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Abstract
Lynch syndrome is a cancer-predisposing syndrome inherited in an autosomal-dominant manner, wherein colon cancer and 
endometrial cancer develop frequently in the family, it results from a loss-of-function mutation in one of four different genes 
(MLH1, MSH2, MSH6, and PMS2) encoding mismatch repair proteins. Being located immediately upstream of the MSH2 
gene, EPCAM abnormalities can affect MSH2 and cause Lynch syndrome. Mismatch repair proteins are involved in repairing 
of incorrect pairing (point mutations and deletion/insertion of simple repetitive sequences, so-called microsatellites) that can 
arise during DNA replication. MSH2 forms heterodimers with MSH6 or MSH3 (MutSα, MutSβ, respectively) and is involved 
in mismatch-pair recognition and initiation of repair. MLH1 forms a complex with PMS2, and functions as an endonuclease. 
If the mismatch repair system is thoroughly working, genome integrity is maintained completely. Lynch syndrome is a state 
of mismatch repair deficiency due to a monoallelic abnormality of any mismatch repair genes. The phenotype indicating the 
mismatch repair deficiency can be frequently shown as a microsatellite instability in tumors. Children with germline bial-
lelic mismatch repair gene abnormalities were reported to develop conditions such as gastrointestinal polyposis, colorectal 
cancer, brain cancer, leukemia, etc., and so on, demonstrating the need to respond with new concepts in genetic counseling. 
In promoting cancer genome medicine in a new era, such as by utilizing immune checkpoints, it is important to understand 
the genetic and genomic molecular background, including the status of mismatch repair deficiency.
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Abbreviations
MMR	� Mismatch repair
MSI	� Microsatellite instability
PCNA	� Proliferating cellular nuclear antigen
RFC	� Replication factor
CTE	� Congenital tufting enteropathy
CMMR-D	� Constitutional mismatch repair deficiency
CNS	� Central nervous system
IHC	� Immunohistochemical staining
MLPA	� Multiple ligation-dependent probe 

amplification

CTLA-4	� Cytotoxic T-lymphocyte-associated protein 4
PD-1	� Programmed cell death protein 1
TMB	� Tumor mutational burden
ICI	� Immune checkpoint inhibitor

Introduction

Cancer is fundamentally a genetic disease, and mutations 
(pathogenic variants) are pivotal to its etiology and progres-
sion. Carcinogenesis develops by accumulation of numer-
ous genetic and epigenetic abnormalities [1–4]. Therefore, 
cancer has the following characteristics: sustained prolif-
erative signaling, evasion of growth suppressors, resistance 
cell death, replicative immortality, angiogenesis induction, 
and activation of invasion and metastasis [5]. Therefore, 
elucidation of its etiology and development of therapeutic 
measures is essential [6]. Although rare, hereditary (famil-
ial) cancer syndromes are observed in cancers derived from 
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any organ. In individuals with hereditary cancer syndrome, 
the initial cancer-causing mutation is inherited through the 
germline and therefore, is already present in every cell of 
the body. Lynch syndrome (MIM# 120435) is a highly pen-
etrant autosomal-dominant syndrome characterized by sev-
eral individuals in the family affected with colorectal cancer 
(CRC) or extracolonic tumors of the endometrium, stomach, 
small bowel, ureter, renal pelvis, ovary, and hepatobiliary 
tract [7]. Lynch syndrome occurs due to loss-of-function 
of the mismatch repair mechanism for genomic replication 
errors. This article outlines the basis of molecular genetics 
involved in Lynch syndrome.

DNA repair system

Large numbers of cell division are required to produce an 
individual with an estimated 37 trillion cells from a single-
cell zygote. The frequency of replication errors is 10−10 per 
base of DNA per cell division, and in an estimated 1015 cell 
divisions during an individual’s lifetime replication errors 
cause thousands of new DNA mutations in the genome 
in every cell. Eukaryotes possess multiple repair systems 

to avoid replication errors (Table 1). Protecting integrity 
through genome repair prevents cancer development and 
progression by genomic abnormalities. Genes encoding 
molecules involved in genome repair are referred to as DNA 
repair genes, and as “caretaker tumor suppressor genes”.

The mismatch repair system was recognized in 1961, 
with proposal that the correction of DNA base pair mis-
matches within recombination intermediates is the basis 
for gene conversion [8]. Elucidation of the mismatch repair 
system was followed by fundamental research based on 
Escherichia coli [9]. The methyl-directed pathway depends 
on the products of four E. coli mutator genes: mutH, mutL, 
mutS, and uvrD [10–12]. Inactivation of any of these genes 
increases the generation of mutations in the E. coli cell by 
50- to 100-fold, indicating the importance of this pathway 
in mutation avoidance and genetic stability. The reduction 
in mutability afforded by the E. coli methyl-directed system 
has been attributed to its role in the strand-specific elimina-
tion of DNA errors (Table 2) [6, 13–18]. Research on the 
mismatch repair system has advanced extensively and has 
clarified its mechanism and role as an essential mechanism 
for maintaining genome integrity in organisms and involved 
in predisposition to cancer development.

Table 1   DNA repair systems and predisposition to cancer

DNA repair Damage Characteristics Predisposition

Base excision repair (BER) Single strand Repair mechanism for a single nucleotide 
in a single strand of DNA that is gener-
ated through oxidation (e.g., 8-oxogua-
nine), alkylation (e.g., methylation), and 
deamination. No ATP required

MUTYH-associated polyposis (MAP)

Nucleotide excision repair (NER) Single strand Repair mechanism against damage that 
causes DNA structure change over several 
tens of base pairs via pyrimidine dimer 
formation by ultraviolet exposure. ATP 
required

Xeroderma pigmentosum
Cockayne syndrome

Mismatch repair: (MMR) Single strand Repair mechanism of base mismatch pair-
ing caused in DNA replication (S phase). 
Usually, it corresponds to an error of one 
to several base pairs. ATP required

Lynch syndrome

Proofreading repair Single strand It occurs during DNA replication. In E. 
coli, 3ʹ→5ʹ exonuclease of DNA poly-
merase I has this function. In humans, 
involvement of enzymes other than DNA 
polymerase is also conceivable

Polymerase proofreading-associated 
polyposis (PPAP)

Homologous recombination (HR) Double strand When double-stranded breaks occur in S 
phase/G2 phase, the cleaved portion of 
a normal allele is used as the template 
DNA. This mechanism restores the origi-
nal sequence by recombination

Hereditary breast and ovarian cancer 
(HBOC)

Non-homologous end-joining (NHEJ) Double strand In double-strand breaks in the G1 phase, 
this repair mechanism concentrates mul-
tiple molecules on the excised ends and 
directly combines them. In this repair, 
some nucleotides around the break part 
may be missing in some cases

LIG4 syndrome
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Genes responsible for Lynch syndrome

Lynch syndrome (alias: hereditary nonpolyposis colorec-
tal cancer—HNPCC) is an autosomal-dominant inherited 
disorder caused by germline mutations in DNA mismatch 
repair (MMR) genes. Patients with Lynch syndrome are 
at an increased risk of developing tumors from a young 
age and throughout their lifetime. Most of them suffer 
from multiple synchronous and/or metachronous pri-
mary tumors. Colorectal cancer and endometrial cancer 
(female) are well known in the tumor spectrum of Lynch 
syndrome. In addition, patients with Lynch syndrome have 
high potential for developing cancer of the urinary tract, 
the stomach, the small intestine, the biliary tract, the skin, 
the brain, and others.

Many human mismatch repair (MMR) proteins are 
known, and several encoding genes have been isolated so 
far. Currently, four types of MMR genes, MLH1 (MIM# 
120436), MSH2 (MIM# 609309), MSH6 (MIM# 600678), 
and PMS2 (MIM# 600259), are used in the clinic applica-
tions related to Lynch syndrome. An outline of the respon-
sible genes is shown in Table 3 and Fig. 1. The EPCAM, 
which encodes a cell adhesion molecule, is not an MMR 
gene. However, structural abnormality in EPCAM may 
cause Lynch syndrome, because it is adjacent to the MSH2 
gene [19].

In 1993, two research groups independently isolated 
MSH2, a human mismatch repair gene that is highly 
homologous to the mutator phenotype gene, mutS of E. 
coli [20, 21]. Genomic MSH2 covers approximately 73 kb 
and contains 16 exons and is mapped to chromosome 
2p22-p21 [22, 23]. In 1994, as the second responsible gene 
of Lynch syndrome, MLH1, the E. coli mutL homologue, 
was isolated from 3p22.2 according to the mapping in the 
previous year [24, 25]. Human MLH1 consists of 19 cod-
ing exons spanning approximately 100 kb and is highly 
conserved in especially in exons 1–7 [26]. In 1995, mis-
match binding factors were found as the 100 kDa MSH2 or 
as heterodimers of the 160 kDa polypeptide called GTBP 
(for G/T binding protein). Using sequence analysis, GTBP 
was recognized as a new member of the MutS homologue 
[27, 28]. MSH6 (GTBP) was first reported by Japanese 
researchers as a gene responsible for Lynch syndrome [29, 
30]. In 1994, a germline deletion of the PMS2 was also 
identified in families with Lynch syndrome. Moreover, 
additional deletions in tumor samples with microsatellite 
instability (MSI)-high showed the presence of two-hits 
[31], indicating that there are pseudogenes corresponding 
to the PMS2, and that careful consideration is required for 
genetic testing [31, 32].

Table 2   DNA repair system for replication errors in Escherichia coli 

Step Pathway Protein activities Mutation rate per 
nucleotide per gen-
eration

1 DNA synthesis 5′ → 3′-elongation activity of DNA polymerase III(α) (1000 
nucleotides/s)

10−5–10−6

2 Proofreading 3′ → 5′-exonuclease activity of DNA polymerase III(ε) 10−7

3 Mismatch correction Mismatch correction proteins Mut S, Mut L, Mut H, etc. 10−9–10−10

Table 3   Mismatch repair genes

Gene MIM Locus No. of exons CDS (nt) Product 
no. of 
AA

Product 
MW 
(kDa)

Function of product

MLH1 *120436 3p22.2 19 2271 756 84.6 Heterodimerizes with PMS2 to form MutLα, a component of the 
post-replicative DNA mismatch repair system (MMR)

MSH2 *609309 2p21 16 2805 934 104.7 Forms two different heterodimers: MutSα (MSH2-MSH6 heter-
odimer) and MutSβ (MSH2-MSH3 heterodimer) which binds to 
DNA mismatches thereby initiating DNA repair

MSH6 *600678 2p16.3 10 4083 1360 152.8 Heterodimerizes with MSH2 to form MutSα, which binds to DNA 
mismatches thereby initiating DNA repair

PMS2 *600259 7p22.1 15 2589 862 95.8 This protein forms heterodimers with MLH1 to form the MutLα 
heterodimer
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Structure and function of MMR proteins

Each MMR protein encoded by the corresponding MMR 
gene has a unique function in repairing replication errors. 
Therefore, MMR proteins possess unique functional domains. 
When mutations of MMR genes occur in the DNA site corre-
sponding to the functional domain, DNA repair function may 
be impaired. Schematic representations of MLH1, MSH2, 
MSH6, and PMS2 proteins are shown in Fig. 2 [33–37]. Both 
MLH1 and PMS2 have an ATP binding domain and require 
ATP molecules for the endonuclease function.

Many human MMR-related proteins have been identi-
fied as homologues of E. coli MMR proteins (Table 4) 
[21–28, 38–48]. These include human homologues of 
MutS, MutL, ExoI, DNA polymerase δ (pol δ), prolifer-
ating cellular nuclear antigen (PCNA), replication fac-
tor (RFC), and DNA ligase I. Although, MutS and MutL 
proteins of E. coli form homodimers and perform DNA 
repair functions, functional heterodimer formation is nec-
essary in humans. MSH2 heterodimerizes with MSH6 or 
MSH3 to form MutSα or MutSβ, respectively. These are 
involved in the mismatch-pair recognition and initiation 
of repair [49–53]. In particular, MutSβ recognizes the 
insertion/deletion loop. On the contrary, MLH1 heterodi-
merizes with PMS2, PMS1, or MLH3 to form MutLα, 
MutLβ, MutLγ, respectively [36, 37, 39, 50, 51, 53–59]. 
MutLα is a latent endonuclease, that forms a complex 
with MutS heterodimer, and breaks one chain of the het-
eroduplex DNA strand with mismatch pairs [57]. The 
DQHA(X)2E(X)4E motif of PMS2 is probably involved in 
this nick forming function. MutLβ is one of the endonucle-
ases acting on single-strand breaks in DNA, but its specific 
function is still unclear. MutLγ is an endonuclease target-
ing single-strand breaks in supercoiled DNA and plays an 
important role in meiosis [60–62].

MSH2 (2p21) 

MLH1 (3p22.2) 

PMS2(7p22.2) 

MSH6 (2p16.3) 

Human homolog of the E. coli  
 DNA mismatch repair gene mutL 

 Consistent with the characteristic 
 alterations in microsatellite  
 sequences (RER+ phenotype)  

Stabilization of the complex  
   formed with PMS2 (MutLα)  

Cleavage of the DNA chain  
   near both sides of the  
   mismatched nucleotides 

Forming a heterodimer 
   with MLH1 

This complex interacts 
   with other complexes 
    bound to mismatched  
    bases.  MSH6 protein combines with  

   MSH2 to form a mismatch  
   recognition complex (MutSα) 

Similar to the MutS protein 
Recognition of mismatched  

   nucleotides, prior to their repair  

EPCAM (2p21) 
epithelial cellular adhesion  

molecule (EPCAM) 
The mutations involved in  

Lynch syndrome remove a region 
  that signals the end of the gene 

Chr. 2 Chr. 3 

Chr. 7 

Fig. 1   The genes responsible for Lynch syndrome
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Fig. 2   Structure of mismatch repair proteins: a MLH1, b MSH2, c 
MSH6, d PMS2
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Mechanisms of mismatch repair

The mismatch repair (MMR) system consists of sequential 
steps for the recognition, removal, and re-synthesis of the 
mismatch site in DNA. This system that maintains DNA 
fidelity is well conserved from E. coli to eukaryotes. A sche-
matic diagram of the pathway is shown in Fig. 3 [52, 57, 
59, 61–72]. Base–base mismatches in double-strand DNA 
are recognized by MutSα (heterodimer of MSH2-MSH6). 
MutSα binds as a sliding clamp around the double-strand 
DNA. In this step, MSH2 requires ATP for sliding of the 
MutSα clamp on the double-strand DNA [73]. The ATP-
activated state of MutSα can interact with MutLα (heter-
odimer of MLH1-PMS2 and forms a tetrameric complex) 
[74–76]. The tetrameric complex slides up and down the 
double-strand DNA and searches a single-strand DNA gap 
on the nascent (daughter) strand that recruits proliferat-
ing cell nuclear antigen (PCNA) and Replication factor C 
(RFC). MutLα can incise the nascent (daughter) strand upon 
activation by PCNA [57, 77]. Then, exonuclease 1 (Exo 1) is 
recruited and removes the nascent (daughter) strand around 
the error region. The re-synthesis step is accomplished by 
DNA polymerase (Polδ or Polε) and Ligase 1.

MSH2 and MLH1 each have an ATPase domain whose 
product functions in a biological reaction by ATP-hydroly-
sis (Fig. 2). An ATP-hydrolysis reaction is necessary when 
MutSα recognizes a mismatch site or when MutLα forms a 
nick in the DNA strand [78–81]. Therefore, it is presumed 
that completion of the MMR pathway requires consumption 
of some energy.

Relationship between MMR system and DNA 
damages

Depending on the DNA damage pattern, specific mismatch 
repair molecules and complexes are involved (Fig. 4) [49, 
63, 65, 82–85]. The MutSα (heterodimer of MSH2-MSH6) 

Table 4   Human MMR 
components

Component Function

MutSα (MSH2-MSH6) DNA mismatch/damage recognition
MutSβ (MSH2-MSH3) DNA mismatch/damage recognition
MutLα (MLH1-PMS2) Molecular matchmaker; endonuclease, termination of 

mismatch provoked excision
MutLβ (MLH1-PMS1) Endonuclease, single-strand breaks in DNA
MutLγ (MLH1-MLH3) Endonuclease, single-strand breaks in supercoiled DNA
EXOI DNA excision; mismatch excision
DNA polymerase δ (Pol δ) DNA re-synthesis
Proliferating cellular nuclear antigen (PCNA) Initiation of MMR; DNA re-synthesis
Replication factor C (RFC) PCNA loading; 3′ nick-directed repair, activation of 

MutLα endonuclease

5’ 
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3’ 
5’ 

5’ 
3’ 
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Fig. 3   Mechanistic model of mismatch repair



1004	 International Journal of Clinical Oncology (2019) 24:999–1011

1 3

contributes to mismatch recognition by single nucleotide 
substitution (e.g., G:T mismatch pair) and recognition of 
small insertion–deletion loops (IDL, e.g., error of the repeat 
number in adenine clusters), whereas MutSβ (heterodimer of 
MSH2-MSH3) contributes to the repair of small loops and 
relatively large damages up to about 10 nucleotide loops. 
Recently, the function of MutSβ has attracted attention for 
its biological characteristics and as a prognostic factor of 
elevated microsatellite instability at selected tetranucleotide 
(EMAST) colorectal cancer, which shows instability in the 
repeat sequence of the tetranucleotides [86–90]. The clinical 
characteristics are presumed to involve the MSH3 deficiency 
state.

MutL function mainly involves MutLα, a heterodimer 
of MLH1 and PMS2. However, MutLγ, a heterodimer of 

MLH1 and MLH3, is involved in repair in the case of insta-
bility greater than a trinucleotide repeat.

EPCAM as the gene responsible for Lynch 
syndrome

EPCAM is located at 2p21 adjacent to the MSH2 on the 5’ 
upstream, and encodes the EpCAM protein, expressed on 
the membrane of cells in epithelial tissues and plasma cells, 
and is deeply involved in the function of cell–cell interaction 
[91, 92]. Although EPCAM is not directly responsible for 
Lynch syndrome, it has a positional feature, as it is located 
17 kb upstream of MSH2. Monoallelic cis-deletions of the 
last exons of EPCAM result in loss of its polyadenylation, 
transcriptional read-through into MSH2 with mosaic promo-
tor methylation, and the generation of fused EpCAM–MSH2 
transcripts (Fig. 5) [19]. The cis-deleted alleles inhibit MSH2 
expression, and finally causes Lynch syndrome in 1–3% of 
the affected families [19, 93].

In addition, biallelic inactivation of EPCAM is responsi-
ble for congenital tufting enteropathy (CTE, MIM# 613217) 
with an estimated incidence of one in 50,000–100,000 births 
in Western Europe [94–96]. CTE presents within the first 
months of life with severe chronic watery diarrhea and 
growth restriction. EPCAM abnormalities responsible for 
CTE are usually missense mutations, nonsense mutations, 
minute insertions/deletions, and splicing errors, which differ 
in type from extensive deletions that cause the EPCAM-asso-
ciated Lynch syndrome [97]. Interestingly, in this case, one 

Fig. 4   Schematic of DNA damage recognized by the mismatch repair 
pathway

5’ 3’

EPCAM MSH2

EpCAM mRNA MSH2 mRNA

5’ 3’≪deletion≫

EpCAM-MSH2
fusion transcriptTranscriptional read-through

Lollipops: CpG sites in the promoter region
of the MSH2 gene

Black lollipops: methylated CpG sites

Lollipops: CpG sites in the promoter region
of the EPCAM gene

Lollipops: CpG sites in the promoter region
of the EPCAM gene

Fig. 5   A cis-deletion of EPCAM gene causes an epimutation of the MSH2 gene
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gene causes two unrelated genetic gastrointestinal disorders 
to be associated with different types of abnormalities.

Constitutional mismatch repair deficiency 
syndrome

Constitutional mismatch repair deficiency syndrome 
(CMMR-D) is caused by biallelic homozygous or com-
pound heterozygous pathogenic germline mutations of 
MMR genes, and is a distinct childhood cancer preposition 
syndrome (MIM# 276300) with an autosomal recessive 
inheritance [98]. This condition was clarified from two dif-
ferent reports on children from consanguineous marriages 
within families with Lynch syndrome and MLH1 germline 
mutations who developed malignancies in early childhood 
(age range 14 months to 6 years) [99, 100]. In 1959, a condi-
tion strongly suspected as CMMR-D was reported by Turcot 
et al. [101] in two siblings with numerous colorectal adeno-
matous polyps, colorectal carcinoma and malignant brain 
tumors. Later, this condition was considered as a subtype 
of familial adenomatous polyposis (FAP) called Turcot’s 
syndrome [102].

In biallelic germline mutation carriers of MMR genes, 
hematological malignancies, brain/central nervous system 
(CNS) tumors and Lynch syndrome-associated carcino-
mas develop frequently [98]. In the gastrointestinal tract, 
bowel adenomatous polyposes are often observed as pre-
malignant lesions that require differential diagnosis from 
FAP. The median age at diagnosis of hematological malig-
nancies and brain/CNS tumors was, respectively, 6.6 (age 
range 1.2–30.8) and 10.3 (age range 3.3–40) years. However, 
Lynch syndrome-associated tumors developed later [median 
age at diagnosis 21.4 years (age range 11.4–36.6)], and are 
mostly colorectal cancers [103]. Various non-neoplastic fea-
tures are related to CMMR-D including Cafe au lait spots 
(NF1 like), skin hypopigmentation, mild defects in immu-
noglobulin class switching recombination, agenesis of the 
corpus callosum, cavernous brain hemangioma, capillary 
hemangioma of the skin, combination of various congenital 
malformations, and Lupus erythematosus.

Lynch syndrome-associated tumors from patients with 
CMMR-D are considered to represent the characteristics of 
the DNA replication error as in the cases with Lynch syn-
drome. Thus, they often present with MSI-H findings, but 
not necessarily in all cases [103].

Genetic testing for Lynch syndrome

In order to select high-risk individuals with Lynch syndrome 
from among patients with colorectal cancer and to increase 
the efficiency of detecting germline mutations, microsatellite 

instability (MSI) testing and/or immunohistochemical stain-
ing (IHC) of MMR proteins is recommended as universal 
tumor screening, and should be conducted first [104–106]. 
The MSI testing facilitates easy identification of events in 
which genetic integrity has been damaged due to repair 
failures of DNA replication errors using simple repeated 
microsatellite sequences [107–111]. Five types of repeat-
markers including mononucleotide and dinucleotide repeats 
have been used, but recently mononucleotide repeat-markers 
have been preferred. Cases with different numbers of repeats 
between normal tissue-derived DNA and cancer-derived 
DNA are considered as positive [112]. If two of the five 
markers show instability, the tumor is evaluated as MSI-high 
(MSI-H). The results of MSI-H colorectal cancer are shown 
in Fig. 6. If one of the markers shows instability, the tumor 
is considered as MSI-low (MSI-L). If positive markers are 
not observed, the mismatch repair system is evaluated to be 
proficient and is called MS-stable (MSS).

Immunohistochemical staining of MMR proteins can 
reveal damaged molecules using specific antibodies. Stain-
ing with four antibodies—MLH1, MSH2, MSH6, and 
PMS2—can predict the gene causing Lynch syndrome, 
because the mismatch repair proteins form heterodimeric 
complexes (Table 5) [113–120].

For MSI testing, sensitivity ranged from 66.7 to 100.0% 
and specificity ranged from 61.1 to 92.5%, whereas for IHC 
staining, sensitivity ranged from 80.8 to 100.0% and speci-
ficity ranged from 80.5 to 91.9% [121].

Approximately 10–15% of sporadic colorectal cancers 
show MSI-H findings. The cause is mostly the loss of MSH1 
protein due to methylation of the MLH1 gene promoter 
region. About half of MSI-H sporadic colorectal cancers 
show BRAFV600E mutation, which is not detected in colo-
rectal cancers from patients with Lynch syndrome. MLH1 
methylation analysis and BRAF V600E mutation testing in 
colorectal cancers can reduce the number of samples and 
simplify the genetic testing for Lynch syndrome, leading to 
cost and time savings [35, 122].

Final genetic testing for Lynch syndrome is performed 
using DNA sequencing in selected cases excluding spo-
radic colon cancer from all colorectal cancers. For a long 
time, genetic testing has mainly been performed using 
Sanger sequencing, and multiplex ligation-dependent probe 
amplification (MLPA) has been adopted for a wide range 
of abnormalities such as large deletions/insertions [123]. 
Clinical genetics is currently transitioning from phenotype-
directed single gene testing to multigene panels [124]. Mul-
tigene panel testing using next generation sequencing for 
hereditary colorectal cancer has been evaluated as a feasible, 
timely, and cost-effective approach compared to single gene 
testing [125]. Previously, the distribution of germline muta-
tions in MMR and EPCAM genes in Lynch syndrome was 
thought to predominantly occur in MSH2 and MLH1, and 
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less frequently in MSH6 and PMS2. As a result of multi-
gene panel testing without universal tumor screening, Espen-
schied et al. reported that MSH6 mutations were the most 
frequent, followed by PMS2, MSH2, MLH1, and EPCAM 
(Table 6a) [123, 126–128]. About 12% of individuals carry-
ing MMR gene mutations have breast cancer alone. Moreo-
ver, even MMR gene mutation carriers do not necessarily 
meet the criteria for Lynch syndrome or the BRCA1/BRCA2 
testing criteria. However, MSH6 and PMS2 germline patho-
genic variants are associated with an increased risk for breast 
cancer [126, 129]. Figure 2 shows the gene-specific distri-
butions of germline variants by the types of abnormalities 
in mismatch repair genes. Most MSH2, MLH1, and MSH6 
pathogenic variants were truncated types such as nonsense 

mutations or frameshift mutations (Table 6b) [130]. A wide 
range of rearrangements were detected at 10, 7, and 10% for 
MSH2, MLH1 and PMS2, respectively. Therefore, selection 
of an appropriate analysis method is required for genetic 
testing.

Effectiveness of immune check point 
blockades and a hypermutable state (high 
tumor mutational burden)

As cancer cells escape the host immune system by sup-
pressing T cell activation, they have immunosuppressive 
functions attributed to immune checkpoint molecules. 
The immune checkpoint molecules include cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4) and pro-
grammed cell death protein 1 (PD-1, CD279) [131, 132], 
which were found to negatively control the immune system 
[133, 134]. In human cancer treatment, anti-PD-1 antibody 
was found to be effective for non-small cell lung cancer, 
malignant melanoma, and renal cell cancer, and was also 
clinically applicable in safety [135]. The clinical efficacy of 
PD-1 inhibitor was found to be higher in mismatch repair-
defective colorectal and non-colorectal cancers compared 
to proficient-mismatch repair cancers [136]. According to 
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Fig. 6   Analytic image of MSI testing: 4 out of 5 markers show microsatellite instability

Table 5   IHC findings associated with MLH1, MSH2, MSH6, and 
PMS2 mutations

Mutation of 
MMR genes

IHC staining

MLH1 MSH2 MSH6 PMS2

MLH1 − + + −
MSH2 + − − +
MSH6 + + − +
PMS2 + + + −
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recent findings, high tumor mutational burden (TMB) is an 
excellent biomarker for predicting the efficacy of immune 
checkpoint inhibitors (ICIs) [137, 138], and the group of 
colorectal cancer patients with the biological characteris-
tics of deficient mismatch repair (dMMR) has a significantly 
better response to ICIs than those with proficient mismatch 
repair (pMMR) [136, 139]. In gastrointestinal cancer, the 
state of microsatellite instability high (MSI-H) state has 
been shown to correlate well with high TMB based on an 
analysis of many cancer genomes [140]. The microsatellite 
instability (MSI) testing is used as a standard biomarker to 
predict the response of ICIs  [141, 142].

Future directions

The long-term and detailed research on two families 
with familial accumulation of various cancers conducted 
100 years ago has subsequently led to the establishment of 
Lynch syndrome. On the other hand, mismatch repair genes 
have been elucidated as part of the genome integrity sys-
tem in E. coli and yeast. These researchers worked together 
to understand the clinical, genetic, and molecular biology 
aspects of Lynch syndrome. With its natural history and 
molecular biological characteristics clarified, pre-sympto-
matic diagnosis by genetic testing for at-risk persons in the 
family and appropriate medically actionable interventions, 
such as early diagnosis, are becoming possible.

The development of ICIs is a major milestone in the 
treatment of Lynch syndrome, where the associated can-
cers are with almost MSI-H. These studies have shown 
new possibilities for the treatment of familial (hereditary) 
tumor syndrome. In future, we hope that advances in the 
integrated understanding of the clinical and molecular 

biology of Lynch syndrome will lead to the development 
of new effective treatments.
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