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Abstract
Background Cholangiocarcinoma (CCA) is a rare malignant tumor of the biliary system. The heterogeneity of CCA leads to 
the lack of effective targeted treatment for CCA subtypes. The molecular characteristic of hilar CCA (hCCA) is still unclear.
Methods A total of 63 hCCA patients were enrolled from Shanghai Eastern Hepatobiliary Surgery Hospital. Formalin-fixed, 
paraffin-embedded tumor tissues, and matched blood were collected and deep sequencing targeting 450 cancer genes were 
performed. Tumor mutation burden (TMB) was measured by an algorithm developed in-house. Correlation analysis was 
performed by Fisher’s exact test.
Results The most commonly mutated genes were TP53 (51.7%), NF1 and KRAS (20%, for both), SMAD4 (16.7%), FAT3 
and FRS2 (13.3%, for both), NF1 (11.7%), and KMT2C, MDM2, and ATM (10%, for each) in hCCA. ARID1A, GATA6, 
and PREX2 mutations commonly occurred in female and KMT2C mutations mainly occurred in patients under 60 years 
old. Statistical analysis showed the association between ARID1A mutation and tumor stage (P = 0.041) and between NF1 
mutation and high TMB (P = 0.0095). Furthermore, ARID1B mutation was identified to associate with the poor prognosis 
of Chinese hCCA patients (P = 0.004).
Conclusion The mutational characterization of hCCA is different from both extrahepatic CCA and intrahepatic CCA. ARID1B 
is a potential biomarker for prognosis prediction of Chinese hCCA patients.
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Introduction

Cholangiocarcinoma (CCA) is a rare malignant tumor of 
the biliary system, which seriously threatens the life of 
patients [1]. According to the location of the disease, CCA 
was classified into intrahepatic CCA which is located within 
the hepatic parenchyma and extrahepatic CCA which con-
sisted of hilar CCA (hCCA) and distal CCA [2]. Surgery is 
still the effective treatment for early CCA, although only a 
small subset of patients could be diagnosis because of the 
unclear clinical symptoms of early CCA [3]. The insensi-
tivity of CCA to radiotherapy and chemotherapy leads to 
poor prognosis [4, 5]. Targeted therapy and immunotherapy 
based on biomarkers are effective treatments for malignant 
tumors [6–8]. However, there are few effective biomarkers 
for CCA, which need to be developed and explored for early 
identification and diagnosis.

The location-based classification is helpful to determine 
the preoperative treatment in clinic. Anyway, the boundary 
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between subtypes is still ambiguous [9]. The heterogeneity of 
CCA leads to the lack of effective targeted treatment for CCA 
subtypes differ in response to the treatment [10]. With the 
development of next-generation sequencing (NGS) technol-
ogy, it is possible to discover the differences among subtypes 
at the molecular level. Recent studies have shown that there are 
different molecular characteristics between intrahepatic CCA 
and extrahepatic CCA [11, 12]. Comprehensive whole-exome 
and transcriptome sequencing in a large cohort of 260 patients 
also revealed potentially targetable genetic driver alterations 
[13]. For example, the specific common mutations in intrahe-
patic CCA were IDH1, MCL1, PBRM1, FGFR2, and FGFR 
3/4/19, whereas FBXW7, ERBB2, and RBM10 in extrahepatic 
CCA [11–13]. NGS studies revealed the genomic heterogene-
ity of CCA subtypes potentially affecting the future therapy 
trials [11]. Although extrahepatic CCA can be divided into 
hCCA and distal CCA, the prognosis of them were differ-
ent. Waseem et al. reported that the mean survival of hCCA 
was lower than distal CCA, but similar to intrahepatic CCA 
[14]. Until now, few studies isolated hCCA and focused on its 
genomic characteristics.

In this study, we enrolled 63 Chinese hCCA patients to 
characterize their comprehensive genomic profiling, and 
aimed to identify the potential biomarkers for progno-
sis and provide evidence for further targeted therapy and 
immunotherapy.

Patients and methods

Patient enrollment and sample collection

From 2012 to 2019, 63 hCCA patients were enrolled from 
Shanghai Eastern Hepatobiliary Surgery Hospital accord-
ing to the tumor locations. Informed consent was obtained 
from all patients and this study was approved by the Insti-
tutional Ethics Committee of Shanghai Eastern Hepatobil-
iary Surgery Hospital. According to the results of computed 
tomography or magnetic resonance imaging, the patients 
were given the necessary jaundice-reducing treatment. After 
the total bilirubin was less than 5 times of normal, surgical 
resection was performed. The tumor tissue samples were 
fixed in formalin, and then were embedded in paraffin within 
24 h. Meanwhile, matched blood samples were collected as 
control. Formalin-fixed, paraffin-embedded (FFPE) tumor 
tissues containing at least 20% of tumor cells are considered 
to be composed of tumor tissue and can be used for further 
NGS detection.

Identification of genomic alterations and tumor 
mutation burden

DNAs of both FFPE tumor tissues and matched blood 
were obtained using QIAamp DNA FFPE Tissue Kit and 

QIAamp DNA Blood Midi Kit (Qiagen, Hilden, Germany), 
respectively, and sequenced using the next-generation 
sequencing-based YuanSu450™ gene panel of OrigiMed 
(Shanghai, China), from where the laboratory was certi-
fied by College of American Pathologists (CAP) and Clini-
cal Laboratory Improvement Amendments (CLIA). The 
genes were captured and sequenced with a mean depth of 
800 × using Illumina Nova (Illumina, Inc., CA). Genomic 
alteration was identified as following [15]: single-nucle-
otide variants (SNVs) were identified by MuTect (v1.7). 
Insertion–deletions (Indels) were identified using PINDEL 
(V0.2.5). The functional impact of genomic alterations was 
annotated by SnpEff3.0. Copy-number variation (CNV) 
regions were identified by Control-FREEC (v9.7) with the 
following parameters: window = 50 000 and step = 10 000. 
Gene fusions were detected through an in-house developed 
pipeline. Gene rearrangements were assessed by Integrative 
Genomics Viewer (IGV). Tumor mutation burden (TMB) 
was calculated by counting the coding somatic mutations, 
including SNVs and Indels, per megabase of the sequence 
examined in each patient.

Statistical analysis

Statistical analyses were performed using SPSS version 22.0 
(SPSS Inc., Chicago, IL, USA). The Kaplan–Meier method 
and Cox regression were used to analyze survival. Fish-
er’s exact test was used to analyze significant differences. 
P < 0.05 was considered statistically significant.

Results

Clinical characteristics of hCCA patients

A total of 63 hCCA patients with a median age of 59 years 
(range 38–85 years) were enrolled in this study. These sam-
ples consisted of 41 (65.1%) male and 22 (34.9%) female. 
According to the pathological examination records, the 
tumor of patients was classified into stage I (4/63, 6.4%), 
stage II (35/63, 55.6%), stage III (16/63, 25.4%), and stage 
IV (5/63, 7.9%). The tumor stage of 3 (4.8%) patients was 
unclear. Three of the 63 patients harbored hepatitis B virus 
and no one harbored hepatitis C virus. The 27% of patients 
were identified as lymph-node metastasis positive. 57 
(90.5%) patients have had radical surgery, and 54 of them 
were followed up, including 33 patients received postopera-
tive adjuvant chemotherapy, 15 patients did not receive post-
operative adjuvant treatment, and 6 patients with unknown 
postoperative treatment. According to intraoperative explo-
ration, 8 (12.7%) patients were diagnosed with vascular inva-
sion, 54 (85.7%) had no vascular invasion, and 1 patient 
had unknown information. According to Bismuth–Corlette 
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classification [16], 8 patients were type I, 9 patients were 
type II, 17 patients were type IIIa, 25 patients were type 
IIIb, 2 patients were type IV, and 2 patients with unclear 
Bismuth–Corlette type. Patients’ clinical or pathological 
information is summarized and shown in Table 1.

Genomic alterations in hCCA 

Three of the 63 patients did not detect the effective altera-
tions. A total of 545 clinically relevant genomic alterations 
in 263 genes were identified in 60 hCCA patients. All these 
alterations included 331 (60.7%) substitution/Indels, 102 
(18.7%) truncations, 89 (16.3%) gene amplifications, 21 
(3.85%) fusion/rearrangement, and 2 (0.37%) gene homozy-
gous deletions (Table S1). The most commonly mutated 
genes were TP53 (51.7%, 31/60), NF1 and KRAS (20%, 
12/60, for both), SMAD4 (16.7%, 10/60), FAT3 and FRS2 
(13.3%, 8/60, for both), NF1 (11.7%, 7/60), and KMT2C, 
MDM2, and ATM (10%, 6/60, for each) (Fig. 1). The most 
common mutations of ARID1A and SMAD4 were truncation 
mutant (10/12 and 7/10, respectively). The most common 
mutations of FRS2 and MDM2 were gene amplification (7/8 
and 6/6). Notably, FRS2 and MDM2 amplifications were 
occurred simultaneously in 6 patients (Fig. 1).

Correlations between mutated genes 
and the clinical characteristics of Chinese hCCA 
patients

To explore the potential biomarker, we performed associa-
tion analyses between mutated genes and clinical character-
istics such as gender and age. The most frequent mutated 
genes were TP53 (48.8%, 20/41), KRAS (17.07%, 7/41), 
SMAD4 (14.6%, 6/41), ATM and FAT3 (12.2%, 5/41, for 
both) in male, while TP53 (50%, 11/22), ARID1A (36.4%, 
8/22), KRAS (22.7%, 5/22), FRS2, KMT2C, NF1, and 
SMAD4 (18.2%, 4/22, for each) in female. Statistical anal-
ysis showed that the mutational frequencies of ARID1A 
(P = 0.017), GATA6 (P = 0.039), and PREX2 (P = 0.039) 
were significantly higher in female than in male patients 
(Fig. 2a).

Based on tumor stage, we classified stage I and II into a 
group, and stage III and IV into another group, and found 
that ARID1A mutations were mainly occurred in stage I/II 
group. Statistical analysis showed a significantly association 
between ARID1A mutations and tumor stage I/II (P = 0.041) 
(Fig. 2b). In this study, there were 8 patients with vascu-
lar invasion. Statistical analysis showed that there was an 
association between KRAS mutation and vascular invasion 
(P = 0.043) (Fig. 2c).

In this cohort, most of the patients were over 40 years 
old, including 9 patients under 50 years old (1 of them was 
38 years old), 14 patients between 50 and 59 years old, 29 

patients between 60 and 69 years old, and 11 patients over 
70 years old. Based on genomic alterations, we found the 
mutation of KMT2C mainly occurred in the patients under 
60 years old. Statistical analysis also showed a signifi-
cant association between age and the mutation of KMT2C 
(P = 0.002) (Fig. 2d). We also analyzed the clinical charac-
teristic of lymph-node metastasis and no significantly associ-
ated gene mutations were detected.

We identified the TMB value of 60 patients with clini-
cally relevant genomic alterations. The median TMB value 
was 3.8 mutations/Mb, ranged from 0 to 49.5 mutations/
Mb. To explore TMB-related mutations, we divided patients 
into mutant and wild-type groups for each mutated gene. 

Table 1  Clinicopathologic features of 63 hilar cholangiocarcinoma 
patients

Total 63
Age
 Median (range) 59 (38–85)

TMB
 Median (range) 3.8 (0–49.5)

Gender
 Male 41 (65.1%)
 Female 22 (34.9%)

Tumor stage
 I 4 (6.4%)
 II 35 (55.6%)
 III 16 (25.4%)
 IV 5 (7.9%)
 Not available 3 (4.8%)

Hepatitis B virus
 Positive 3 (4.8%)
 Negative 60 (95.2%)

Hepatitis C virus
 Positive 0 (0%)
 Negative 63 (100%)

Metastatic lymph nodes
 Yes 17 (27.0%)
 No 43 (68.3%)
 Not available 3 (4.7%)

Radical surgery
 Yes 57 (90.5%)
 No 4 (6.4%)
 Not available 2 (3.1%)

Postoperative chemotherapy
 Yes 37 (58.7%)
 No 17 (27.0%)
 Not available 9 (14.3%)

Vascular invasion
 Yes 8 (12.7%)
 No 54 (85.7%)
 Unknown 1 (1.6%)
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Our results showed that patients with NF1 mutation had a 
significant higher TMB than those without NF1 mutations 
(P = 0.0095) (Fig. 2e).

Bismuth–Corlette IIIa tumors located at the confluence 
of left and right hepatic ducts and invaded right hepatic 
ducts and Bismuth–Corlette Type IIIb tumors located at 
confluence of left and right hepatic ducts and invaded left 

hepatic ducts. We also analyze the association between 
mutated genes and Bismuth–Corlette subtype IIIa and IIIb. 
However, there were not any mutated genes associated 
with the invasion direction of the third subtype tumor was 
detected. Interestingly, a significant association between 
gender and invasion directions of Bismuth–Corlette sub-
type III tumor were identified (Fig. 2f).

Fig. 1  Mutational landscape of 60 Chinese hCCA patients. The 
X-axis shows each case sample and the Y-axis shows each mutated 
gene. The bar graph upside shows the TMB value of the patients. 
The bar graph on the right shows the numbers of each mutated gene. 

Green represents substitution/indel mutations, red represents gene 
amplification mutations, blue represents gene homozygous deletion 
mutations, yellow represents fusion/rearrangement mutations, and 
purple represents truncation mutations
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ARID1B and RBM10 mutations were associated 
with the disease‑free survival

Fifty-four patients with radical surgery were followed up and 
51 of them were detected the effect alterations. The median 
disease-free survival (DFS) was 16 months (ranged from 
1 to 54 months). Taking DFS as a continuous variable, we 
found the association between ARID1B and RBM10 muta-
tions and DFS. Survival curve analysis showed that patients 
harboring ARID1B and RBM10 mutations had a shorter DFS 
time than those without mutations (Fig. 3a). To further con-
firm this result, gender, age, TMB, and other clinical types of 
patients were considered, and a multivariate cox regression 
analysis was performed. The results showed that ARID1B 
(P = 0.004) mutations were still significantly associated with 
shorter DFS, while RBM10 did not associate with DFS any 
more (Fig. 3b). This result indicated that the association 
between RBM10 and DFS was easily neutralized by other 
clinical characters. Meanwhile, multivariate cox regression 
analysis also showed that gender (P = 0.023) might be a 
potential factor in response to the correlation between these 
mutated genes and DFS.

Actionable target mutations of hCCA 

Actionable alterations in various types of cancers were col-
lected and summarized by the OncoKB team, and 17 clinically 
relevant genes with 26 potential therapies for CCA [17], such 
as cobimetinib/binimetinib/trametinib were potential target 
drug for KRAS mutations, debio1347/BGJ398/erdafitinib/
AZD4547 were potential target drug for FGFR mutations, 
and trametinib/cobimetinib was potential target drug for NF1 
mutations. In this cohort, there were 12 actionable mutated 
genes in 34 (54%) hCCA patients. The most common drug tar-
get mutations were KRAS (19.05%), FGFR (15.87%), and NF1 
(11.11%) (Table 2). Interestingly, cobimetinib is the potential 
target drug for both KRAS mutation and NF1 mutation, and 
our data showed that nearly 30.16% (19/63) of hCCA patients 
harboring KRAS mutations or NF1 mutations may potentially 
benefit from it.

Fig. 2  The correlation between mutated genes and gender (a), tumor stage (b), vascular invasion (c) age (d), and TMB (e). The significant differ-
ences were marked with * for P < 0.05
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Discussion

CCA is a tumor with high heterogeneity, which occurred in 
the locations of intrahepatic, hilar, and distal common bile 
duct. Previous studies have suggested that hCCA and distal 
CCA are included in extrahepatic CCA, thus distinguishing 
them from intrahepatic CCA [18]. However, some intrahe-
patic CCA is the invasion of hCCA [18]. Akita et al. divided 
the intrahepatic CCA into perihilar CCA and peripheral 

CCA based on histologic [19]. Particularly, hCCA have 
been variably and inconsistently coded as either intrahepatic 
CCA or distal CCA. Although these three types of CCA are 
distinct in their presentation and natural history, as well as 
the approach to diagnosis and management [20, 21], few 
hCCA molecular characteristics have been reported. Here, 
we enrolled 63 hCCA patients and identified the mutational 
profile. In addition to the most common mutations of TP53, 
KRAS, SMAD4, ARID1A, and CDKN2A/B in CCA [20–22], 

Fig. 3  Correlation analysis between mutated genes and disease-free 
survival (DFS). a Kaplan–Meier curves of the DFS in patients with 
(red)/without (blue) ARID1B and RBM10 mutations. b Multivariate 

cox regression analysis to confirm the correlation between DFS and 
ARID1B and RBM10 mutations. Forest plot showed the risk of DFS 
in various subgroups of patients such as gender, age, and tumor grade
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the high mutation frequencies of MDM2 and FRS2 were 
detected in hCCA.

MDM2 and FRS2 are located at 12q13-15 chromosomal 
band and they are close to each other. This may be the main 
reason for the co-amplification of MDM2 and FRS2 in this 
cohort. Amplification of 12q13-15 region often occurred 
in liposarcoma tumors and low-grade osteosarcoma [23]. 
Previous studies showed that FRS2 and MDM2 amplifica-
tion associated with the differentiation of liposarcoma [24]. 
FRS2 is a downstream binding protein of tyrosine kinase 
receptor and involved in the process of cell differentiation, 
proliferation, and tumorigenesis [25]. FRS2 can be phospho-
rylated by FGFRs to activate downstream pathways, such as 
MAPK and PI3K/Akt/mTOR pathways, so as to make tumor 
progress [25, 26]. In breast cancer, FRS2 is a biomarker 
with high risk of tamoxifen adjuvant therapy [27]. The high 
frequency of MDM2 and FRS2 amplification in hCCA sup-
ported the specific molecular mutational feature of hCCA, 
which may provide evidence for further precision medicine 
of hCCA.

KMT2C is a tumor suppressor due to its frequent muta-
tions in multiple types of tumors [28–30]. KMT2C is associ-
ated with the poor prognosis in acute myeloid leukemia [31]. 
While in breast cancer, the association between KMT2C 
mutation and prognosis is controversial [32, 33]. Wang 
et al. reported that KMT2C mutations were more frequently 
occurred in patients over 50 years [33]. While in this study, 
the patients with KMT2C mutation were all under 60 years 
old, which indicated the association between KMT2C and 
age in hCCA. However, the function of KMT2C mutations 
is limited [33, 34].

NF1 encodes a GTPase activating protein and functions 
as a tumor suppressor gene in immature myeloid [35, 36]. 
Mutations of NF1 may lead to increased proliferation and 
tumorigenesis [37]. In CCA, low frequency of NF1 muta-
tion was detected [12, 20–22]. A similar mutation frequency 

of NF1 in hCCA to intrahepatic CCA was detected in this 
study. Also, we first identified the association between NF1 
mutation and high TMB in CCA. High TMB means to have 
more potential opportunity to benefit from immunotherapies 
[38, 39]. PD-L1 expression is also a biomarker for immu-
notherapy prediction [40]. Mou et al. reported intrahepatic 
CCA patients with high TMB and PD-L1-positive which 
exhibited a successful response to the combination of immu-
notherapy and chemotherapy [41]. Wang et al. also showed 
increased expression of PD-L1 on NF-associated tumors 
[42]. Together, our result implied that patients with NF1 
mutation may have potential opportunity to be benefit from 
Immunotherapy.

ARID1A mutation is a frequent event in endometriosis-
related ovarian carcinomas [43]. Low expression of ARID1A 
correlates with poor prognosis in intrahepatic CCA [44]. 
Although we did not detect the correlation between ARID1A 
mutation and DFS in this study, we found the significant 
association between ARID1A mutation and early tumor. 
ARID1A mutation and GATA 6 mutation were associated 
with gender in this study. These results are similar with the 
previous study in kinds of cancers [45, 46]. The previous 
study showed that GATA6 was a new predictor for poor 
prognosis of ovarian cancer [47]. Interestingly, our results 
also showed that gender may be a potential factor associated 
with DFS. These results implied the possible association 
between ARID1A and GATA6 mutations and the prognosis 
of female hCCA patients. However, further confirmation is 
still needed.

Vascular invasion is associated with high tumor grade 
[48]. There were 8 patients with vascular invasion in this 
study and all of them were of high tumor stage (III/IV). 
Interestingly, the association between KRAS mutation and 
vascular invasion were identified. KRAS mutation is a pre-
dictor for poor prognosis in many cancers [49, 50]. Similarly, 
although patients with KRAS mutation may benefit from 

Table 2  Comparative analysis 
of druggable genes in hCCA, 
intrahepatic CCA, and 
extrahepatic CCA 

GENES Drugs hCCA (%) Intrahepatic 
CCA (%)

Extra-
hepatic 
CCA 

KRAS Cobimetinib, Binimetinib, Trametinib 19.05 28.70 46.00
CDKN2A Abemaciclib, Palbociclib, Ribociclib 7.94 15.20 20.00
BRAF PLX8394 3.17 4.30 8.00
IDH1 Ivosidenib 0.00 23.30 2.50
ATM Olaparib 7.94 4.90 3.75
PTEN AZD8186, GSK2636771 6.35 1.80 1.25
MET Crizotinib 4.76 5.50 1.25
NF1 Trametinib, Cobimetinib 11.11 6.10 NA
FGFR1/2/3 Debio1347, BGJ398, Erdafitinib, AZD4547 15.87 12.80 NA
NTRK3 Larotrectinib, Entrectinib 1.59 NA NA
CDK12 Pembrolizumab, Nivolumab, Cemiplimab 4.76 NA NA
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cobimetinib/binimetinib/trametinib, our results also support 
that patients with KRAS mutations may have a higher risk of 
vascular invasion and poor prognosis.

Mutations in the ARID1B gene, which shares approxi-
mately 60% similarities in amino acid sequence with 
ARID1A, are a component of SWI/SNF chromatin remod-
eling complex and may play a role in cell cycle activation 
[51]. It is reported that the low expression of ARID1B is 
associated with the poor prognosis in bladder urothelial car-
cinoma and ovarian clear cell carcinoma [52, 53]. RBM10 is 
involved in the tissue damage repair and plays an important 
role in tumor progression in many cancer types [54–57]. The 
mutation of RBM10 was associated with the poor progno-
sis in lung adenocarcinoma [58]. In this study, our results 
showed the significant association between the mutations of 
ARID1B and RBM10 and short DFS. Further multivariate 
cox regression analysis confirms the associations between 
ARID1B and DFS, but not support the association between 
RBM10 and DFS. This may be due to the small cohort in this 
study. However, our results supported that Chinese hCCA 
patients with ARID1B mutation may have a poor prognosis. 
In total, we first reported the association between the muta-
tion of ARID1B and short DFS, and suggested that ARID1B 
may be a potential prognosis biomarker for hCCA.

So far, there have been many studies on the mutation char-
acteristics of CCA [21]. Previous studies have shown that the 
molecular characteristics of patients from different regions are 
different [12, 20]. All cases come from a single case center 
is a deficiency of this study. It is possible that the mutation 
characteristics of hCCA patients in this study may be different 
from those in other parts. To avoid the differences caused by 
regions, we compared the mutational characteristics of Chi-
nese hCCA, intrahepatic CCA [22], and extrahepatic CCA 

[20]. The most common mutations of intrahepatic CCA were 
TP53, ARID1A, CDKN2A/B, TERT, IDH1/2, FGFR1/2/3/4, 
PBRM1, and SMAD4 [22]. While the most common mutations 
of extrahepatic CCA were TP53, KRAS, SMAD4, ARID1A, 
CDKN2A/B, TERT, and RBM10 [20]. In this study, the high-
frequency mutations were TP53, KRAS, ARID1A, SMAD4, 
FGFR1/2/3/4, FRS2, CDKN2A/B, and MDM2. Compared 
with the most common mutated genes from intrahepatic CCA 
and extrahepatic CCA, we described the molecular charac-
teristic of hCCA as follows: (I) Gene mutations similar to 
those in intrahepatic CCA, including TP53, KRAS, FGFR, 
PBRM1, and NF1. The mutational frequencies of TP53 and 
KRAS were significantly lower in hCCA and intrahepatic CCA 
than in extrahepatic CCA. Mutation information of FGFR, 
PBRM1, and NF1 from extrahepatic CCA was not available. 
(II) The mutational frequency of IDH1 was significantly lower 
in hCCA than in intrahepatic CCA, but similar to that of extra-
hepatic CCA. (III) Genes with higher mutational frequency in 
hCCA than in intrahepatic CCA and extrahepatic CCA, such 
as MDM2 and FRS2. (IV) Mutations in hCCA are similar 
to those in intrahepatic CCA and extrahepatic CCA, such as 
SMAD4, ARID1A, CDKN2A/B, TERT, and RBM10. Interest-
ingly, there was a significant difference in SMAD4 mutation 
frequency between intrahepatic CCA and extrahepatic CCA, 
but no significant difference between hCCA and both intrahe-
patic CCA and extrahepatic CCA (Fig. 4). Meanwhile, lower 
frequency of KRAS, CDKN2A, BRAF, and IDH1, and higher 
frequency of ATM and PTEN were in hCCA. These results 
indicated less opportunity to benefit from the therapy of cobi-
metinib/binimetinib/trametinib (KRAS), abemaciclib/palboci-
clib/ribociclib (CDKN2A), PLX8394 (BRAF), and ivosidenib 
(IDH1), and more opportunity to benefit from the therapy 
of olaparib (ATM) and AZD8186/GSK2636771 (PTEN) in 

Fig. 4  Comparative analysis of 
high frequently mutated genes 
in hCCA (blue), intrahepatic 
CCA (red), and extrahepatic 
CCA (green). The X-axis 
represents the most mutated 
genes and the Y-axis represents 
the mutation frequency of each 
gene in different CCA subtypes. 
The significant differences were 
marked with * for P < 0.05, 
** for P < 0.01, and *** for 
P < 0.001, NA not available
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hCCA. Although no available alteration mutations in extra-
hepatic CCA, the frequency of NF1 was higher in hCCA than 
in intrahepatic CCA. This indicated the more opportunity to 
benefit from trametinib and cobimetinib in hCCA. In general, 
the opportunity to benefit from target drug of hCCA patients 
were different from those of intrahepatic CCA and extrahepatic 
CCA. Few studies reported the mutation characteristic of distal 
CCA. Although we failed to compare the molecular charac-
teristics between hCCA and distal CCA, our results supported 
that hCCA is different from the previously reported intrahe-
patic CCA and extrahepatic CCA. The specific molecular fea-
ture of hCCA is of great significance in guiding the target drug 
treatment and further precision therapy of CCA.

In conclusion, we firstly identified mutational landscape 
of hCCA and detected the correlation between mutated gene 
and clinical characteristics. Our results suggested potential 
biomarkers such as ARID1B, for potential therapy and prog-
nosis of Chinese hCCA. Objectively, the single sampling and 
the small number of samples are shortcomings of this study. 
Further study with the expanded number of samples is still 
needed to confirm and supplement our results here. However, 
our research provided the molecular evidence that hCCA dif-
fers from intrahepatic CCA and extrahepatic CCA, and pro-
vided the evidence for guiding precise therapeutic strategies 
of Chinese hCCA.
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