renal tubular function

The urine filtered in the glomeruli is transferred to the
proximal tubule and then reaches the renal medulla. From
the proximal tubule the urine flows through each segment
of Henle’s loop, the distal convoluted tubule, the connect-
ing tubule, and the collecting ducts. Each nephron segment
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has specific transport properties for water and electrolytes,
and the complex structure of the tubules and blood
vessels contributes to the construction of an effective urine-
concentrating mechanism in the kidney. Figure 1 shows a
model of the water and electrolyte metabolism that occurs
in each nephron segment of the kidney.

Reabsorption of urine in the proximal tubule is almost
completely an isosmotic process, in which the osmolar gra-
dient between the urine and blood is minimal. The data of
Barfuss and Schafer1 and the analyses of AQP1-knockout
mice2,3 show that water reabsorption in the proximal tubule
is supported by a slight transepithelial osmotic gradient
generated by NaCl and bicarbonate reabsorption in this
segment. Large changes in urine osmolarity occur in the
renal medulla. It is well known that the transport properties
of the descending limbs of Henle’s loop in the short-looped
nephron differ from those of the upper and lower portions
of the long-looped nephron,4–8 even though all of these seg-
ments possess high amounts of AQP1 in both the luminal
and basolateral membranes. In the medulla, the whole thin
descending limb plays an important role in reabsorbing
water from the urine, thereby contributing directly to urine
concentration. On the other hand, the ascending limbs of
Henle’s loop are called “diluting segments”, because they
have special membrane transport properties that reabsorb
NaCl without reabsorbing any water.9,10 The thin ascending
limb, which is located only in the long-looped nephron, has
very high permeability to NaCl that is enhanced by
paracellular passive Na permeability and transcellular pas-
sive Cl permeability via the Cl−1 channel CLC-Ka, located in
both the luminal and the basolateral cell membranes.11–13 In
the thick ascending limbs, NaCl is actively reabsorbed via
the luminal Na+-K+-2Cl− cotransporter NKCC2. Both the

distal convoluted and the connecting tubules are imper-
meable to water, whether or not vasopressin is present.

The transport properties of the collecting duct system
are controlled to a great extent by vasopressin and aldoster-
one. In the absence of vasopressin, the water permeability
of the collecting duct system is almost negligible, while
under antidiuretic conditions, enormous AQP2 water chan-
nels are inserted into the luminal cell membranes of the
principal cells. It is also known that the urea permeability of
the papillary collecting duct is also increased under antidi-
uretic conditions.14 The mechanisms of the changes in water
and urea permeability in response to vasopressin differ in
various respects.15

The urine-concentrating mechanism and its regulation

Vasopressin, the most powerful regulator of the urine-
concentrating mechanism, is a peptide hormone, composed
of nine amino acids, that is produced in the brain’s supraoptic
nuclei, as well as in the hypothalamo-paraventricular nuclei.
Neurophysin2 cleaves vasopressin from propressophysin,
which is a large precursor of oxytocin found in the secretory
granules; vasopressin is then transported to the posterior
lobe of the pituitary gland.16 The secretion of vasopressin is
regulated by the osmoreceptor in the frontolateral region of
the third ventricle, where there is no blood-brain barrier.
There is no definite consensus regarding the nature of the
brain’s osmoreceptor. Thus far, AQP417 and the vanilloid
receptor-related osmoacceptor channel VR-OAC18 have
been considered to be candidate osmoreceptors.

Thus far, three receptors, V1aR, V1bR, and V2R, have
been reported as being vasopressin receptors, with V2R
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Fig. 1. Mechanisms of NaCl,
urea, and water transport in
each medullary nephron
segment. The major mecha-
nisms of NaCl, urea, and water
transport are depicted. Long-
looped and short-looped
nephrons are shown on the
left side and right side of the
collecting duct, respectively.
Major transporters involved in
the urine-concentrating
mechanism are indicated as
follows: 1, Na+-K+-2Cl-

contransporter NKCC2; 2, K+

channel ROMK; 3, Cl- channel
CLC-Kb; 4, water channel
AQP1; 5, urea transporter UT-
A2; 6, Cl- channel CLC-Ka; 7,
epithelial Na+ channel ENaC;
8, vasopressin-sensitive water
channel AQP2; 9, water channel
AQP3; 10, water channel
AQP4; 11, vasopressin-sensitive
urea transporter UT-A1; V2R,
vasopressin V2 receptor
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being the most important receptor that is intimately related
to the urine-concentrating mechanism. Stimulation of V2R
by vasopressin facilitates the production of cyclic AMP via
the activation of Gs protein and adenylate cyclase, which
are coupled with the receptor. The subsequent activation of
protein kinase A leads to the facilitation of the urine-
concentrating mechanism. Thus far, stimulation of V2R in
animals has been shown to facilitate NaCl reabsorption in
the thin19 and thick ascending limbs, accelerate NaCl reab-
sorption in the cortical collecting duct,20 facilitate water per-
meability in the cortical and medullary collecting ducts, and
stimulate urea reabsorption in the inner medullary collect-
ing duct.21–23 In humans, it has been demonstrated that
vasopressin facilitates water24 and urea14 transport in the
collecting duct system. Stimulation of NaCl reabsorption
in the thick ascending limb of Henle’s loop does not take
place in humans.25 There is no information regarding
vasopressin’s role in NaCl transport in the thin ascending
limb in humans.

Ontogeny and development of the urine-concentrating
mechanism

Ontogeny of the urine-concentrating mechanism

In the fetal period, three independent kidneys emerge
sequentially. In order of emergence, they are called the
pronephros, mesonephros, and metanephros. The meta-
nephros forms the final mature kidney, and develops by the
fourth fetal month. In the metanephros, contact between
the mesenchymal blastema and the ureteric bud initiates
development. These structures form the glomeruli and the
tubules by facilitating each other’s differentiation. The
PAX-2 gene, which is expressed in the ureteric bud, regu-
lates the branching and elongation of the renal tubules by
interacting with the secretion of glial cell line-derived neu-
rotrophic factor (GDNF) from the mesenchymal cells.26 Re-
cent studies have found that various molecular regulatory
processes, including the transforming growth factor (TGF)-
β superfamily, control renal development.26–29

Production of urine starts by the fifth fetal month. By the
end of fetal life, urine is produced at a rate of 50ml/h. Fetal
urine is slightly hypotonic compared to body fluid, while it
becomes hypertonic soon after birth.30,31

The water permeability of the collecting duct system is
already sensitive to vasopressin at birth.32 In rats, the entire
Henle’s loop is known to be impermeable to water,33 while
in human fetuses, the descending thin limb already pos-
sesses water permeability.34

Recently, nephrologists have become interested in the
fact that the neonatal thin ascending limb of Henle’s loop
has a thick morphological appearance.35,36 Our recent
studies of rat kidneys found that in neonatal rats, the entire
ascending limb of Henle’s loop, including the thin and thick
ascending limbs, could actively reabsorb NaCl, which, in the
mature kidney, occurs only in the thick ascending limb.33

We have also demonstrated that, in the inner medulla of

neonatal rat kidneys, the distribution of NKCC237 in the
luminal membrane and CLC-K138,39 is reversed compared
with that in the mature animal.33 On day 0, the rat inner
medulla expresses antigenicity to NKCC2, which is ex-
pressed only in the outer medulla of the mature kidneys. As
well, CLC-K1, which is present in the mature inner medulla,
is not expressed in the neonatal inner medulla. It has also
been demonstrated that the vasopressin-sensitive urea
transport system is not functional in the neonatal rat inner
medullary collecting duct.33 In the inner medullary collect-
ing duct, permeability to urea and sensitivity to vasopressin
have been shown to emerge during the weaning period.

These characteristics of neonatal renal medullary organi-
zation lead us to the conclusion that the urine-concentrating
mechanism dependent on urea is not mature in neonates.
This observation implies that the neonatal urine-
concentrating mechanism utilizes only NaCl for generating
the medullary osmotic gradients essential for water reab-
sorption from the urine in the neonatal renal tubules. Thus,
during infancy, rapid developmental changes occur in the
urine-concentrating mechanism to convert it from simple
NaCl accumulation to the accumulation of both NaCl and
urea. This understanding of the development of the urine-
concentrating mechanism may help us explain the low
urine-concentrating ability during the neonatal period.

Phylogeny of the urine-concentrating mechanism

It is interesting to understand how the kidneys evolved to
handle both water and electrolytes. In 1974, Valtin depicted
the progression of evolutionary changes of the renal
glomerular and tubular structures. The fundamental differ-
ences in the handling of water and electrolytes in various
animals are summarized in Fig. 2. Fish migrated from sea
water to fresh water and subsequently developed large
glomeruli and the diluting tubule segment, which at first
secreted massive amounts of body fluid and recovered es-
sential components such as electrolytes and metabolites.
The glomeruli and renal tubules formed a functional combi-
nation that allowed large amounts of water to be eliminated
in the urine. In contrast to the threat of overhydration that
freshwater fish faced, reptiles evolving from amphibians
encountered the threat of dehydration due to the dry condi-
tions found on land. Reptiles, which did not develop a
urine-concentrating mechanism, may have adapted by
minimizing glomerular filtration, thereby minimizing the
amount of urine that would be produced. The history of
vertebrate evolution does not suggest that birds and
mammals evolved from the same species,40 but the urine-
concentrating mechanism may have evolved during the pro-
cess of vertebrates adapting and achieving homeothermy.
The fact that only birds and mammals can concentrate
urine, have Henle’s loop, and are homeothermic suggests an
interesting evolutionary process.

In mammals, a urine-concentrating mechanism that is
more dependent on urea than NaCl is the major tool to deal
with a dry environment. In birds, both the regulation of
glomerular filtration and a urine-concentrating mechanism



168

that is dependent on NaCl play important roles in water and
electrolyte homeostasis. From the phylogenetic perspective,
the urine-concentrating mechanism is unique in that it is
only present in the metanephros, which emerges only in
birds and mammals. Urine-concentrating ability develops
after birth and matures during the weaning period. In
this sense, maternal feeding appears to supplement the
neonate’s immature urine-concentrating ability.

Changes in the renal medullary tubular transport proper-
ties of mature quails,41–44 neonatal rats, and mature rats are
compared in Fig. 3.33 The figure indicates that the functional
organization of the medullary tubules in neonatal rats is
very similar to that in mature quails, in that the entire
Henle’s loop is impermeable to water, and the entire as-
cending limb actively reabsorbs NaCl. The comparison also
clearly shows that, during the process of maturation in rats,
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Fig. 2. Differences in water and
electrolyte handling among
selected animals. The major
evolutionary differences of
nephron structures in selected
animals are depicted. In
freshwater fish, the size of the
glomerulus is maximized to
increase the glomerular
filtration volume for producing
massive amounts of hypotonic
urine. The emergence of the
diluting nephron segment is
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the size of the glomerulus is
minimized to preserve water
in the dry land atmosphere.
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transport properties of renal
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the inner medullary tubular function is replaced by trans-
port properties that use urea as the urine-concentrating
mechanism.

Given that birds and mammals are thought to have
independent origins with respect to vertebrate evolution,
the comparison suggests that the mammalian urine-
concentrating mechanism evolved in two steps: first, simple
NaCl accumulation, and then complex NaCl and urea
accumulation.

It is quite a challenge to trace the evolution of nitrogen
metabolism and compare it with the evolution of the urine-
concentrating mechanism (see Fig. 4 for schema). While the
most primitive prochordates utilized ammonia to excrete
nitrogen waste, fish began to use urea, which is a relatively
simple nitrogen metabolite. Some fish, including sharks, use
urea for adjusting their buoyancy in sea water. There is no
proof that urea is used to maintain water balance in fish.
Amphibians also utilize urea to excrete nitrogen waste.
Interestingly, the urea permeability of the toad bladder is
sensitive to vasotocin, which indicates that urea is already
used to maintain water balance in this species. However,
reptiles, the first pure land vertebrates, do not use urea for
nitrogen excretion because the urea molecule is highly
water-soluble. Reptiles must tolerate a very dry external
environment, which may have favored the evolution of
hard-shell eggs in the fetal period; this, in turn, may have
hindered the production of urea in the eggs. Thus, these
animals began to produce uric acid, which does not dissolve
easily and which forms uric acid crystals for excretion from
body fluids. As a matter of fact, the eggs of reptiles possess
an allantoic sac, in which, during the fetal period, nitrogen
waste is accumulated as uric acid. Uric acid is also used for
excreting nitrogen waste. However, in mammals, urea
appears to have been revived as the major vehicle for
excreting nitrogen waste. Thus, taking into account phylo-

genetic consistency, it seems that the mammalian urine-
concentrating mechanism may be related to a switch from
excreting nitrogen waste using uric acid to using urea. Be-
cause mammals have a very high metabolic rate, they need
to have a very efficient urine-concentrating mechanism,
which may have favored the reversion from uric acid to urea
as the mechanism of nitrogen waste excretion.

In the field of biology, phylogenetic hypotheses are not
always relevant, and one must be very cautious in interpret-
ing evolutionary evidence. However, consideration of phy-
logenetic aspects can be a very useful tool for developing a
research strategy. Thus, thoughtful consideration of the
phylogenetic aspects of the vertebrate urine-concentrating
mechanism could further our research in this area.

Functional molecules of the urine-concentrating
mechanism

Disruption of the urine-concentrating mechanism causes
diabetes insipidus. Nephrogenic diabetes insipidus is a seri-
ous disorder that may sometimes cause death due to dehy-
dration, as a result of the excretion of massive amounts of
hypotonic urine. As this disease results from the kidneys’
insensitivity to vasopressin, treatment is more complicated
than that for central diabetes insipidus.

To provide a better understanding of the nature of the
urine-concentrating mechanism, the major functional mol-
ecules are summarized below.

Vasopressin receptors

The V2 receptor of vasopressin is one of the most important
molecules in the urine-concentrating mechanism. Approxi-
mately 95% of nephrogenic diabetes insipidus is caused by

mammals

sea fishes

uric acidureaammonia

reptiles

birds

freshwater fishes

mesonephros metanephros

water land

homeotherm

prochordates

amphibians

Fig. 4. The evolution of
vertebrates and their nitrogen
metabolism. The evolutionary
changes in nitrogen metabolites
in vertebrates are depicted. It is
noteworthy that mammals, which
evolved from reptiles, started to
utilize urea as the major nitrogen
waste metabolite as do fish and
amphibians, although when
reptiles evolved from amphibians
they did not use urea
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abnormal function of the V2 receptor. Although congenital
nephrogenic diabetes insipidus is a rare disorder, more than
130 different mutations of the V2 receptor gene have been
reported to cause nephrogenic diabetes insipidus. There are
at least three vasopressin receptors: V1aR,V1bR, and V2R.
All of them are membrane proteins that have seven trans-
membrane domains and activate G proteins to stimulate
signal transduction within cells.

Water channels

Since CHIP2845 was first identified as a water channel in
red blood cells and was cloned as aquaporin-1(AQP1),
more than ten aquaporins, e.g., AqpZ, GlpF, and AQP0 to
AQP10, have been discovered. Peter Agre46 was awarded
the Nobel Prize in 2003 for discovering AQP1. The
aquaporins are classified into two groups. The aquaporins,
including AqpZ,47 AQP0,48–50 AQP1,45 AQP2,51 AQP4,17

AQP5,52 AQP6,53 and AQP8,54 are only permeable to water,
while the aquaglyceroporins, such as GlpF,55,56 AQP3,57–59

AQP7,60 AQP9,61 and AQP10,62 are permeable to both
water and glycerol. AQP11 was discovered in 2004;63 this
aquaporin is called superaquaporin due to its poor conser-
vation of asparagine-proline-alanine (NPA) boxes, which
are important for the formation of the water-permeating
pore. The disruption of AQP11 has been reported to cause
urological disorders, including polycystic kidney disease.63,64

Recently, AQP12 has been identified in pancreatic acinar
cells.65 More aquaporins may be discovered in the future.

The various aquaporins are located in the luminal,
basolateral, and intracellular membrane components of the
renal tubules. Among them, the most important aquaporin
related to diabetes insipidus is aquaporin-2 (AQP2), which
is located in the principal cells of the collecting duct system.

The aquaporin-2 gene is located on chromosome 12
(12q13) and is composed of four exons and three introns.66

AQP2 is a membrane protein that has six transmembrane
domains, and is composed of 271 amino acids.

The disruption of AQP1 causes nephrogenic diabetes
insipidus in a knockout mouse model. In humans, AQP1
deficiency may impair urine-concentrating ability.

The disruption of AQP3 and AQP4 also causes nephro-
genic diabetes insipidus in knockout animal models, though
the disease caused by the disruption of AQP3 and AQP4 is
unknown in humans. Many aquaporins play critical roles in
maintaining the urine-concentrating mechanism.

Urea transporters

In mammals, urea transporters are thought to play a critical
role in the concentrating of urine. Due to its hydrophilic
properties, urea is fundamentally impermeable to the lipid
bilayers of the cell membranes. Urea is dissolved in water at
more than 5moles/l, and may require specific membrane
transporters for transmembranous transport in the kidney.

The first urea transporter to be identified was the
vasopressin-sensitive urea transporter UT2, from cDNA
libraries of the rabbit renal medulla.67 Urea transporters can

be classified into two groups, UT-A and UT-B. UT-B is
known as the Kidd blood antigen.68,69 The human Slc14a1
gene, which encodes UT-B, is on chromosome 18 (18q12).
The A1c14a2 gene, which encodes UT-A, is located at a
locus close to the Slc14a1 gene.70

In the kidneys, UT-B1 is located in the descending vasa
recta (DVR). Of the UT-A urea transporters, UT-A1 and
UT-A3 are located in the inner medullary collecting duct,
and UT-A2 is located in the thin descending limb. In addi-
tion to these urea transporters, UT-A1b, UT-A2b, UT-
A3b, UT-A4, and UT-A5 have been identified, but their
localization and function in the kidneys is not clear. In 2004,
Fenton et al.71 disrupted UT-A1 and UT-A3 by deleting the
3kb gene, including exon 10, in a mouse model, and found
that nephrogenic diabetes insipidus was caused. Interest-
ingly, the accumulation of NaCl in the renal medulla was
not impaired, while the accumulation of urea was strongly
reduced.

To date, there have been no reports that a molecular
disturbance of urea transporters causes nephrogenic diabe-
tes insipidus in humans.

Chloride channels

Chloride channels are known to be related to nephrogenic
diabetes insipidus. In 1990, a chloride channel named CLC-
0 was first identified in Torpedo marmorata, and using a
homology cloning strategy, this was followed by the discov-
ery of more types.38,72–80 In the kidneys, almost all of the
chloride channels, except for CLC-1, have been identified.

CLC-K1 (CLC-Ka in human) is the first chloride channel
that was identified by a polymerase chain reaction (PCR)
cloning strategy. CLC-K1 is located in the thin ascending
limb of Henle’s loop. Both CLCNKA, the gene for CLC-
Ka, and CLCNKB, the gene for CLC-Kb, are located on
chromosome 1 (1p36),81 and have high homology. CLC-Ka
is present in both the luminal and basolateral membranes of
the thin ascending limb of Henle’s loop. CLC-K1 facilitates
the dilution of hyperosmolar urine by passively reabsorbing
chloride without the transepithelial movement of water. In
1999, disruption of CLC-K1 in mice was shown to cause
nephrogenic diabetes insipidus, indicating that the inner
medullary component of Henle’s loop plays an important
role in the urine-concentrating mechanism. Thus far, there
have been no reports of an isolated abnormality of human
CLC-Ka causing nephrogenic diabetes insipidus. However,
a mutation of barttin,82 the β subunit of both CLC-Ka and
Kb, has been reported to cause Bartter syndrome with sen-
sory deafness.82,83

Clinical features and treatment of nephrogenic
diabetes insipidus

Clinical features

Nephrogenic diabetes inspidus is classified into two types –
congenital and acquired, as shown in Table 1. The acquired
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causes include drugs, such as lithium and amphotericin;
hypercalcemia; hypokalemia; and obstruction of the urinary
tract.84

Congenital nephrogenic diabetes insipidus is diagnosed
mainly in childhood; polydipsia and polyuria are the major
clinical manifestations. In the neonatal and infantile peri-
ods, these symptoms can easily lead to severe dehydration,
with fever and convulsions. Congenital nephrogenic diabe-
tes insipidus can be caused by an X-linked recessive, an
autosomal recessive, or an autosomal dominant trait.84

X-linked nephrogenic diabetes insipidus is caused by the
disruption of the vasopressin V2 receptor V2R on the X
chromosome (Xp28).85,86 Thus far, more than 155 types of
mutations in 239 families have been found; the locations
of the mutation are distributed over the gene’s entire
territory.87 The types of mutations include nonsense, frame-
shift, and missense. The most important pathological
mechanism of these mutations is disturbance of the mutated
protein’s translocation. The receptor peptides formed in the
endoplasmic reticulum (ER) are transferred to the Golgi
complex. Mutation of the receptor gene leads to a distur-
bance of protein folding and, thereby, hinders the transfer
of the protein. The mutated protein that is left behind in the
ER is catalyzed in the endosome. This pathological mecha-
nism is the one most commonly seen in X-linked nephro-
genic diabetes insipidus. In addition to a disturbance of
protein translocation, abnormalities of vasopressin
receptor-binding, G-protein activation, and cAMP produc-
tion have also been reported.

Autosomal recessive and dominant forms of nephro-
genic diabetes insipidus are mainly caused by an AQP2
mutation. Thus far, more than 26 different mutations in 25
families have been reported. The AQP2 gene was identified
in rats51 in 1993 and in humans66 in 1994. In 1993, mutation
of the AQP2 gene was shown to cause autosomal recessive
nephrogenic diabetes insipidus.51 Later reports elucidated
that mutation of the AQP2 gene could also cause autosomal
dominant nephrogenic diabetes insipidus. It is now known
that almost 25% of the AQP2 mutations manifest as autoso-
mal dominant nephrogenic diabetes insipidus. It is of great
interest that an abnormality of the AQP2 gene mainly leads
to a disturbance in the translocation of the AQP2 peptide,
which is similar to that observed in cases of V2R muta-
tions.87,88 It is also of interest that most of the mutations that
occur with the autosomal dominant mutation of the AQP2
gene are located near the C-terminal of AQP2.

Thus far, all identified molecular abnormalities that re-
sult in nephrogenic diabetes insipidus have involved only
V2R, AQP2, and AQP1. Further research may identify the
involvement of other transporters, including the remaining
AQPs, urea transporters, and chloride channels, in the de-
velopment of nephrogenic diabetes insipidus.

Treatment of nephrogenic diabetes insipidus

Acquired nephrogenic diabetes insipidus is treated by
elimination of the cause. Should the removal of the cause
not affect the clinical course of the disease, symptomatic
treatment is given. In cases caused by urinary tract obstruc-
tion, surgery is the treatment of first choice.

The fundamental approach to the treatment of nephro-
genic diabetes insipidus has not been well established. In
general, restriction of salt intake and treatment with thiaz-
ide diuretics are used to reduce the massive urine volume.
Thiazide diuretics are thought to reduce urine volume by
decreasing NaCl reabsorption in the distal convoluted
tubule via the specific inhibition of the luminal NaCl
cotransporter NCCT; this causes Na depletion, reduces
glomerular filtration, and facilitates reabsorption of water
in the proximal tubule. Thiazides can be expected to reduce
urine volume by 30% to 50%. Pattaragarn and Alon89 re-
ported a 1-month-old boy treated successfully with a combi-
nation of hydrochlorothiazide and a cyclooxygenase-2
inhibitor, rofecoxib, without any drug-related side effects,
such as gastrointestinal bleeding. Such combination thera-
pies need to be studied so as to further improve the progno-
sis of the disease.

Currently, treatments using molecular chaperones for
the mutated proteins are attracting attention. Deen et al.,90

in 1994, and Mulders et al.,91 in 1997, reported cases of
autosomal recessive nephrogenic diabetes insipidus related
to the abnormal intracellular trafficking of AQP2 mol-
ecules. They concluded that the AQP2 molecules had the
normal properties of AQP2, but that their trafficking to
the luminal cell membrane was disturbed.91,92 In 1998,
Tamarappoo and Verkman93 showed that abnormal AQP2
function, due to a disturbance in the transfer of the mol-
ecules from the intracellular ER, was corrected by adding
chemical chaperones, such as glycerol, trimethylamine
oxide (TMAO), and dimethylsulfoxide (DMSO), in expres-
sion experiments in Chinese hamster ovary (CHO)-K1
cells, in Madin-Darby canine kidney (MDCK) cells, and in
a water permeability test in oocytes. In 2003, Tan et al.94

reported that, in cases of V2R mutations, such as L292P, in
which the process after glycosylation was disturbed, the
membrane-permeable V2 receptor antagonist SR121463B
strengthened the stereoscopic stability of the V2 receptor,
thereby facilitating the transfer of the receptor molecules to
emerge on the cell surface. In the near future, further stud-
ies will focus on the clinical applicability of these findings.
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Table 1. Causes of nephrogenic diabetes insipidus

Congenital
X-linked AVPR2
Autosomal recessive AQP2
Autosomal dominant AQP2
Other

Acquired
Drug-induced (lithium, demeclocycline, amphotericin,

methoxyflurane)
Hypercalcemia, hypokalemia
Obstruction of urinary tract
Other
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