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Abstract
Breast imaging has several modalities, each unique in terms of its imaging position, evaluation index, and imaging method. 
Breast diagnosis is made by combining a large number of past imaging features with the clinical course and histological 
findings. Artificial intelligence (AI), which extracts the features from image data and evaluates them based on comprehen-
sive analysis, has been making rapid progress in this regard. Many previous studies have demonstrated the usefulness and 
development potential of AI, such as machine learning and deep learning, in breast imaging. However, despite studies show-
ing the good performance of AI models, their overall utilization remains low, since a large amount of diverse imaging data 
is required, and prospective verification is necessary to prove its high reproducibility and robustness. Sharing information 
and collaborating with multiple institutions to collect and verify images of different conditions and backgrounds are vital. 
If image diagnosis using AI can indeed ensure a more detailed diagnosis, such as breast cancer subtypes or prognosis, it 
can help develop personalized medicine, which is urgently required. The positive results of AI research, using such image 
information, can make each modality more valuable than ever. The current review summarized the results of previous studies 
using AI in each evaluation field and discussed the related future prospects.
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Introduction

Breast cancer is the most common cancer in women world-
wide [1]. To reduce breast cancer mortality, a screening 
program is essential for identifying early and small breast 
cancers. Mammography (MG) is the only breast cancer 
screening modality that has been shown to decrease mortal-
ity and is widely adopted across the world [2]. Ultrasound 
(US) screening has attracted attention recently due to its abil-
ity to improve breast cancer detection rate in young Asian 
women, who often have dense breasts [3]. Magnetic reso-
nance imaging (MRI) has proven useful in populations with 
high risk of breast cancer [4, 5]. The field of breast imaging 
has undergone transformative improvements since the incep-
tion of MG for screening purposes in the early 1960s. Spatial 
and temporal resolutions have improved remarkably in all 

imaging modalities. The most significant change has been 
in digitalization. Digitalization allowed much more infor-
mation to be preserved and shared, and facilitated image 
processing. The images are treated not only as pictures but 
also as data.

With improvements in molecular biology techniques, 
diagnosis based on biological and pathological factors would 
be possible. A correct therapeutic decision is guided by a 
detailed diagnosis that includes receptor status, prolifera-
tion index, nodal status, or immunocyte activity. Although 
tissue sampling specimens have traditionally contributed to 
this information, images can play an essential role in whole-
tumor evaluation considering the heterogeneity of breast 
cancer. Imaging technology using artificial intelligence (AI) 
has developed into a noninvasive method to provide biologi-
cal and pathological information.

 * Chikako Sekine 
 chikako.s@jikei.ac.jp

1 Department of Breast Surgery, International University 
of Health and Welfare, Narita Hospital, 852 Hatakeda 
Narita, Chiba 286-0124, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10147-024-02594-0&domain=pdf


 International Journal of Clinical Oncology

Artificial intelligence in breast imaging

AI is a vast field that analyzes data and makes inferences 
based on knowledge, judgment, problems, and solutions. 
Technologies used in breast imaging research can be divided 
into two types, namely machine learning (ML) and deep 
learning (DL) (Fig. 1). ML is a subset of AI in which com-
puters are trained perform functions without being explicitly 
programmed by humans to complete those tasks. ML com-
monly uses features and inputs from human programmers 
as the basis for learning. With ML, relatively good models 
can be created, even in small-scale studies with fewer than 
1000 target images. Various ML and learning methods have 
been proposed one after another to create highly accurate 
prediction models. DL increases the number of layers of 
ML algorithms to perform more complex and extensive data 
analyses [6]. Convolutional neural networks (CNN) are the 
most commonly used DL tools for image-based diagnosis. 
The CNN approach has resulted in breakthroughs in image 
processing, including breast imaging, over the last few dec-
ades. Therefore, many image research and clinical applica-
tions use CNNs to perform clinically meaningful tasks, such 
as classification, segmentation, and detection.

Breast density and risk prediction

Breast density reflects the amount of fibroglandular tissue 
in the breasts. It on MG is an independent risk factor for 
breast cancer [7]. Evaluation of breast density is important 
to recognize the breast cancer risk and the possibility that 
noncalcified lesions may be masked in the fibroglandular 

tissue. The European Society of Breast Imaging (EUSOBI) 
recommends that women be informed about their breast 
densities and contrast-enhanced breast MRI be conducted 
in women aged 50–70 years with extremely dense breasts 
[8]. Although several guidelines exist for evaluating breast 
density, the most widely used method uses the density score 
from American College of Radiology (ACR) Breast Imaging 
Reporting and Data System (BI-RADS) [9]. The ACR BI-
RADS Atlas 5th edition classifies breast density into 4 cat-
egories, namely a: “The breasts are almost entirely fatty”; b: 
“There are scattered areas of fibroglandular density”; c: “The 
breasts are heterogeneously dense, which may obscure small 
masses”; d: “The breasts are extremely dense, which lowers 
the sensitivity of mammography”. These 4 categories are 
associated with breast cancer risk [10]. However, variability 
remains across radiologists, and consistency is low, even 
among individual radiologists [11] . Studies using AI have 
demonstrated beneficial results in terms of both conformity 
and reproducibility. The DL model demonstrated excellent 
classification accuracy for dense and non-dense breasts [12]. 
It exhibited good agreement with the density assessments of 
an experienced radiologist. Another DL model revealed that 
breast density estimation can be assessed using any type of 
mammography, including full-field digital mammography 
(FFDM), digital breast tomosynthesis (DBT), and synthe-
sized 2D mammograms [13]. Although inter- and intra-
reader variability is obvious, visual categorization models 
are commonly used to estimate the models. Gastounioti et al. 
stated that this discrepancy is mainly due to the lack of large 
datasets with ground-truth density estimations [14]. Many 
AI applications, such as Quantra™ (Hologic, USA), Intel-
liMammo® densityai™ (Densitas, Canada), and Volpara 
TruDensity® (Volpara Imaging, New Zealand), are already 
commercially available. A study comparing mammographic 
assessments in the available models showed a strong associ-
ation between breast cancer risk and automatically measured 
breast density [15]. Interestingly, visual density assessment 
demonstrated a strong relationship with cancer, despite the 
known inter-observer variability.

Some studies have directly predicted the risk of develop-
ing breast cancer. An accurate prediction of breast cancer 
risk is required for personalized screening. Several breast 
cancer risk prediction models using personal health data, 
such as age, race, hormone usage, and prior cancer history, 
have been proposed and investigated in randomized trials 
[16, 17]. Mirai model [18], a DL-mammography-based 
risk model, indicated that a DL model with mammographic 
features added to the previous risk prediction model could 
increase the accuracy of cancer risk prediction.

Fig. 1  Diagram explaining the relationships in different techniques in 
the AI field. AI artificial intelligence, ML machine learning, DL deep 
learning, CNN convolutional neural network
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Cancer detection

Ideal breast cancer screening should have high sensitivity 
and specificity, without invasion or cost. Although MG 
is most widely used around the world, its sensitivity and 
specificity are insufficient, especially for dense breasts 
[19]. Several types of US, MRI, and other modalities have 
been used to detect early-stage breast cancer till date [20, 
21]. However, AI algorithms for cancer detection could 
achieve highly accurate screening and reduce the burden 
on interpreters. Computer-aided detection (CAD) software 
for mammography was introduced in the 1990s [22]. The 
Food and Drug Administration (FDA) approved the first 
commercial CAD system as a second opinion for screen-
ing mammography in 1998. However, CAD increased 
recall rates [23], and there was no evidence that CAD 
when applied to digital MG significantly improved screen-
ing performance [24]. Instead, many studies have been 
published on AI algorithms that demonstrated excellent 
performance in breast cancer detection. McKinney et al. 
used an AI-based breast cancer detection algorithm, which 
was trained on larger and more representative datasets in 
the United Kingdom and the United States, and proved 
its performance to be better than that of radiologists 
(AUC: 0.81–0.89) [25]. Other retrospective studies with 
large European populations confirmed the usefulness of 
AI-based cancer detection systems [26]. Although many 
studies have demonstrated the potential of AI in provid-
ing highly accurate screening and reducing the workload 
of MG interpreters, there are several limitations. Most 
of these studies were retrospective and included small 
populations. Therefore, prospective randomized con-
trolled trials have had a significant impact in this field. 

The Mammography Screening with Artificial Intelligence 
(MASAI) trial, a randomized controlled trial, revealed that 
AI-supported MG screening resulted in a similar cancer 
detection rate compared to standard double reading, with 
a lower screen-reading workload [27]. A large number of 
subjects and many years would be required to demonstrate 
the usefulness of screening image-based diagnoses using 
AI. However, previous reports had shown positive results 
when AI was introduced in the medical examination busi-
ness. In future, AI may be commonly used to reduce the 
burden on image readers.

Diagnosis and characterization of cancer

When the area or lesion of interest is identified, whether it 
is benign or malignant is ascertained, and which subtypes 
of breast cancer are needed. If AI can provide information 
with high accuracy, unnecessary biopsies can be avoided, 
treatment preparations can be quickly initiated, and therapy 
effect monitoring can be promptly performed. Convention-
ally, the morphological characteristics related to benign or 
malignant lesions are recognized. For example, a spiculated 
margin or linear calcification is highly suggestive of a malig-
nancy. These morphological characteristics are supported by 
verification in a large number of previous cases. Radiomics 
is a method for analyzing not only the features visible to the 
human eye, but also those derived from precise calculations 
(Fig. 2). Radiomics treats images as data and extracts tens to 
hundreds of types of “radiomic features” (Fig. 3). Radiomic 
features can be divided into three representative groups, 
namely morphological, histogram, and texture. In addition, 
transforming images using techniques, such as wavelet or 
Fourier transformation, can increase the number of features. 

Fig. 2  Radiomics workflow in breast imaging
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To calculate the radiomic features, complex calculations are 
performed using the pixel values of each pixel in the image. 
Radiomics comprehensively analyzes the features collected 
in these ways and uses ML or DL to predict the clinical or 
histopathological features. In research using radiomics, stud-
ies have used US [28] and MRI [29] to determine whether 
a lesion is benign or malignant. The studies that used ML 
demonstrated high accuracy. A contrast-enhanced mammog-
raphy-radiomics model was used to predict the breast can-
cer characteristics [30]. The accuracies of whether hormone 
receptor positivity or negativity was 95.6%, and of the tumor 
grade was 77.8%.

There have also been reports on predicting lesion charac-
teristics using ML or DL without using radiomics. Herent 
et al. used a DL model that utilizes MRI to identify lesions, 
determined whether the lesion was benign or malignant, and 
classified their histological subtypes [31]; the overall Area 
under the curve (AUC) was 0.817. Fleury et al. used five ML 
methods to determine whether lesions were benign or malig-
nant using ultrasound images. In this study, support vector 
machine (SVM) showed the highest AUC of 0.840 [32].

Since new targeted therapies have been developed for spe-
cific molecular subtypes, an appropriate therapeutic choice 
would improve therapeutic response. The breast is an organ 

that is relatively easily approached for biopsy. Therefore, 
if images are used to simply determine whether they are 
benign or malignant, or to classify subtypes of breast can-
cer, the accuracy would be equivalent to that of a biopsy, 
and more safety and simplicity can be achieved. However, 
unlike a biopsy, imaging has the advantage of being able to 
evaluate an entire lesion. Breast cancer is a clinically and 
biologically heterogeneous disease [33]; if we can verify 
the differences in treatment effects and prognosis due to the 
biological diversity of tumors, the significance of diagnostic 
imaging will increase dramatically.

Treatment response

Neoadjuvant systemic therapy (NST) can reduce tumor size 
and allow minimally invasive surgery. If the therapeutic 
effect can be predicted before starting an NST, it can greatly 
contribute to drug selection and be useful in precision medi-
cine. Although magnetic resonance imaging (MRI) is the 
most accurate modality for determining the response to NST, 
its determination occurs after NST [34]. In recent research, 
AI has shown the potential to predict NST responses 
beforehand. In a study using MG, the DL model predicted 

Fig. 3  Segmentation and examples of radiomics features
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pathological complete response (pCR), represented by an 
area under the curve (AUC) of 0.71 [35]. In a small prospec-
tive study using MRI prior to and after two cycles of NST, 
the high accuracy of several ML models was reported [36]. 
A radiomics study using pre-treatment ultrasound and digital 
breast tomosynthesis (DBT) demonstrated that a multimodal 
algorithm significantly improved the assessment of response 
to NST than an algorithm using only clinical variables [37]. 
In addition, a radiomics model using only pre-treatment T2 
non-contrast images predicted responder or non-responder 
status with an AUC of 0.87 [38]. There are several limita-
tions to each study that used AI. However, AI approaches 
have a significant advantage in predicting the response to 
NST using images before the therapy, or with images with-
out contrast agents. These studies demonstrated the potential 
of AI in clinical precision medicine.

Breast cancer prognosis

Following the diagnosis of breast cancer, the most important 
application of the radiomic AI model would be in the predic-
tion of breast cancer prognosis. Conventionally, some clini-
cal features have been used as predictive factors, such as age, 
tumor size, axillary lymph node (ALN) metastasis, hormone 
receptor status, human epidermal receptor 2 (HER2) status, 
and Ki-67 index. ALN status is critical for predicting dis-
ease-free survival and overall survival in patients with breast 
cancer [39]. Sentinel lymph node biopsy (SLNB) is a widely 
accepted method that provides an accurate diagnosis of axil-
lary lymph node metastasis and avoids unnecessary axillary 
lymph node dissection (ALND) [40, 41]. Although SLNB 
is less invasive than ALND, it is associated with complica-
tions. Therefore, AI-based trials that predict ALN metastasis 
using noninvasive methods have been conducted. The ML 
model using MG [42] and the DL model using US images 
[43] and MRI [44] predicted appreciable ALN metastasis. 
A CNN using MRI divided the patients into three Oncotype 
DX Recurrence Score groups, with an accuracy of 0.81%. 
[36] An ML model using MRI predicted disease-specific 
survival with an AUC of 0.83 [45]. Radiomics showed that 
addition of radiomics to the conventional radiological pre-
diction workflow improves the prognostic value of breast 
imaging. A prospective study [46] using radiomics features 
extracted from pre-treatment US images identified recur-
rence with an accuracy of 82%. Radiomics features using 
MRI were associated with disease-free survival in patients 
with breast cancer [47].

Several approaches have been used, based on clinical 
characteristics or multigene assays, for prognosis prediction. 
AI-based prediction models that use breast images acquired 
in clinical settings may achieve repeatable and cost-effective 
decisions.

Perspectives on AI in clinical breast cancer 
imaging

Various AI models exist in breast imaging diagnosis, from 
those already in commercial use to those still in the research 
stage. AI models are already being used to assist radiolo-
gists in their diagnoses. They are known to be useful, but 
it will take some time before AIs that can replace radiolo-
gists are developed because several imaging studies using 
AI have been conducted for breast cancer. Most of these 
were retrospective studies, and large-scale prospective stud-
ies would be required in future to evaluate the usefulness 
and reproducibility of the developed AI. The most important 
factor in creating a highly accurate AI model is to acquire a 
large number of high-quality images and associated clinical 
information. In breast cancer treatment, diagnosis is often 
performed using a combination of several imaging modali-
ties, such as mammography, ultrasound, and MRI. An AI 
diagnosis or interpretation of results that combine modali-
ties is likely to be necessary in future. Diagnosing based 
on a combination of modalities requires more case data 
than diagnosing based on a single modality. To handle such 
large amounts of data, a system for sharing data, including 
image information, would be necessary. Image databases 
and program codes published online are useful for AI image 
research; however, the data sources are still insufficient. In 
addition, each imaging equipment manufacturer has its own 
platform; however, the environments in which it can be used 
are limited. More data and knowledge should be shared to 
implement better AI models in future. By having AI perform 
simple image-based diagnosis, radiologists may be able to 
concentrate on diagnosing each patient based on optimal 
image interpretation.

Conclusion

Research on breast cancer images using AI has been con-
ducted widely, ranging from risk prediction to breast cancer 
prognosis. The demand for diagnostic imaging is likely to 
increase because of the associated advantage of observing 
the entire lesion. Additionally, minimally invasive imaging 
modalities, such as ultrasound or non-contrast MRI, may 
attract more attention than ever before. We look forward 
to AI models with reproducibility and robustness and an 
environment that makes them easy to use.
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