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Abstract
Background  Genome DNA methylation profiling is a promising yet costly method for cancer classification, involving sub-
stantial data. We developed an ensemble learning model to identify cancer types using methylation profiles from a limited 
number of CpG sites.
Methods  Analyzing methylation data from 890 samples across 10 cancer types from the TCGA database, we utilized 
ANOVA and Gain Ratio to select the most significant CpG sites, then employed Gradient Boosting to reduce these to just 
100 sites.
Results  This approach maintained high accuracy across multiple machine learning models, with classification accuracy rates 
between 87.7% and 93.5% for methods including Extreme Gradient Boosting, CatBoost, and Random Forest. This method 
effectively minimizes the number of features needed without losing performance, helping to classify primary organs and 
uncover subgroups within specific cancers like breast and lung.
Conclusions  Using a gradient boosting feature selector shows potential for streamlining methylation-based cancer 
classification.

Keywords  Cancer of unknown primary · Deep learning · Methylation profiles · Primary organ classification · Gradient 
boosting

Introduction

Cancer of unknown primary (CUP) is a poor prognostic 
malignancy with an unknown primary site and histologically 
known metastases[1–4]. Most patients with CUP, except for 
about 20% with favorable prognostic factors, receive empiric 
chemotherapy including platinum-taxane regimens [5, 6], 
and experience a median overall survival (OS) of about 
6–12 months and short survival times [7–9]. Optimizing 

drug therapy based on primary organ estimation could 
potentially improve outcomes for patients with poor prog-
nosis CUP [3]. Molecular profiling of CUP using tools such 
as gene expression, DNA methylation, and somatic mutation 
profiling has been used to predict the tissue origin of CUP. 
However, contrary to expectations, using such methods to 
guide site-specific therapy was found not to improve OS 
compared with empiric chemotherapy [10–13]. It is possible 
that assigning CUP tumors to site-specific therapies based 
on molecularly predicted profiles may not be sufficient to 
improve treatment outcomes. However, it is also possible 
that previous classifiers, particularly those based on tran-
scriptomic profiles, may have failed to accurately ascertain 
the proper tissue of origin.

Methylation is a regulatory mechanism of gene expression 
in which a methyl group (CH3) is bound to a base of DNA. 
Methylation suppresses gene expression and is involved in 
many biological processes, including cell differentiation and 
cancer development. Methylation usually occurs in the CpG 
islands, a region of DNA in which cytosine (C) and guanine 
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(G) are adjacent to each other. The literature suggests that 
DNA methylation patterns exhibit organ-specific patterns 
[14]. Recently, Liu et al. constructed a machine-learning 
algorithm based on methylation profiles to identify tissue 
origin with promising results [15]. Hoadley et al. proposed 
a method to track the origin of 12 cancer types based on 
methylation and copy number variation [16]. To the best 
of our knowledge, no systematic comparison has yet been 
made between them. However, it is estimated that 80% of 
the human genome is methylated—thus, the amount of data 
generated from methylation profiling is quite large and can 
contain millions of methylation sites [17]. Popular platforms 
such as the Illumina Human Methylation 450 k cover over 
450,000 methylation sites, within and outside CpG islands. 
Targeted sequencing platforms are also a rapid and cost-
effective means of identifying known genetic alterations in 
selected gene sets and have been widely adopted in cancer 
clinical practice. However, this approach requires selecting 
the most appropriate features suitable for a prediction model.

In this study, we utilize site-specific methylation to 
develop a classifier that estimates primary tumor site based 
on methylation patterns of tumor tissues. The classifier is 
constructed using a focused set of 100 CpG sites selected 
through machine learning in a subset of cancers. We com-
pared the utility of using embedded machine learning meth-
ods to extract informative CpG sites that could be used to 
train various types of machine learning models with statisti-
cal filtering methods. Lastly, we perform an unsupervised 
analysis of the CpG sites selected by Gradient Boosting.

Materials and methods

Methylation data set

Methylation data from Illumina Infinium Methylation 450 k 
array from a subset of TCGA cases were used and were 
obtained through the NCI Genomic Data Commons (GDC) 
portal (https://​portal.​gdc.​cancer.​gov/). The TCGA data set 
comprised DNA methylation β values of 488,575 CpG sites 
(features) from 890 samples, including the following 10 can-
cer types: breast invasive carcinoma (BRCA) 179 patients, 
colon adenocarcinoma (COAD) 111 patients, glioblastoma 
multiforme (GBM) 17 patients, head and neck squamous 
cell carcinoma (HNSC) 9 patients, kidney renal papillary 
cell carcinoma (KIRP) 167 patients, lung adenocarci-
noma (LUAD) 163 patients, lung squamous cell carcinoma 
(LUSC) 119 patients, rectum adenocarcinoma (READ) 71 
patients. sarcoma (SARC) 33 patients, and stomach adeno-
carcinoma (STAD) 21 patients. Each cancer type had its 

patient data randomly divided into training and test data sets 
using a 70/30 split.

Data preprocessing, feature selection, 
and prediction modeling testing

Data were processed and analyzed in Orange v3.32, a Python-
based machine learning and data mining suite [18]. For the 
training set, raw data from 629 cases were collected as part of 
the overall research flow and preprocessing (Fig. 1A). Data 
preprocessing consisted of compiling data sets, removing 
infrequent, or zero measurement data followed by batch nor-
malization. Data were then trimmed by selecting 125,000 most 
variable features based on the mean standard deviation and 
visualized using t-distributed Stochastic Neighbor Embedding 
(t-SNE). The remaining 125,000 features were ranked, and 
the top 10,000 features were selected based on the analysis 
of variance (ANOVA) or Gain Ratio 17 scores [19], or the 
top 100 features ranked by gradient boosting as feature scores 
(Fig. 1B). The classification models used were included in 
the following packages, Scikit-learn, XGBoost, CatBoost, and 
LIBSVM within Orange. Models were tested using stratified 
five-fold cross-validation sampling. For each training test run, 
various performance metrics were calculated on the test data 
set, including model accuracy, goodness of fit, repeatability, 
and F1 score. Predicted confidence scores were also calculated 
and compared to evaluate the performance characteristics of 
each model for the actual nuclear organs.

Test set validation

Features selected from the gradient boosting scoring classifier 
were extracted from the test set case and preprocessed to cor-
rect for batch effects (Fig. 1C). Predicted confidence scores 
were calculated from Gradient Boosting and compared with 
other prediction models.

Unsupervised analysis

Orange v3.32 software was used to perform unsupervised 
analyses on the 100 features selected from Gradient Boosting 
scoring. We used the Louvain method for community detec-
tion to identify and extract non-overlapping communities 
within the data. The data was then visualized in 2D plots using 
t-SNE and a Manhattan distance metric. Correlation of CpG 
sites was visualized using a clustered distance map generated 
using Pearson correlation coefficients. For the heatmaps, data 
were clustered using Euclidean distances and the Ward link-
age method, and columns were split according to the Louvain 
cluster or cancer type.

https://portal.gdc.cancer.gov/
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Results

Exploratory data analysis and feature selection

Our primary was to determine if we could develop a model 
to predict tumor origin based on the methylation status from 
a reduced number of CpG sites. Given that several factors 
could impact the quality and utility of the selected features, 
we aimed to test our approach using a subset of samples 
from selected cancer sites. The cancer sites were selected 
based on a range of cancer prevalence, cancer heterogene-
ity, anatomical location, and biological similarities. We 
also aimed to establish the minimum case size required to 
extract informative features for classification. Thus we used 

unbalanced-sized data sets from 10 cancer types from The 
Cancer Genome Atlas (TCGA). Methylation data from the 
Illumina Infinium Human Methylation 450 k platform were 
used and the TCGA data set contained DNA methylation 
β values for 485,575 CpG sites from 890 samples, which 
included 10 cancer types. Patient data from each cancer type 
was randomly divided into training and test data sets using 
a 70/30 split (629 and 261 samples, respectively) to ensure 
an adequate representation of cancer types from unbalanced 
data sets. An overview of the analysis pipeline is shown in 
Fig. 1. Our goal was to extract a minimal feature set, which 
means that we were looking for features that would be the 
most informative. Based on the large amount of data avail-
able we first trimmed the data by eliminating approximately 

Fig. 1   Flowchart of the study process. Methylation data from The Cancer Genome Atlas (TCGA) were used to build a prediction model for 
determining cancer type. The process consisted of data preprocessing (A), feature selection (B), and validation (C)
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the bottom 25% of features that contained underrepresented 
or missing values (Fig. 1A). We next proceeded to perform 
data preprocessing, which included the removal of batch 
effects to reduce bias from nonbiological factors or other 
related artifacts (Supplementary Fig. S1). Large data sets can 
be difficult to work with and pose challenges when working 
with prediction models, which include data storage, com-
putational power, and statistical challenges, including scal-
ability, high dimensionality, noise, and spurious correlations 
[20, 21]. Thus, trimmed the data by two-thirds and only kept 
the most variable features based on mean variance. We then 
used the remaining pool of 125,000 CpG sites to extract the 
most informative features that could be used for prediction 
modeling. For this, we compared three different approaches 
of feature selection, two filter methods (analysis of variance 
[ANOVA]) [22] and Gain Ratio [19], and Gradient Boosting 
[23] as an ensemble machine learning algorithm. ANOVA is 
a statistically-based filter method that ranks features based 
on significant group differences. Information Gain is another 
feature ranking approach that ranks subsets of features based 
on high information gain entropy [24]. Gain ratio is a vari-
ation of Information Gain and was developed to reduce the 
bias of Information Gain on highly branched predictors [19]. 
Gradient Boosting is a widely used technique in machine 
learning. Gradient Boosting is a decision tree ensemble 
algorithm that is particularly suited for the regression and 
classification of tabular data [23].

The prediction accuracy of features selected using 
statistical and filter methods

For ANOVA and Gain Ratio, we extracted the top 10,000 
features which represent approximately 2% of the original 
data or 8% of the trimmed data (Supplementary Tables S1 
and S2). We also wanted to determine the similarity of the 
selected features and determine whether distinct groups or 
clusters existed within the dataset. For this, we used Lou-
vain clustering as an unsupervised, agglomerative method 
to identify clusters [25]. ANOVA selection yielded 16 clus-
ters, while Gain Ratio selection resulted in 17 clusters. Two-
dimensional (2D) t-distributed Stochastic Neighbor Embed-
ding (t-SNE) was used to visualize patients and associate 
Louvain clusters with cancer types. While features selected 
by ANOVA showed better-defined Louvain clusters, fea-
tures selected by Gain Ratio appeared to show better overlap 
between Louvain clusters and cancer types (Fig. 2A).

Next, we determined the classification and predict-
ability potential of features selected by ANOVA and Gain 
Ratio across the 10 cancer types. For this, we used fivefold 
cross-validation to evaluate the classification performance 
with several popular machine learning algorithms (refer to 
Table 1). When considering the goodness of fit (positive pre-
dictive value or precision) as the evaluation metric, the top 

three models for features selected by ANOVA were Gradient 
Boosting, Random Forest, and AdaBoost, with respective 
goodness of fit values of 0.876, 0.703, and 0.599 across all 
classes. The performance of features selected by the Gain 
Ratio yielded similar results with the ranking of the mod-
els but showed a slight improvement with the evaluation 
metrics.

We next examined model performance across individual 
cancer types. Figure 2B shows the confusion matrix for the 
organ-specific classification results obtained from Gradient 
Boosting with the actual cancer types. For instance, in the 
case of prediction based on features selected by ANOVA, 
of the 132 cases predicted to be breast cancer (BRCA) sam-
ples, 97.5% of the cases predicted were actual BRCA cases 
(Fig. 2B). Similarly, for the cases classified according to the 
features selected by Gain Ratio, 121 cases were predicted as 
BRCA cases and 96.7% were actual BRCA cases. Overall, 
predictability was good with both methods for cancers with 
higher numbers of cases available for training (> 70) but 
was low for cancers with fewer than 20 samples in the train-
ing set (GBM, HNSC, and STAD). These results show that 
reducing the number of CpG sites using filter-based methods 
of feature extraction yields favorable classification results 
when using a training set with > 70 cases.

The prediction accuracy of features selected using 
an embedded machine‑learning classifier

Despite the accuracy of feature selection with ANOVA and 
Gain Ratio, these methods still required many features to 
train the classifiers. This is a critical problem and making 
these feature sets unfeasible for creating a targeted focused 
panel. Machine learning algorithms can improve feature 
selection by removing irrelevant or redundant features to 
reduce the dimensionality of inputs, thus improving the 
performance of training and learning models. To test this 
approach, we used Gradient Boosting as a base learner to 
rank features for prediction modeling and unsupervised 
clustering analysis (Fig. 3A). One hundred features were 
extracted in the feature selection process. The model was 
subjected to stratified fivefold cross-validation and perfor-
mance evaluation as before. Overall performance scores 
from the top three performing algorithms were comparable 
to those of ANOVA and Gain Ratio (Table 2). Performance 
across individual cancers was similar between this model 
and those of ANOVA and Gain Ratio for cancers with > 70 
cases and was improved for cancers with few samples (< 20) 
in the training set (Fig. 3B). We next compared Gradient 
Boosting classification with Random Forest, as it is also an 
ensemble decision tree-based model but differs in how it 
builds its trees. Random Forest was also the best-perform-
ing model after Gradient Boosting. A comparison of the 
two models is shown as receiver operating characteristic 
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(ROC) curves for each tumor type in Fig. 3C. These find-
ings show that the classification of tumors based on 100 fea-
tures selected with Gradient Boosting performed similarly to 
filter models that required 10,000 features (Supplementary 
Table S3). Our selection approach led to the development of 
a computationally inexpensive classification model.

Unsupervised analysis of features selected 
by Gradient Boosting

For the unsupervised analyses, we first performed commu-
nity detection and clustering of patients based on the 100 
CpG sites selected by the Gradient Boosting learner. Thir-
teen clusters were identified and 2D visualization of these 
clusters by t-SNE shows distinct clustering that is much 
more closely correlated with cancer types compared to those 

observed by clustering from ANOVA or Gain Ratio feature 
selection methods (Fig. 4A, B). Moreover, it was visually 
obvious some cancers were associated with more than one 
cluster. For example, BRCA was closely associated with 
clusters C6 and C9, whereas LUAD was primarily associated 
with clusters C4 and C8, and KIRP was mostly associated 
with clusters C1 and C10. These results suggest that this 
approach may detect cancer subtypes. We further explored 
clusters and their relationship to primary cancers. Cluster 
C1 included the largest number of patients (n = 88) which 
comprised 14% of the total population, and cluster C13, the 
smallest, contained 16 cases representing 2.5% of the popu-
lation (Fig. 4C). Seven clusters contained at least 50 cases, 
clusters C1-C7. The associations between the cancer site 
and clusters varied. Clusters C8, C9, and C10 were unique 
to LUAD, BRCA, and KIRP, respectively. Conversely, 

Fig. 2   Evaluation of the prediction model using features selected by 
ANOVA or Gain Ratio. A Visualization of data using t-distributed 
stochastic neighbor embedding (t-SNE) of patients (n = 629) based on 
the methylation of CpG sites selected by ANOVA or Gain ratio. The 
Louvain method of community detection was used to identify patient 
clusters. Colors were assigned according to cluster (top panels) or 
cancer type (bottom panels). B Confusion matrices showing the per-

centage of patients actually predicted by Gain Ratio classifier trained 
features selected by ANOVA or Gain Ratio. BRCA​ Breast invasive 
carcinoma, COAD Colon adenocarcinoma, GBM Glioblastoma, 
HNSC Head and neck squamous cell carcinoma, KIRP Kidney renal 
papillary cell carcinoma, LUAD Lung adenocarcinoma, LUSC Lung 
squamous cell carcinoma, READ Rectum adenocarcinoma, SARC​ 
Soft tissue sarcoma, STAD Stomach adenocarcinoma
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clusters C2, C3, C5, and C7 were more heterogenous and 
were associated with 4 or more cancers. We also examined 
the association between cancer type and cluster (Fig. 4D). 
For the most part, all cancers were associated with three or 
more clusters. Cases from LUAD and HNSC showed the 
greatest heterogeneity and were linked to five clusters. On 
the other hand, KIRP and LUSC showed less heterogeneity 
with over 75% of the cases from a single cluster (Fig. 4D). 
Interestingly, we also found COAD, READ, and STAD to 
be similar to each other, being comprised primarily of clus-
ters C2 and C7. Ninety-five percent (75/79) of the cases in 
C2 and 94% (48/51) of cases in C7 were associated with 
GI cancers (COAD, READ, and STAD). Another important 
observation was in BRCA, where 43.3% (52/120) and 36.7% 
(44/120) of the cases were associated with clusters C6 and 
C9, respectively. Both clusters were unique to BRCA. The 
remaining 20% (24/120) of cases were linked to cluster C5, a 
heterogeneous cluster that was associated with seven cancer 
types. These findings indicate that the selected features may 
allow the differentiation of cancer subtypes and even group 
molecularly similar cancers.

Therefore, we next examined the relationships between 
the features selected by Gradient Boosting. For this, we per-
formed an unsupervised correlation analysis of the 100 CpG 
sites and found high correlations between some CpG sites 
(Supplementary Fig. S2). We next analyzed the methylation 

status of these CpG sites with both cluster and cancer types 
using hierarchically clustered heatmaps. From these heat 
maps, we can see quite distinct patterns within the clusters 
(Fig. 5A). For instance, the CpG sites in cluster C5 tended 
to have mostly low β values., whereas these were largely 
high β values in cluster C11. Other clusters showed a dis-
tinct pattern of higher/lower β value of methylation. Clusters 
C9 and C6 were among the clusters that displayed distinct 
higher/lower β value in certain CpG sites. We next examined 
methylation status in cases clustered and grouped according 
to cancer type (Fig. 5B). Compared to Fig. 5A, this examina-
tion revealed a different pattern in the clustering of methyla-
tion in CpG sites. In several cancers, such as BRCA, KIRP, 
COAD, and LUAD, distinct subgroups were identified based 
on variations in higher β values within specific CpG sites. 
Additionally, gastrointestinal (GI) cancers (COAD, READ, 
and STAD) exhibited similar methylation patterns. Our find-
ings suggest that the methylation profiles of CpG sites from 
our feature set could be linked to certain biological charac-
teristics that define molecular cancer subtypes.

Validation of the prediction model

Our final goal was to evaluate the predictability and perfor-
mance of the models built on the training set. For this, we 
used a test set (n = 261), comprised of pre-partitioned data 

Table 1   Performance scores 
(average over classes) for model 
predictions

AUC​ area under curve, CA classification accuracy

Model AUC​ CA F1 Precision Recall

10 K features selected by ANOVA
Gradient boosting 0.983 0.878 0.872 0.876 0.878
Random forest 0.934 0.728 0.707 0.703 0.728
AdaBoost 0.764 0.598 0.596 0.599 0.598
CN2 rule inducer 0.817 0.585 0.583 0.586 0.585
k Nearest neighbor 0.785 0.479 0.422 0.502 0.479
Neural network 0.643 0.432 0.415 0.415 0.432
Support vector machine 0.779 0.445 0.395 0.476 0.445
Naive bayes 0.143 0.164 0.269 0.143
Logistic regression 0.157 0.067 0.081 0.136 0.067
Stochastic gradient descent 0.425 0.025 0.028 0.031 0.025
10 K features selected by gain ratio
Gradient boosting 0.986 0.903 0.895 0.895 0.903
Random forest 0.959 0.811 0.786 0.779 0.811
AdaBoost 0.838 0.725 0.721 0.721 0.725
CN2 rule inducer 0.860 0.672 0.672 0.673 0.672
Neural network 0.723 0.518 0.506 0.509 0.518
k nearest neighbor 0.802 0.510 0.461 0.639 0.510
Support vector machine 0.847 0.496 0.429 0.494 0.496
Naive bayes 0.361 0.389 0.464 0.361
Logistic regression 0.114 0.078 0.085 0.153 0.078
Stochastic gradient descent 0.422 0.032 0.033 0.036 0.032
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from the TCGA dataset. Initial 2D visual analysis of sam-
ples using t-SNE after data preprocessing showed a distinct 
grouping of cases that were largely associated with cancer 
type (Fig. 6A).

Further unsupervised evaluation of the methylation lev-
els for the selected methylation sites revealed expression 

profiles that resembled those of the test set (Fig.  6B). 
These patterns were particularly evident with BRCA, 
KIRP, and LUAD. Similar to the training set, the GI can-
cers (COAD, READ, and STAD) of the validation set had 
similar methylation patterns that resembled each other.

Fig. 3   Evaluation of the prediction model using features selected by 
a gradient-boosting feature ranker. A Flowchart of the analysis pro-
cess. B Confusion matrix showing the percentage of patients actually 
predicted by Gain Ratio classifier trained features selected by Gradi-

ent Boosting as a feature ranker. C Receiver operating characteristic 
(ROC) curve analysis of cancer type prediction from Gain Ratio and 
Random Forest model for each cancer type
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We next examined the predictability of the test using 
Gradient Boosting as a trained model and compared it with 
other machine learning models. A summary of the test 
results is shown in Table 3.

Overall, the performance of Gradient Boosting 
remained relatively good with an average classification 
accuracy of 0.877 and an F1 score of 0.867. Of all the 
models examined, CatBoost, which is an ensemble-boost-
ing model, had the best performance with an F1 score of 
0.917. Random forest is another popular ensemble model 
that uses bagging (i.e., bootstrap aggregation) as a concept 
to generate trees and also performed well with an F1 score 
of 0.878. We next examined the performance of Gradient 
Boosting across individual cancer predictions. All cases 
for BRCA, KIRP, and LUSC were predicted correctly, 
with three false positives for BRCA and LUSC (Fig. 6C). 
Cancers such as COAD and LUAD were correctly pre-
dicted > 90%. Seventy-one percent of READ cases were 
correctly predicted and 28.6% of the cases were predicted 
as COAD, which has some anatomical and transcriptomic 
similarities to READ [26]. Overall cancers with low 
training samples also performed poorly with predictions. 
Only 14.3% of SARC cases were correctly classified. Six 
patients were incorrectly classified but were predicted to 
be either COAD or READ. All three HNSC patients were 
predicted to be LUSC cases. Lastly, we wanted to com-
pare the performance of Gradient-Boosting predictions 
with that of Random Forest. For this, we generated ROC 
plots for each cancer type (Fig. 6D). The performance of 
Gradient Boosting and Random Forest in the area under 
the curve (AUC) was comparable for the selected cancer 
types. Overall, our results are promising for the predictive 
potential of our feature selection model and provide the 
basis for developing and constructing targeted methylation 
profiling to identify the origins of CUP.

Discussion

Our primary goal was to establish a system that would 
aid in predicting the origin of CUP from a focused meth-
ylation profiling panel. The initial step was to develop a 
method for extracting the most relevant features and then 
constructing and testing a prediction model based on that 
set of features. We chose to test our methodology using 
representative cancer cases because of the large number 
of features available from the Illumina Infinium Human 
Methylation 450 k platform. As a proof-of-concept study, 
we also wanted to limit the number of samples to maxi-
mize computing resources. We also wanted to ensure that 
we could create a prediction model that could be trained 
on and distinguish challenging primary cancer types i.e., 
rare, heterogeneous. Here, we demonstrate the use of a 
machine learning approach to construct a targeted DNA 
methylation-based profiling model that can classify and 
predict cancer types. Our approach enabled us to extract 
relevant methylation data based on β scores for the entire 
genome from selected cancers in the TCGA dataset. Our 
machine-leaning model could classify tumors based on a 
methylation profile that consisted of 100 methylation sites. 
This classifier set represents a mere 0.02% of the total 
available from the original methylation profiling array and 
was extracted using a machine learning learner used as a 
feature ranker.

DNA methylation is an important epigenetic process 
by which gene expression is repressed by the transfer of 
a methyl group onto the C5 position of the cytosine to 
form 5-methylcytosine [27]. Epigenetic programs define 
a normal cell’s identity and function, whereas alterations 
to DNA methylation, histone modification, microRNAs, 
and nucleosomes contribute to carcinogenesis [28]. CpG 
methylation plays an important role in the regulation of 
gene expression and is intimately involved in cancer devel-
opment and progression and aberrant DNA methylation 
is one of the hallmarks of cancers. Genome-wide anal-
yses of DNA methylation profiles in human tissue have 
revealed complex but tissue-specific [29–32] patterns in 
DNA methylation that carry over into cancers. Each organ 
has a unique methylation pattern, which has been shown 
to be reflected in cancer cells [33]. However, cancer cells 
exhibit aberrant DNA methylation patterns compared to 
their normal tissue counterparts [34]. Additionally, the 
distinct methylation profile of a tumor is shaped by the 
complex interplay of various cell types within the tumor 
microenvironment (TME), including malignant (cancer) 
cells, stromal cells, and immune cells [35, 36]. Stromal 
cells play an important role in cancer progression, and the 
methylation profile of these cells may also reflect cancer 
characteristics. For example, it has been reported that the 

Table 2   Performance scores (average over classes) for model predic-
tions

AUC​ area under curve, CA classification accuracy

Model AUC​ CA F1 Precision Recall

100 features selected by 
gradient boosting

Gradient boosting 0.983 0.878 0.872 0.876 0.878
Random forest 0.934 0.728 0.707 0.703 0.728
AdaBoost 0.764 0.598 0.596 0.599 0.598
k nearest neighbor 0.817 0.585 0.583 0.586 0.585
Neural network 0.785 0.479 0.422 0.502 0.479
Support vector machine 0.643 0.432 0.415 0.415 0.432
Naive bayes 0.779 0.445 0.395 0.476 0.445
Stochastic gradient descent 0.143 0.164 0.269 0.143
Logistic regression 0.157 0.067 0.081 0.136 0.067



International Journal of Clinical Oncology	

methylation pattern of stromal cells in cancer can influence 
the methylation pattern of cancer cells [37]. DNA meth-
ylation profiles also exhibit organ-specific characteristics 
in cancer cells. For example, in colon cancer, methylation 
of CpG islands is frequently observed in specific genes, 
which can be used for cancer diagnosis and prognosis 
prediction [38]. DNA methylation-specific patterns have 
also been used to differentiate between cancer subtypes, 

stages, and grades [39, 40]. Thus, the methylome provides 
a rich source of data from which cancer biomarkers may 
be mined. This study aimed to compare CpG methylation 
profiles across cancer samples from different organs. The 
objective was to determine if organ-specific CpG meth-
ylation patterns are retained among cancer samples and if 
these profiles could be used to predict cancer type.

Fig. 4   Characterization of the 100 features selected by Gradient 
Boosting in the training model. Visualization of data using t-distrib-
uted stochastic neighbor embedding (t-SNE) of patients (n = 629) 
based on the methylation of CpG sites selected by Gradient Boosting. 

The Louvain method of community detection was used to identify 
patient clusters. Colors were assigned according to cluster (A) or can-
cer type (B). Bar plots showing the frequency and relative fraction of 
patient associations between cluster (C) and cancer type (D)
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Fig. 5   Unsupervised hierarchical clustering analysis of methylation 
profiling for CpG sites selected by Gradient Boosting. Hierarchically 
clustered heatmaps of patients (n = 629) from the training set and 100 
CpG sites selected by Gradient Boosting split according to Louvain 
cluster (A) or cancer type (B). Dendrograms represent Euclidean dis-

tances for CpG sites and Pearson correlation coefficients for patients. 
Hierarchical clustering is based on the Ward linkage method. The 
scale bar represents relative levels of methylation, the red color indi-
cates high levels, while the blue color represents low levels
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Genome-wide DNA methylation profiling studies have 
identified methylation patterns that could be used as bio-
markers for disease subtypes, prognosis, and drug response 
[41]. The methylome also provides a source of data that 
could be mined to build cancer-type-specific classification 
and prediction models—however, this is a very large pool, 
and the question remains as to which methylation sites would 
be the most useful. Several researchers have carried out 
research to develop prediction models that determine can-
cer type based on methylation profiles [42–47]. The methods 
used by investigators to extract relevant data and the learn-
ing models used to derive predictions have differed between 
studies. However, most studies still used a high number of 
features for their training models. For instance, Jurmeister 
et al. used 10,000 CpG sites with the highest standard devia-
tion and a Random Forest classifier to differentiate between 
pulmonary enteric adenocarcinoma and metastatic colorectal 
cancer [48]. Another study aimed to identify cancer origins 
by methylation profiling using 10,360 CpG sites, selected 
by a combination of statistical methods, as an input layer 
of neural network classification [45]. A large study by the 
Circulating Cell-free Genome Atlas (CCGA) Consortium 
and STRIVE investigators, supported by GRAIL Inc., per-
formed targeted DNA methylation analyses of cell-free DNA 
(cfDNA) from over 50 cancer types with greater than 90% 
accuracy. However, their targeted methylation panel covered 
about 100,000 distinct sites and contained just over 1.16 
million CpG sites.

Panels that require a large number of features for predic-
tion pose real-world challenges that are related to the cost, 
handling, storage, processing, and security of data. Fur-
thermore, large data sets often contain irrelevant or redun-
dant data that add noise, which reduces model accuracy, 
performance, and computing efficiency. Feature selection is 
probably the most significant variable in machine learning, 
and several tools are available. The primary objective of 
feature selection is to reduce the number of input variables 
on training data to improve model performance and reduce 
the computational costs of modeling. Filter methods rank 
features according to their scores in various statistical tests 
for their correlation with the class[47]. Filtering methods 
are commonly used with high-dimensional datasets because 
they are typically less computationally demanding and are 
not susceptible to overfitting. However, filter methods are 
linear and treat features independently, and do not account 
for interactions of data. Thus, to achieve accurate results, the 
size of the output training features must be large to compen-
sate for redundant data. This phenomenon was exemplified 
in our analysis using ANOVA and Gain Ratio.

Traditional feature ranking methods have been 
used to study large datasets in biology and require less 

computational power than more contemporary machine 
learning methods [22, 49–52]. However, datasets that have 
complex feature interactions and high levels of redundancy 
still pose a challenge for filter feature selection methods [47]. 
Modern machine learning algorithms work better with com-
plex high-dimensional data and have grown in popularity in 
recent years [53]. Here, we used ANOVA and Gain Ratio 
as representative feature ranking methods to compare with 
Gradient Boosting. Gradient Boosting is an ensemble of 
base (weak) learners and is a standard implementation of 
tree-based models such as classification and regression trees 
(CART). The weak learners are then combined (boosted) 
to compose a strong learning model. These ensembles of 
trees are more predictive in large datasets, and their feature 
importance scores reflect more complex interactions, which 
can then be used to extract the most relevant features [54].

Our goal is to establish a focused methylation panel for 
predicting the CUP tissue of origin, requiring a limited 
number of predictive CpG sites. In our study, we examined 
the feasibility and performance of selecting a compact set 
of features using Gradient Boosting as a feature ranker and 
compared it with two filter methods. Our results show that 
this approach allows us to reduce the number of features by 
100-fold while still maintaining comparable performance. 
We tested this specific set of features in a validation set 
using various machine learning algorithms, and the tree-
based ensemble methods performed the best. Our results 
also showed that features extracted from the larger cancer 
sets yielded better prediction results (BRCA, COAD, KIRP, 
LUAD, and LUSC) compared to those from smaller sets 
(GBM, HNSC, READ, SARC and STAD). Our research 
illustrates how dataset size impacts model performance 
and the dangers of employing smaller data sets, particularly 
those with high heterogeneity.

Further examination of these features revealed interesting 
methylation patterns that could be associated with certain 
cancer characteristics that may be clinically relevant. For 
instance, we observed cancer subtypes with breast, colon, 
and lung adenocarcinomas, lung squamous cell carcinomas, 
and kidney renal papillary cell carcinomas. Conversely, 
we observed similarities between the methylation profiles 
among subsets of gastrointestinal cancers, including colon, 
rectal, and stomach adenocarcinomas. Our 100-feature panel 
has not only demonstrated accuracy in feature selection but 
has also revealed that methylation patterns differ among can-
cer types, similarities exist between cancer types, and sub-
groups exist within cancer types. These observations suggest 
that methylation profiles based on our feature set may be 
related to certain aspects that define established molecular 
cancer subtypes. which could provide useful information to 
aid in the treatment stratification of patients. Our 100 CpG 
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sites feature set provided accuracy for the prediction of can-
cer type but may be insufficient to determine the biological 
relevance. The purpose of our model was to select features 
that would be useful for accurate classification. This reduced 
many features that were redundant and not informative for 
classification and prediction. However, this does not mean 
that these features are not biologically relevant and many 
of those features were likely associated with co-expression 
networks. We will examine the co-expression networks of 
these methylation regions in our future studies and hopefully 
elucidate their biological and clinical significance.

In the current study, we investigated the construction of 
an algorithm to identify the primary site based on meth-
ylation profiling. However, it is important to consider that 
assigning site-specific therapy based on primary site predic-
tion may not suffice to improve outcomes because it relies 

on an unproven assumption. In a previous clinical trial of 
primary site prediction based on 92-gene cancer classifica-
tion, subgroup analyses showed that patients with responsive 
tumor types had improved survival with site-specific therapy 
[10]. Our group also showed that site-specific therapy based 
on gene expression profiles is beneficial for patients with 
responsive tumor types although site-specific therapy based 
on prediction did not significantly improve 1-year survival 
compared to empiric therapy [11]. This may be due to differ-
ences in the clinical efficacy of site-specific treatment to the 
predicted primary site. In addition to improving the accuracy 
of primary site prediction algorithms, it could be necessary 
to prospectively evaluate efficacy through appropriate clini-
cal trial designs. As with any cancer, identifying a poten-
tially actionable alteration would be beneficial for directing 
alteration-targeted therapy regardless of tissue origin. Panel 
sequencing studies have shown that at least one genetic alter-
ation occurs in 65–80% of CUP cases [55, 56]. However, less 
than a third of patients diagnosed with CUP have potentially 
targetable genetic alterations [57]. To receive the benefits 
of site-specific therapy, the remaining patients need to rely 
on an estimator to determine the primary site. In practical 
clinical settings, a series of supplementary tests, encompass-
ing genetic background analysis and tissue origin prediction 
through methylation profiling, could aid in identifying the 
most effective treatment strategy for each patient with CUP.

There are some limitations to our model regarding its 
value in predicting tissue of origin. Namely, we limited 
the number of cancer types to ten and there was a large 
class imbalance in which cancers. However, this was done 
by design. We wanted to test our approach using a rela-
tively small set given the large amount of data involved. 

Fig. 6   Validation of cancer-type prediction performance using a 
focused set of CpG sites selected by Gradient Boosting and examina-
tion of features. The validity of the prediction model was evaluated 
using a test set of 261 cases from the TCGA dataset. A Visualization 
of data using t-distributed stochastic neighbor embedding (t-SNE) of 
patients based on the methylation of 100 CpG sites selected by Gradi-
ent Boosting. B Hierarchically clustered heatmaps of patients in the 
test set and 100 CpG sites selected by Gradient Boosting split accord-
ing to cancer. Dendrograms represent Euclidean distances for CpG 
sites and Pearson correlation coefficients for patients. Hierarchical 
clustering is based on the Ward linkage method. The scale bar repre-
sents relative levels of methylation, the red color indicates high lev-
els, while the blue color represents low levels. C Confusion matrix 
showing the percentage of patients actually predicted by Gain Ratio 
classifier trained features selected by Gradient Boosting as a feature 
ranker. D Receiver operating characteristic (ROC) curve analysis of 
cancer type prediction from Gain Ratio and Random Forest model for 
each cancer type

◂

Table 3   Performance scores 
(average over classes) for model 
predictions

AUC​ area under curve, CA classification accuracy, XGBoost eXtreme Gradient Boosting, LASSO least 
absolute shrinkage and selection operator

Model AUC​ CA F1 Precision Recall Model category

Gradient boosting 0.974 0.877 0.867 0.882 0.877 Ensemble-boosting
XGBoost (XGB) 0.981 0.912 0.897 0.929 0.912 Ensemble-boosting
CatBoost 0.994 0.935 0.917 0.908 0.935 Ensemble-boosting
AdaBoost 0.887 0.816 0.784 0.791 0.816 Ensemble-boosting
Random forest (RF) 0.985 0.897 0.878 0.878 0.897 Ensemble-bagging
XGB-RF 0.946 0.828 0.814 0.834 0.828 Ensemble-hybrid
Neural network 0.964 0.801 0.784 0.791 0.801 Neural Nets
CN2 rule inducer 0.946 0.843 0.834 0.829 0.843 Rule System
Stochastic gradient descent 0.570 0.276 0.258 0.244 0.276 Iterative
Ridge regression 0.499 0.211 0.159 0.131 0.211 Regression
LASSO 0.488 0.218 0.154 0.137 0.218 Regression
Logistic regression 0.500 0.207 0.162 0.182 0.207 Classification
k nearest neighbor 0.931 0.774 0.737 0.783 0.774 Classification
Naive bayes 0.995 0.766 0.793 0.890 0.766 Classification
Support vector machine 0.961 0.743 0.693 0.737 0.743 Classification
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In addition, this study showed that cancer sets with few 
samples for training did not perform as well as those with 
larger numbers, which is valuable information that can be 
used to better design training sets in the future. In addition, 
we did not use an independent validation set. Nevertheless, 
our study established the methodology needed to establish 
proof-of-concept for our approach for feature extraction 
and will serve as the foundation to build a model that will 
include additional cancer types as well as independent vali-
dation data sets and prospective validation cohorts.

In conclusion, our study has outlined an approach 
whereby we used an embedded machine learning algorithm 
to identify a select set of informative features from complex 
high-dimension data to train and predict cancer type. By 
extracting a compact set of relevant CpG sites, a custom 
panel of methylation sites could be constructed, which could 
be more feasible for clinical applications. Our follow-up 
studies will expand our model to include additional cancers 
and prospectively validate custom panel methylation sites to 
evaluate clinical performance.
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