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Abstract
Background A new era in surgical robotics has centered on alternative access to anatomic targets and next generation designs 
include flexible, single-port systems which follow circuitous rather than straight pathways. Such systems maintain a small 
footprint and could be utilized for specialized operations based on direct organ target natural orifice transluminal endoscopic 
surgery (NOTES), of which transanal total mesorectal excision (taTME) is an important derivative.
Methods During two sessions, four direct target NOTES operations were conducted on a cadaveric model using a flexible 
robotic system to demonstrate proof-of-concept of the application of a next generation robotic system to specific types of 
NOTES operations, all of which required removal of a direct target organ through natural orifice access. These four opera-
tions were (a) robotic taTME, (b) robotic transvaginal hysterectomy in conjunction with (c) robotic transvaginal salpingo-
oophorectomy, and in an ex vivo model, (d) trans-cecal appendectomy.
Results Feasibility was demonstrated in all cases using the  Flex® Robotic System with Colorectal Drive. During taTME, 
the platform excursion was 17 cm along a non-linear path; operative time was 57 min for the transanal portion of the dis-
section. Robotic transvaginal hysterectomy was successfully completed in 78 min with transvaginal extraction of the uterus, 
although laparoscopic assistance was required. Robotic transvaginal unilateral salpingo-oophorectomy with transvaginal 
extraction of the ovary and fallopian tube was performed without laparoscopic assistance in 13.5 min. In an ex vivo model, 
a robotic trans-cecal appendectomy was also successfully performed for the purpose of demonstrating proof-of-concept 
only; this was completed in 24 min.
Conclusions A flexible robotic system has the potential to access anatomy along circuitous paths, making it a suitable plat-
form for direct target NOTES. The conceptual operations posed could be considered suitable for next generation robotics 
once the technology is optimized, and after further preclinical validation.

Keywords Minimally Invasive Surgical Procedures · Surgical Procedures, Robotic · Natural Orifice Endoscopic Surgery · 
Hysterectomy, Vaginal · TaTME · Appendectomy

Introduction

Natural orifice transluminal surgery (NOTES) was a disrup-
tive technology developed predominantly in the mid 2000s 
[1–3]. It provided gastrointestinal operators with access 
options which spared the abdominal wall from trauma and 
the inherent risk posed by such routes of access. Hence, the 
impetus behind the development of NOTES was to eliminate 
(or at least minimize) the incidence of surgical site infec-
tions, post-surgical pain, incisional hernias, and scarring. 
This ultimately redefined the boundaries of surgery. While 
NOTES was initially developed by endoscopists [1], it soon 
became a collaborative consortium which included industry 
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engineers, minimally invasive surgeons, and advanced inter-
ventional gastrointerologists [4, 5].

Importantly, NOTES represents a heterogeneous spec-
trum of operations, with distinct differences in access points, 
instrumentation, and type of surgery [6]. One critical distinc-
tion for NOTES is whether the operation is an approach for 
direct versus indirect target organs (Table 1). In direct tar-
get organ NOTES, the viscerotomy created is a component 
of the planned operation and not created in the so-called 
‘bystander’ organ. Bystander organ viscerotomy provides 
body cavity access, but is used only as a means of obtaining 
this access to distant (or indirect) target organs. A classic 
example of indirect target NOTES would be transgastric 
appendectomy or transgastric cholecystectomy [7, 8]; both 
of which ultimately utilize a per-oral route of specimen 
retrieval.

A limitation of NOTES, which has principally been 
endoscope based, is the inability to realize proper working 
angles of effector instruments. This is because conventional 
scope-transmitted instruments do not triangulate and instead 
the operator must perform an arduous procedure working 
along the narrow scope axis. Conventional scope design is 
also limited because, although quite flexible, its position and 
somewhat pliable shape passively conforms to gravity and 
the lumen through which it is being navigated.

In 2017, a flexible robotic system  (Flex® Robotic Sys-
tems, Medrobotics, Raynham, MA, USA) became approved 
for colorectal use by the Food and Drug Administration in 
the United States. This system represents a chimera of tech-
niques, uniquely blending aspects of laparoscopy, robotics, 
and colonoscopy. Already used in Europe by otolaryngolo-
gists for per-oral surgery [9], it has been shown to be a fea-
sible platform for local excision of rectal and rectosigmoid 
lesions and for transanal total mesorectal excision (taTME) 
[10]. Currently, this is being further evaluated in an ongoing 
multi-center trial in the United States. Compared to conven-
tional scopes, the Flex® Robotic System allows for triangu-
lation and purposeful steering of the instrument head along 
non-linear, circuitous lumens and anatomical pathways to 
access targets of interest—making it a particularly appropri-
ate platform for direct organ target NOTES.

Here, this next generation flexible robotic system is used 
to perform four separate direct target organ NOTES oper-
ations. In cadaveric and ex vivo models, the approach to 
 Flex® Robotic taTME is demonstrated. In addition, the first 
robotic transvaginal hysterectomy, including transvaginal 
robotic salpingo-oophorectomy, and first robotic natural 
orifice trans-cecal appendectomy are described. These four 
NOTES-derived operations are each detailed in the supple-
mental video content.

Study design

A cadaveric model was used to assess the feasibility of 
four direct target NOTES operations. Certain portions of 
the experimentation were performed ex vivo, and will be 
described separately (in particular, NOTES robotic trans-
cecal appendectomy). Experimentation was conducted in 
two, full day sessions by a single surgeon at a specialized 
laboratory equipped with laparoscopic equipment, a valve-
less trocar and insufflation system, and a flexible robotic 
system. The  Flex® Robotic System and specifically the 
 Flex® Colorectal (CR) Drive were utilized for all experi-
mental constructs. Some operations were performed with 
laparoscopic assistance. The valveless trocar system (8 mm 
trocar and  AirSEAL® Insufflation Device, ConMed, Inc., 
Utica, NY, USA) was adapted to the flexible robotic plat-
form. The objective was to demonstrate feasibility, and in 
most cases, simply proof-of-concept. Thus, the experimen-
tation described below represents off-label use of the  Flex® 
Robotic System, except when the application of taTME is 
illustrated.

Robotic transanal total mesorectal excision 
(taTME)

A fresh female cadaver was used to perform robotic taTME 
utilizing the methods and techniques described previously 
[10]. After application of a distal purse-string, the  Flex® 
Robotic System was docked transanally and the  Flex® CR 

Table 1  Direct versus indirect target organ NOTES

POEM peroral endoscopic myotomy, PEG peroral endoscopic gastrostomy, taTME transanal total mesorectal excision, VAMIS vaginal access 
minimally invasive surgery, NOTES natural orifice transluminal endoscopic surgery

Direct target NOTES Indirect target NOTES

The anatomical target organ is juxtaposed to the viscerotomy The anatomical target organ is at a distance from the viscerotomy
Viscerotomy is part of planned operation Viscerotomy of ‘bystander’ organ is necessary
Accepted technique Technique controversial, especially with viscerotomy in alimentary tract
Was initially described with rigid instruments (with some exceptions) Was initially described with flexible instruments
Examples: taTME, VAMIS, trans-cecal appendectomy, POEM, PEG Examples: transgastric appendectomy, transvaginal cholecystectomy
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Drive module connected. Using the flexible robotic con-
trol console, and upon insufflation of  CO2 using a valve-
less 8 mm trocar (AirSEAL, ConMed, Inc.) the drive head 
was navigated to the target anatomy—in this case, the rectal 
wall—just distal to the purse-string which had been applied 
under direct vision with a hand-held anorectal retractor.

Dissection proceeded in hemispheric operative fields, 
and the rectotomy was created to enter the TME plane. 
In this example, the posterior hemispheric dissection was 
established first, extending from the 3 O’clock to 9 O’clock 
position of the rectum with the cadaveric torso positioned 
dorsally. Using this system, it was preferred to work as much 
as possible in one section before repositioning the robot for 
the next. Thus, as the potential space of the extraperitoneal 
pelvis became actualized, surgery was focused in specific 
zones or hemispheres, since dissecting circumferentially 
required multiple changes of the field of view, which in turn 
would have required manipulation of the Flex® Robot cam-
era head that can be time intensive. This is because camera 
head and conjoined operator effector arm movement are 
computer controlled and thus are not subject to the otherwise 
rapid free-play and manipulation of hand-held, conventional 
cameras and scopes. This allows for precise surgery with the 
advantage of higher reach along non-linear pathways during 
taTME (Fig. 1).

The trade-off changes the methodology of taTME dis-
section, as working in specific zones should be continued 
until completion. This was the technical approach utilized 
in the taTME performed, which was successfully completed 
in 57 min, from flexible robotic cart docking to peritoneal 
entry.

Because the rectotomy created is part of the planned oper-
ation, taTME (robotic or otherwise) is an example of direct 
organ target NOTES, even though the standard technique 

is performed using hybrid NOTES with laparoscopic assis-
tance in most, but not all cases to date [11–18].

Robotic transvaginal hysterectomy 
and salpingo‑oophorectomy

Transvaginal hysterectomy with or without salpingo-oopho-
rectomy is one of the original natural orifice operations [19]. 
The technique of using a transanal minimally invasive sur-
gery (TAMIS) [20] platform transvaginally for the purpose 
of hysterectomy has been described previously in a cadaveric 
model [21, 22], and subsequently demonstrated feasible in 
a clinical setting [23–25]. This new approach to hysterec-
tomy has been termed vaginal access minimally invasive 
surgery (VAMIS). In this experiment, robotic VAMIS was 
performed using a flexible robotic platform for the first time. 
In the initial portion of this cadaveric experiment, the robotic 
VAMIS hysterectomy is performed, and then, though the 
same natural orifice (i.e, the vaginal vault), a robotic VAMIS 
right salpingo-oophorectomy was also performed.

The first step was to dock the  Flex® Robotic System uti-
lizing the  Flex® Colorectal (CR) Drive utilizing its reusable 
access channel (positioned transvaginally). An adequate seal 
was obtained using the native device. An 8-mm valveless 
trocar system was used and the vaginal vault was insufflated 
with the pressure set to 15 mmHg. The robotic system camera 
and working head was then navigated to the target anatomy, 
the cervix. The cervical os was grasped with a 3.5-mm flex-
ible, hand-operated effector arm, and used to manipulate the 
position of the cervix, similar to a joystick. This allows for 
adequate and precise tension-counter tension tissue apposi-
tion during surgical dissection. Using monopolar electrocau-
tery configured to a spatulated 3.5-mm flexible effector arm, 
a circumferential colpotomy was performed thereby entering 
the peritoneal cavity. This was conducted by addressing the 
dorsal aspect (posterior dissection) and by subsequently enter-
ing the peritoneal cavity along the pouch of Douglas, before 
progressing to the ventral (anterior) colpotomy and dissection. 
Upon entering the peritoneal cavity anteriorly and posteriorly, 
the uterovaginal fascia, cardinal ligament, parametrium, and 
broad ligament were divided in stepwise fashion with cau-
tery (Fig. 2). Transection of the isthmus of the fallopian tubes 
(juxtaposed to the uterine fundus) was also performed via 
the transvaginal robotic route. While the robotic transvagi-
nal hysterectomy was completely performed from the vaginal 
approach, there was laparoscopic assistance. Specifically, via 
two laparoscopic 5- mm ports, a 5-mm camera lens and a sin-
gle 5-mm grasper were used to (a) clear small bowel from 
the pelvis, and (b) retract the uterine fundus to assist with 
NOTES robotic transvaginal exposure and dissection. Upon 
completion, the uterus was removed, intact, and delivered 
transvaginally. Operative time from docking the robot until 

Fig. 1  Flexible robotic taTME is demonstrated. With the surgeon at 
the bedside, the robotic head is navigated precisely to the anatomi-
cal target and the flexible, hand-held retractor and hook monopolar 
cautery are used to perform the dissection, here proceeding posteri-
orly along the embryonic fusion plane between the endopelvic fascia 
and the mesorectal envelope. The ‘angel hair’ of this avascular plane 
can be seen clearly as it is pneumatically dissected
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specimen retrieval was 78 min. The vaginal cuff can typically 
be closed with conventional methods under direct vision trans-
vaginally as this is easily accessible; this was not performed 
in this robotic VAMIS cadaveric model as the objective was 
only to demonstrate feasibility. After robotic VAMIS hyster-
ectomy, the robotic cart was re-docked transvaginally and the 
right adnexa, including the right fallopian tube and ovary, were 
excised as well through robotic transvaginal access (Fig. 3). 
Robotic transvaginal salpingo-oophorectomy was completed 
in 13.5 min. The procedures are demonstrated in in the sup-
plemental video content.

Robotic trans‑cecal appendectomy

The current flexible robotic platform, through transanal 
access, has a limited reach of 17 cm. However, in this 
hypothetical construct and by experiment design, this limi-
tation was effectively bypassed so that trans-cecal appen-
dectomy could be attempted.

To test feasibility and to circumvent the limited reach 
of the current flexible robotic platform, this experiment 
was constructed in an ex vivo cadaveric model and was 
designed to demonstrate proof-of-concept only. Here, a 
cadaveric laparotomy and a right hemicolectomy were 
performed. Next, the entire ascending colon, termi-
nal ileum, and appendix were explanted from the fresh, 
female cadaver. The lumen of the ileocolic bowel was then 
prepped and irrigated with saline solution. Next, the  Flex® 
Robotic System utilizing the  Flex® Colorectal (CR) Drive 
was adapted and secured to the ascending colon ex vivo. 
A valveless 8-mm trocar was utilized to provide pneumo-
colon and the terminal ileum was sutured closed to pre-
vent leakage of  CO2 gas. The access channel of the  Flex® 
Colorectal (CR) Drive was secured to the ascending colon 
with zip-ties and insufflation was adequately maintained 
in this model, thus placing the robotic platform within a 
17-cm range from the cecum. Next, the flexible robotic 
camera was navigated to the target: the appendiceal orifice. 
This was easily identified. Next, the orifice was gasped 
and monopolar electorcautery was used to circumscribe 
the target anatomy. A full-thickness division of the cecal 
wall around the orifice was performed, thereby completely 
dismounting the appendix. Despite the cecotomy, pneu-
mocolon remained stable and no billowing was observed. 
Next, the meso-appendix was isolated and divided using 
the robotic platform (Fig. 4). After complete division, the 
appendix was then delivered into the lumen of the colon. 
Conceptually, this could have been removed transanally, 
similar to how large colonic polyps are retrieved. The 
defect itself could have been closed using the robotic plat-
form with suture or clips as described previously [10]. 
Operative time was 24 min.

Discussion

Robotic platforms in surgery are rapidly evolving to meet 
the demands of a new era [10, 26]. Remodeled by the 
potential to access the abdominal and pelvic cavity via 
natural orifice modes, next generation-reduced footprint 
medical robots will provide surgeons with access options 
not previously imagined. An important rethink in robotic 
design has been the evolution to include flexible arm 

Fig. 2  Flexible robotic VAMIS hysterectomy is performed by dock-
ing the system transvaginally, using the CR Drive. Here the flexible 
3.5-mm grasper and cautery are used to perform dissection along the 
left broad ligament of the uterus. The operation required laparoscopic 
assistance, principally for uterine retraction

Fig. 3  The right adnexa, including ovary and fallopian tube were dis-
sected using the flexible robotic system which had been docked trans-
vaginally. The adnexa was successfully dissected and the specimen 
retrieved vaginally after completion of the VAMIS hysterectomy
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systems which achieve operative access through a single 
port rather than conventional, multi-trocar, transabdominal 
routes that are the mainstay of current medical robotics, 
and which had essentially been designed to imitate lapa-
roscopic instrumentation and access techniques.

Thus, the addition of flexible elbows to robotic or hand-
operated effector arms, with controlled supination and pro-
nation, together with single-port configuration, represent 
important steps forward in instrument design. By providing 
triangulation, a distinct limitation of existing two-channel 
colonoscopes used by today’s interventional endoscopists, 
surgeon dexterity and operative field control are significantly 
improved. Together, these innovations pave a pathway suit-
able for NOTES.

Here, the potential advantages and prospective applica-
tions of flexible robotic NOTES are demonstrated in four 
vastly different applications which conserve a fundamen-
tal surgical principle that obviates the need for bystander 
organ viscerotomy. Perhaps the most provocative of the four 
examples of robotic direct target NOTES described is the 
concept of trans-cecal appendectomy as an alternative to 
other NOTES approaches previously reported [7, 8, 27]. In 
a simple ex vivo model, it was demonstrated that, if robotic 
system limitations of reach and function were overcome, it 
would be possible to excise the appendix, deliver it into the 
colon, and ultimately retrieve it transanally.

Valid concerns for direct target organ NOTES (robotic 
assisted or otherwise) along the alimentary tract include 
fecal spillage and the potential for bacterial seeding and 
sepsis which is a non-zero risk, as demonstrated from 

clinical data on taTME [28]. However, extrapolating from 
data on the safety of peritoneal entry with full-thickness 
excision of lesions using transanal endoscopic microsur-
gery (TEM) [29, 30] and laparoscopic or robotic (pur-
poseful) enterotomy used to perform colonic intracorpor-
eal anastomosis [31, 32], adverse outcome from spillage 
are infrequent as long as there is adequate control of the 
operative field, with adequate bowel preparation. Thus, 
trans-cecal appendectomy via targeting the appendiceal 
orifice may not impose new risks, assuming the closure 
is durable.

Clearly, should such a technique come to fruition, it 
should be considered only for carefully selected patients. 
For example, it could be an alternative for patients with 
poor performance status for whom general anesthetic risks 
are prohibitive, or for patients whose abdominal wall poses 
particular access risk (such as extensive burns, eschar, or 
contractures). Robotic NOTES trans-cecal appendectomy 
could also be a technique suitable for those harboring benign 
appendiceal neoplasia (versus acute appendicitis).

Importantly, this allows one to consider transposing 
the concept of trans-cecal appendectomy to other targets 
within, or juxtaposed to, the alimentary tract. For example, 
in the colon the concept could be applied to the excision of 
pre-malignant neoplasia, and even proximal T1 cancers in 
patients who are too infirm to undergo radical resection, or 
who decline to have standard of care treatment for various 
reasons. Indeed, this exact concept has already been used 
by interventional gastroenterologists performing full-thick-
ness endoluminal excisions of colonic neoplasia, whereby 
unique over-the-scope suturing devices such as OverStitch™ 
(Apollo Endosurgery, Inc.) and specialized endoscopically 
deployed clips,  (OTSC® System, Ovesco Endoscopy AG) 
are used to reapproximate bowel wall defects after excision. 
With the advent of this scope technology, interventional gas-
troenterologists have gradually advanced from endoscopic 
mucosal resection (EMR), to endoscopic submucosal dissec-
tion (ESD), and now to full-thickness resections using what 
are often termed full-thickness resection devices (FTRD) 
[33–36]. In the United States, this is restricted to a few, 
highly specialized centers with technical expertise in this 
field [37, 38].

As flexible robotic systems undergo a refinement in sys-
tem design that allow for controlled flexibility and more 
proximal reach, it is conceivable that local excision of neo-
plasia may be more frequently performed by surgeons (rather 
than non-surgeons) for lesions beyond the confines of the 
rectum proper. In essence, this could shift the endoscopic-
based practice of ESD and FTR from the field of gastroen-
terology to surgery as newer robotic technology will sup-
plant existing, more rudimentary endoscopes which had in 
principle only been designed to view the lumen and biopsy 
retrievable polyps.

Fig. 4  In an ex  vivo conceptual model, the  Flex® Robotic System 
utilizing the  Flex® Colorectal (CR) Drive has been adapted to func-
tion in the ascending colon and cecum. A seal was created between 
the divided right colon and the access channel of the CR Drive, and 
the lumen was insufflated with  CO2 gas. The system was then used 
to target the appendiceal orifice, creating a circumferential colotomy 
around it, effectively dismounting the appendix from the cecum. 
Division of the mesentery (shown) using the flexible system allows 
for appendectomy and endoluminal specimen capture
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Successfully demonstrated herein was direct target 
robotic VAMIS hysterectomy, which, to the best of our 
knowledge, represents the first report of its kind. Prior to 
this, non-robotic VAMIS for hysterectomy, was described 
and presented in 2014, and reported at the 43rd Annual 
Global Congress on Minimally Invasive Gynecologic Sur-
gery in Vancouver, British Columbia [21]. Preclinical, 
cadaveric work was subsequently published [22]. While 
the flexible robotic system was demonstrated to be feasi-
ble for VAMIS hysterectomy, there were important limita-
tions of the technique which may prevent translation into 
a clinical context. This was found to be related to two 
limitations of the current system design. First, robotic 
VAMIS hysterectomy required laparoscopic assistance. 
Although minimal, it should be recognized that with 
only two working arms using the flexible robotic system, 
retraction can be limited and thus control of the surgical 
field can pose a challenge to the surgeon, for example, 
manipulation of the uterine fundus required traction pro-
vided by a 5-mm laparoscopic grasper. Second, success-
ful management of arterial vessels with cautery alone 
is unlikely and the addition of a flexible robotic vessel 
sealer or clip applier represents an important requirement 
before safely transitioning to clinical trials. Otherwise, 
from a conceptual standpoint, transvaginal, direct target 
robotic NOTES hysterectomy allows for excellent expo-
sure and precision. Improved reach and the ability to 
direct the robotic head in curvilinear paths contributed 
to the ability to address the adnexa, allowing for success-
ful transvaginal salpingo-oophorectomy.

Further assessment of the flexible robotic platform for 
taTME was also successfully demonstrated. In the near 
future, colorectal surgeons will have multiple platform 
options for taTME, including TAMIS [39], TEM/transa-
nal endoscopic operation(TEO) [40, 41], da Vinci Multi-
Arm (Si and Xi) [42–45], da Vinci SP [46], and the  Flex® 
Robotic System [10]. Furthermore, there will most likely 
be a multitude of newer options on the immediate hori-
zon [47]. Each of the current (robotic and non-robotic) 
platforms applied to taTME and transanal surgery have 
differentiating characteristics, and each has unique advan-
tages and disadvantages, as delineated in Table 2.

The original goal of robotics has shifted dramatically 
through the first two decades of the millennium. Medical 
robots were initially designed for telepresence surgery 
[48, 49], but then became a platform purported to rival 
laparoscopy [50, 51]. More recently, medical robotics 
have evolved into a platform which allows surgeons to 
access anatomical targets in a method not otherwise pos-
sible, thereby unlocking new pathways to reach anatomi-
cal targets [10].
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Conclusions

A flexible robotic system has the potential to access anat-
omy along circuitous paths, making it a suitable platform 
for direct target NOTES. With future innovation and techno-
logical advancement, the conceptual operations posed herein 
could be applied clinically, providing select patients with 
treatment options not previously imagined.
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