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Abstract

Background A new era in surgical robotics has centered on alternative access to anatomic targets and next generation designs
include flexible, single-port systems which follow circuitous rather than straight pathways. Such systems maintain a small
footprint and could be utilized for specialized operations based on direct organ target natural orifice transluminal endoscopic
surgery (NOTES), of which transanal total mesorectal excision (taTME) is an important derivative.

Methods During two sessions, four direct target NOTES operations were conducted on a cadaveric model using a flexible
robotic system to demonstrate proof-of-concept of the application of a next generation robotic system to specific types of
NOTES operations, all of which required removal of a direct target organ through natural orifice access. These four opera-
tions were (a) robotic taTME, (b) robotic transvaginal hysterectomy in conjunction with (c) robotic transvaginal salpingo-
oophorectomy, and in an ex vivo model, (d) trans-cecal appendectomy.

Results Feasibility was demonstrated in all cases using the Flex® Robotic System with Colorectal Drive. During taTME,
the platform excursion was 17 cm along a non-linear path; operative time was 57 min for the transanal portion of the dis-
section. Robotic transvaginal hysterectomy was successfully completed in 78 min with transvaginal extraction of the uterus,
although laparoscopic assistance was required. Robotic transvaginal unilateral salpingo-oophorectomy with transvaginal
extraction of the ovary and fallopian tube was performed without laparoscopic assistance in 13.5 min. In an ex vivo model,
a robotic trans-cecal appendectomy was also successfully performed for the purpose of demonstrating proof-of-concept
only; this was completed in 24 min.

Conclusions A flexible robotic system has the potential to access anatomy along circuitous paths, making it a suitable plat-
form for direct target NOTES. The conceptual operations posed could be considered suitable for next generation robotics
once the technology is optimized, and after further preclinical validation.

Keywords Minimally Invasive Surgical Procedures - Surgical Procedures, Robotic - Natural Orifice Endoscopic Surgery -
Hysterectomy, Vaginal - TaTME - Appendectomy

Introduction

Natural orifice transluminal surgery (NOTES) was a disrup-
tive technology developed predominantly in the mid 2000s
[1-3]. It provided gastrointestinal operators with access
options which spared the abdominal wall from trauma and
Electronic supplementary material The online version of this the inherent risk posed by such routes of access. Hence, the
article (https://doi.org/10.1007/510151-018-1788-2) contains impetus behind the development of NOTES was to eliminate
supplementary material, which is available to authorized users. .. .. . ..

(or at least minimize) the incidence of surgical site infec-
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engineers, minimally invasive surgeons, and advanced inter-
ventional gastrointerologists [4, 5].

Importantly, NOTES represents a heterogeneous spec-
trum of operations, with distinct differences in access points,
instrumentation, and type of surgery [6]. One critical distinc-
tion for NOTES is whether the operation is an approach for
direct versus indirect target organs (Table 1). In direct tar-
get organ NOTES, the viscerotomy created is a component
of the planned operation and not created in the so-called
‘bystander’ organ. Bystander organ viscerotomy provides
body cavity access, but is used only as a means of obtaining
this access to distant (or indirect) target organs. A classic
example of indirect target NOTES would be transgastric
appendectomy or transgastric cholecystectomy [7, 8]; both
of which ultimately utilize a per-oral route of specimen
retrieval.

A limitation of NOTES, which has principally been
endoscope based, is the inability to realize proper working
angles of effector instruments. This is because conventional
scope-transmitted instruments do not triangulate and instead
the operator must perform an arduous procedure working
along the narrow scope axis. Conventional scope design is
also limited because, although quite flexible, its position and
somewhat pliable shape passively conforms to gravity and
the lumen through which it is being navigated.

In 2017, a flexible robotic system (Flex® Robotic Sys-
tems, Medrobotics, Raynham, MA, USA) became approved
for colorectal use by the Food and Drug Administration in
the United States. This system represents a chimera of tech-
niques, uniquely blending aspects of laparoscopy, robotics,
and colonoscopy. Already used in Europe by otolaryngolo-
gists for per-oral surgery [9], it has been shown to be a fea-
sible platform for local excision of rectal and rectosigmoid
lesions and for transanal total mesorectal excision (taTME)
[10]. Currently, this is being further evaluated in an ongoing
multi-center trial in the United States. Compared to conven-
tional scopes, the Flex® Robotic System allows for triangu-
lation and purposeful steering of the instrument head along
non-linear, circuitous lumens and anatomical pathways to
access targets of interest—making it a particularly appropri-
ate platform for direct organ target NOTES.

Table 1 Direct versus indirect target organ NOTES

Here, this next generation flexible robotic system is used
to perform four separate direct target organ NOTES oper-
ations. In cadaveric and ex vivo models, the approach to
Flex® Robotic taTME is demonstrated. In addition, the first
robotic transvaginal hysterectomy, including transvaginal
robotic salpingo-oophorectomy, and first robotic natural
orifice trans-cecal appendectomy are described. These four
NOTES-derived operations are each detailed in the supple-
mental video content.

Study design

A cadaveric model was used to assess the feasibility of
four direct target NOTES operations. Certain portions of
the experimentation were performed ex vivo, and will be
described separately (in particular, NOTES robotic trans-
cecal appendectomy). Experimentation was conducted in
two, full day sessions by a single surgeon at a specialized
laboratory equipped with laparoscopic equipment, a valve-
less trocar and insufflation system, and a flexible robotic
system. The Flex® Robotic System and specifically the
Flex® Colorectal (CR) Drive were utilized for all experi-
mental constructs. Some operations were performed with
laparoscopic assistance. The valveless trocar system (8 mm
trocar and AirSEAL® Insufflation Device, ConMed, Inc.,
Utica, NY, USA) was adapted to the flexible robotic plat-
form. The objective was to demonstrate feasibility, and in
most cases, simply proof-of-concept. Thus, the experimen-
tation described below represents off-label use of the Flex®
Robotic System, except when the application of taTME is
illustrated.

Robotic transanal total mesorectal excision
(taTME)

A fresh female cadaver was used to perform robotic taTME
utilizing the methods and techniques described previously
[10]. After application of a distal purse-string, the Flex®
Robotic System was docked transanally and the Flex® CR

Direct target NOTES

Indirect target NOTES

The anatomical target organ is juxtaposed to the viscerotomy
Viscerotomy is part of planned operation

Accepted technique

Was initially described with rigid instruments (with some exceptions)
Examples: taTME, VAMIS, trans-cecal appendectomy, POEM, PEG

The anatomical target organ is at a distance from the viscerotomy
Viscerotomy of ‘bystander’ organ is necessary

Technique controversial, especially with viscerotomy in alimentary tract
Was initially described with flexible instruments

Examples: transgastric appendectomy, transvaginal cholecystectomy

POEM peroral endoscopic myotomy, PEG peroral endoscopic gastrostomy, taTME transanal total mesorectal excision, VAMIS vaginal access
minimally invasive surgery, NOTES natural orifice transluminal endoscopic surgery
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Drive module connected. Using the flexible robotic con-
trol console, and upon insufflation of CO, using a valve-
less 8 mm trocar (AirSEAL, ConMed, Inc.) the drive head
was navigated to the target anatomy—in this case, the rectal
wall—just distal to the purse-string which had been applied
under direct vision with a hand-held anorectal retractor.

Dissection proceeded in hemispheric operative fields,
and the rectotomy was created to enter the TME plane.
In this example, the posterior hemispheric dissection was
established first, extending from the 3 O’clock to 9 O’clock
position of the rectum with the cadaveric torso positioned
dorsally. Using this system, it was preferred to work as much
as possible in one section before repositioning the robot for
the next. Thus, as the potential space of the extraperitoneal
pelvis became actualized, surgery was focused in specific
zones or hemispheres, since dissecting circumferentially
required multiple changes of the field of view, which in turn
would have required manipulation of the Flex® Robot cam-
era head that can be time intensive. This is because camera
head and conjoined operator effector arm movement are
computer controlled and thus are not subject to the otherwise
rapid free-play and manipulation of hand-held, conventional
cameras and scopes. This allows for precise surgery with the
advantage of higher reach along non-linear pathways during
taTME (Fig. 1).

The trade-off changes the methodology of taTME dis-
section, as working in specific zones should be continued
until completion. This was the technical approach utilized
in the taTME performed, which was successfully completed
in 57 min, from flexible robotic cart docking to peritoneal
entry.

Because the rectotomy created is part of the planned oper-
ation, taTME (robotic or otherwise) is an example of direct
organ target NOTES, even though the standard technique

Fig. 1 Flexible robotic taTME is demonstrated. With the surgeon at
the bedside, the robotic head is navigated precisely to the anatomi-
cal target and the flexible, hand-held retractor and hook monopolar
cautery are used to perform the dissection, here proceeding posteri-
orly along the embryonic fusion plane between the endopelvic fascia
and the mesorectal envelope. The ‘angel hair’ of this avascular plane
can be seen clearly as it is pneumatically dissected

is performed using hybrid NOTES with laparoscopic assis-
tance in most, but not all cases to date [11-18].

Robotic transvaginal hysterectomy
and salpingo-oophorectomy

Transvaginal hysterectomy with or without salpingo-oopho-
rectomy is one of the original natural orifice operations [19].
The technique of using a transanal minimally invasive sur-
gery (TAMIS) [20] platform transvaginally for the purpose
of hysterectomy has been described previously in a cadaveric
model [21, 22], and subsequently demonstrated feasible in
a clinical setting [23—-25]. This new approach to hysterec-
tomy has been termed vaginal access minimally invasive
surgery (VAMIS). In this experiment, robotic VAMIS was
performed using a flexible robotic platform for the first time.
In the initial portion of this cadaveric experiment, the robotic
VAMIS hysterectomy is performed, and then, though the
same natural orifice (i.e, the vaginal vault), a robotic VAMIS
right salpingo-oophorectomy was also performed.

The first step was to dock the Flex® Robotic System uti-
lizing the Flex® Colorectal (CR) Drive utilizing its reusable
access channel (positioned transvaginally). An adequate seal
was obtained using the native device. An 8-mm valveless
trocar system was used and the vaginal vault was insufflated
with the pressure set to 15 mmHg. The robotic system camera
and working head was then navigated to the target anatomy,
the cervix. The cervical os was grasped with a 3.5-mm flex-
ible, hand-operated effector arm, and used to manipulate the
position of the cervix, similar to a joystick. This allows for
adequate and precise tension-counter tension tissue apposi-
tion during surgical dissection. Using monopolar electrocau-
tery configured to a spatulated 3.5-mm flexible effector arm,
a circumferential colpotomy was performed thereby entering
the peritoneal cavity. This was conducted by addressing the
dorsal aspect (posterior dissection) and by subsequently enter-
ing the peritoneal cavity along the pouch of Douglas, before
progressing to the ventral (anterior) colpotomy and dissection.
Upon entering the peritoneal cavity anteriorly and posteriorly,
the uterovaginal fascia, cardinal ligament, parametrium, and
broad ligament were divided in stepwise fashion with cau-
tery (Fig. 2). Transection of the isthmus of the fallopian tubes
(juxtaposed to the uterine fundus) was also performed via
the transvaginal robotic route. While the robotic transvagi-
nal hysterectomy was completely performed from the vaginal
approach, there was laparoscopic assistance. Specifically, via
two laparoscopic 5- mm ports, a 5S-mm camera lens and a sin-
gle 5-mm grasper were used to (a) clear small bowel from
the pelvis, and (b) retract the uterine fundus to assist with
NOTES robotic transvaginal exposure and dissection. Upon
completion, the uterus was removed, intact, and delivered
transvaginally. Operative time from docking the robot until
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Fig.2 Flexible robotic VAMIS hysterectomy is performed by dock-
ing the system transvaginally, using the CR Drive. Here the flexible
3.5-mm grasper and cautery are used to perform dissection along the
left broad ligament of the uterus. The operation required laparoscopic
assistance, principally for uterine retraction

Fig.3 The right adnexa, including ovary and fallopian tube were dis-
sected using the flexible robotic system which had been docked trans-
vaginally. The adnexa was successfully dissected and the specimen
retrieved vaginally after completion of the VAMIS hysterectomy

specimen retrieval was 78 min. The vaginal cuff can typically
be closed with conventional methods under direct vision trans-
vaginally as this is easily accessible; this was not performed
in this robotic VAMIS cadaveric model as the objective was
only to demonstrate feasibility. After robotic VAMIS hyster-
ectomy, the robotic cart was re-docked transvaginally and the
right adnexa, including the right fallopian tube and ovary, were
excised as well through robotic transvaginal access (Fig. 3).
Robotic transvaginal salpingo-oophorectomy was completed
in 13.5 min. The procedures are demonstrated in in the sup-
plemental video content.

@ Springer

Robotic trans-cecal appendectomy

The current flexible robotic platform, through transanal
access, has a limited reach of 17 cm. However, in this
hypothetical construct and by experiment design, this limi-
tation was effectively bypassed so that trans-cecal appen-
dectomy could be attempted.

To test feasibility and to circumvent the limited reach
of the current flexible robotic platform, this experiment
was constructed in an ex vivo cadaveric model and was
designed to demonstrate proof-of-concept only. Here, a
cadaveric laparotomy and a right hemicolectomy were
performed. Next, the entire ascending colon, termi-
nal ileum, and appendix were explanted from the fresh,
female cadaver. The lumen of the ileocolic bowel was then
prepped and irrigated with saline solution. Next, the Flex®
Robotic System utilizing the Flex® Colorectal (CR) Drive
was adapted and secured to the ascending colon ex vivo.
A valveless 8-mm trocar was utilized to provide pneumo-
colon and the terminal ileum was sutured closed to pre-
vent leakage of CO, gas. The access channel of the Flex®
Colorectal (CR) Drive was secured to the ascending colon
with zip-ties and insufflation was adequately maintained
in this model, thus placing the robotic platform within a
17-cm range from the cecum. Next, the flexible robotic
camera was navigated to the target: the appendiceal orifice.
This was easily identified. Next, the orifice was gasped
and monopolar electorcautery was used to circumscribe
the target anatomy. A full-thickness division of the cecal
wall around the orifice was performed, thereby completely
dismounting the appendix. Despite the cecotomy, pneu-
mocolon remained stable and no billowing was observed.
Next, the meso-appendix was isolated and divided using
the robotic platform (Fig. 4). After complete division, the
appendix was then delivered into the lumen of the colon.
Conceptually, this could have been removed transanally,
similar to how large colonic polyps are retrieved. The
defect itself could have been closed using the robotic plat-
form with suture or clips as described previously [10].
Operative time was 24 min.

Discussion

Robotic platforms in surgery are rapidly evolving to meet
the demands of a new era [10, 26]. Remodeled by the
potential to access the abdominal and pelvic cavity via
natural orifice modes, next generation-reduced footprint
medical robots will provide surgeons with access options
not previously imagined. An important rethink in robotic
design has been the evolution to include flexible arm
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Fig.4 In an ex vivo conceptual model, the Flex® Robotic System
utilizing the Flex® Colorectal (CR) Drive has been adapted to func-
tion in the ascending colon and cecum. A seal was created between
the divided right colon and the access channel of the CR Drive, and
the lumen was insufflated with CO, gas. The system was then used
to target the appendiceal orifice, creating a circumferential colotomy
around it, effectively dismounting the appendix from the cecum.
Division of the mesentery (shown) using the flexible system allows
for appendectomy and endoluminal specimen capture

systems which achieve operative access through a single
port rather than conventional, multi-trocar, transabdominal
routes that are the mainstay of current medical robotics,
and which had essentially been designed to imitate lapa-
roscopic instrumentation and access techniques.

Thus, the addition of flexible elbows to robotic or hand-
operated effector arms, with controlled supination and pro-
nation, together with single-port configuration, represent
important steps forward in instrument design. By providing
triangulation, a distinct limitation of existing two-channel
colonoscopes used by today’s interventional endoscopists,
surgeon dexterity and operative field control are significantly
improved. Together, these innovations pave a pathway suit-
able for NOTES.

Here, the potential advantages and prospective applica-
tions of flexible robotic NOTES are demonstrated in four
vastly different applications which conserve a fundamen-
tal surgical principle that obviates the need for bystander
organ viscerotomy. Perhaps the most provocative of the four
examples of robotic direct target NOTES described is the
concept of trans-cecal appendectomy as an alternative to
other NOTES approaches previously reported [7, 8, 27]. In
a simple ex vivo model, it was demonstrated that, if robotic
system limitations of reach and function were overcome, it
would be possible to excise the appendix, deliver it into the
colon, and ultimately retrieve it transanally.

Valid concerns for direct target organ NOTES (robotic
assisted or otherwise) along the alimentary tract include
fecal spillage and the potential for bacterial seeding and
sepsis which is a non-zero risk, as demonstrated from

clinical data on taTME [28]. However, extrapolating from
data on the safety of peritoneal entry with full-thickness
excision of lesions using transanal endoscopic microsur-
gery (TEM) [29, 30] and laparoscopic or robotic (pur-
poseful) enterotomy used to perform colonic intracorpor-
eal anastomosis [31, 32], adverse outcome from spillage
are infrequent as long as there is adequate control of the
operative field, with adequate bowel preparation. Thus,
trans-cecal appendectomy via targeting the appendiceal
orifice may not impose new risks, assuming the closure
is durable.

Clearly, should such a technique come to fruition, it
should be considered only for carefully selected patients.
For example, it could be an alternative for patients with
poor performance status for whom general anesthetic risks
are prohibitive, or for patients whose abdominal wall poses
particular access risk (such as extensive burns, eschar, or
contractures). Robotic NOTES trans-cecal appendectomy
could also be a technique suitable for those harboring benign
appendiceal neoplasia (versus acute appendicitis).

Importantly, this allows one to consider transposing
the concept of trans-cecal appendectomy to other targets
within, or juxtaposed to, the alimentary tract. For example,
in the colon the concept could be applied to the excision of
pre-malignant neoplasia, and even proximal T1 cancers in
patients who are too infirm to undergo radical resection, or
who decline to have standard of care treatment for various
reasons. Indeed, this exact concept has already been used
by interventional gastroenterologists performing full-thick-
ness endoluminal excisions of colonic neoplasia, whereby
unique over-the-scope suturing devices such as OverStitch™
(Apollo Endosurgery, Inc.) and specialized endoscopically
deployed clips, (OTSC® System, Ovesco Endoscopy AG)
are used to reapproximate bowel wall defects after excision.
With the advent of this scope technology, interventional gas-
troenterologists have gradually advanced from endoscopic
mucosal resection (EMR), to endoscopic submucosal dissec-
tion (ESD), and now to full-thickness resections using what
are often termed full-thickness resection devices (FTRD)
[33-36]. In the United States, this is restricted to a few,
highly specialized centers with technical expertise in this
field [37, 38].

As flexible robotic systems undergo a refinement in sys-
tem design that allow for controlled flexibility and more
proximal reach, it is conceivable that local excision of neo-
plasia may be more frequently performed by surgeons (rather
than non-surgeons) for lesions beyond the confines of the
rectum proper. In essence, this could shift the endoscopic-
based practice of ESD and FTR from the field of gastroen-
terology to surgery as newer robotic technology will sup-
plant existing, more rudimentary endoscopes which had in
principle only been designed to view the lumen and biopsy
retrievable polyps.
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Conclusions

A flexible robotic system has the potential to access anat-
omy along circuitous paths, making it a suitable platform
for direct target NOTES. With future innovation and techno-
logical advancement, the conceptual operations posed herein
could be applied clinically, providing select patients with
treatment options not previously imagined.
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