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Abstract
Background To propose a semi-automatic method for distinguishing invasive ductal carcinomas from benign lesions on 
breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).
Methods 142 cases were included. In the conventional method, the region of interest for a breast lesion was drawn manually 
and the corresponding mean time–signal intensity curve (TIC) was qualitatively categorized. Only one quantitative parameter 
was obtained: the maximum slope of increase (MSI). By contrast, the proposed method extracted the suspicious breast lesion 
semi-automatically. Besides MSI, more quantitative parameters reflecting perfusion information were derived from the mean 
TIC and lesion region, including the signal intensity slope  (SIslope), initial percentage of enhancement, percentage of peak 
enhancement, early signal enhancement ratio, and second enhancement percentage. The mean TIC was categorized quanti-
tatively according to the value of  SIslope. Regression models were established. The diagnostic performance differed between 
the new and conventional methods according to the Wilcoxon rank-sum test and receiver operating characteristic analysis.
Results According to the TIC categorization results, the accuracies of the traditional and the new method were 59.16% 
and 76.05%, respectively (P < 0.05). The accuracy was 63.35% for MSI, which was derived from the manual method. For 
the semi-automatic method, the accuracies were 81.0% and 78.9% for the lesion region and the corresponding mean TIC 
regression models, respectively.
Conclusions The results demonstrate that our proposed semi-automatic method is beneficial for discriminating breast IDCs 
and benign lesions based on DCE-MRI, and this method should be considered as a supplementary tool for subjective diag-
nosis by clinical radiologists.
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Introduction

Breast cancer is the most common malignant tumor in 
women and it is now the most frequently diagnosed can-
cer. Throughout the world, breast cancer is the leading 
cause (14%) of cancer-related deaths in females [1]. Inva-
sive ductal carcinoma (IDC) is the most common type 
of breast cancer [2]. Image detection plays an important 

role in the early diagnosis, treatment, and prognosis for 
breast cancer, and several modalities are employed for 
breast imaging, for example mammography, ultrasound, 
dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI), and breast computed tomography (CT) 
[3–6]. Mammography is the main imaging screening 
method for breast cancer, but it is affected significantly 
by breast density. Ultrasound is not sensitive to micro-
calcifications, and breast CT requires a large dose of 
radiation. DCE-MRI is potentially valuable for breast 
cancer screening compared with these other examination 
methods [3–5]. The use of DCE-MRI for screening and 
diagnosing breast cancer has increased in recent years [7, 
8]. In general, a manual method is used for the analysis 
of breast DCE-MRI results, but this approach is usually 
affected by inter-observer variability and partial volume 
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effects. Moreover, the manual method is time consum-
ing. Time–signal intensity curves (TICs) of breast lesions 
are used widely in dynamic analysis, where quantitative 
parameters that reflect perfusion information are calcu-
lated based on the TICs, including the maximum slope 
of increase (MSI), signal intensity slope  (SIslope), initial 
percentage of enhancement (Einitial), percentage of peak 
enhancement (Epeak), early signal enhancement ratio 
(ESER), and second enhancement percentage (SEP) 
[9–13]. However, these parameters have been investigated 
separately to assess the diagnostic performance, so it is 
still unclear which parameters are most useful for diag-
nosis, or whether several parameters can be combined to 
further improve the diagnostic performance.

Hence, in this study, we developed a novel method 
for semi-automatically analyzing breast DCE-MRI data, 
where the lesions were extracted semi-automatically and 
more quantitative parameters were measured. Unlike 
previous studies, we applied regression analysis to the 
separate parameters, and a diagnostic model was estab-
lished by weighting these parameters after selection using 
independent sample t tests. To the best of our knowledge, 
no previous studies have employed this approach, and we 
hope that our results can further improve the diagnostic 
performance of breast DCE-MRI.

Materials and methods

Figure 1 shows the experimental procedure in this study. The 
traditional method utilized FuncTool 9.4.05A (GE Health-
care, Milwaukee, WI, USA) on the work station to analyze 
the TICs. By contrast, the proposed semi-automatic method 
extracted the lesion regions and obtained all of the quan-
titative parameters with MATLAB (version R2010b, The 
MathWorks, Inc., Natick, MA, USA).

Patients

This study was approved by the ethics committee of 
Shengjing Hospital (No. 2013PS113K). The method used 
in this study was performed in accordance with the approved 
guidelines. All of the images used in this study were col-
lected from our existing picture archiving and communica-
tion system (PACS) database. The requirement for informed 
content was waived because this was a retrospective study. 
The breast DCE-MRI images collected between January 
2009 and August 2014 were analyzed retrospectively by a 
radiologist. All the images were anonymised.

All of the patients received breast MRI examinations for 
the first time and all of the cases that we retrospectively 
selected from our PACS contained lesions. MRI examina-
tions were used to determine the properties of lesions rather 

Fig. 1  Flowchart illustrating the 
process followed in this study
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than staging or family history, especially to distinguish 
malignant and benign lesions. Although they received the 
mammography examinations, some uncertain diagnostic 
cases were referred for MRI examinations because of the 
limitations of this imaging modality. The clinicians of some 
other patients asked directly for MRI examinations.

The patient selection criteria for our study were sum-
marized in Fig. 2. All of the selected lesions were single 
lesions presenting a mass-like shape, occurring in either the 
left or right breast. In addition, each lesion was confirmed 
as benign or malignant by biopsy or pathology (the time 
interval between MRI and histopathological examination 
was < 5 days). Following the above inclusion criteria, 1465 
cases were excluded from the subsequent analysis. Because 
the majority of malignant tumors comprised IDCs, only 
IDCs were selected for subsequent analysis.

DCE‑MRI examination

All of the MRI examinations were performed using a 
3.0T system (Signa HDxt, GE Healthcare, Milwaukee, 
WI, USA) with a dedicated eight-channel breast coil. 
Patients were in the prone position. The breast DCE-MR 
images were obtained using the VIBRANT-VX technique 
with the following parameters: repetition time = 7.42 ms, 
echo time = 4.25 ms, inversion time = 20 ms, echo train 
length = 1, slice thickness = 2.2  mm, spacing between 
slices = 2.2 mm, flip angle = 15°, image size = 1024 × 1024, 
pixel spacing = 0.3516 mm, acquisition type = 3D, and slice 

number = 78. The contrast agent (0.5 mmol/ml gadodiamide; 
Omniscan, GE Healthcare, Magnevist, Bayer-Schering 
Pharmaceuticals) was delivered intravenously by a power 
injector with a dosage of 0.15 mmol/kg bodyweight at a 
rate of 4 ml/s, followed by an equal volume of saline flush 
at the same flow speed. The temporal acquisition was 80 s 
for each volume image, and the dynamic series comprised 
nine individual dynamic images, i.e., one obtained before 
and eight after injecting the contrast agent. Hence, the total 
dynamic scanning time was 720 s (80 × 9). The subtracted 
MR images (the post-contrast images minus the pre-contrast 
images) were acquired for extracting lesion regions. The 
subtracted volume image was analyzed and the slice image 
with the lesion of maximum size was selected for subsequent 
analysis.

Traditional method

A highly experienced radiologist (13 years work experience 
in breast MRI) who was blinded to the clinical history and 
pathology results manually analyzed the TICs using the 
commercially available software tool installed on the MRI 
work station. First, a circular region of interest (ROI) was 
placed on the color-coded MSI map to draw the lesion manu-
ally. In routine practice, the ROI was smaller than the lesion 
area. Next, the corresponding mean TIC was plotted auto-
matically for the ROI. The radiologist discriminated between 
the benign and malignant cases according to the shape of the 

Fig. 2  The patient flow



818 International Journal of Clinical Oncology (2019) 24:815–824

1 3

mean TIC. Finally, the unique quantitative parameter, MSI, 
was obtained using the following formula:

where  SIi indicates the signal intensity at any time point (i 
ranges from 0 to 7).

Semi‑automatic method

All the digital imaging and communication of medicine 
(DICOM) images were directly processed using MATLAB. 
The proposed method was performed according to the fol-
lowing steps.

First, subtraction was performed between the post-con-
trast and pre-contrast images.

Second, a ROI was drawn around the lesion, and then a 
popular segmentation method, OTSU, was applied to dis-
tinguish background and foreground pixels with the optimal 
threshold obtained by maximizing the variance [14]. Mean-
while, the segmented image was converted into a binary 
image.

Third, morphological erosion with a template of 3 × 3 
matrix was applied to the binary image, and the unique but 
largest eight-connected region was selected. Then, mor-
phological dilation with the above mentioned template was 
applied to the unique region and the target lesion region 
was obtained.

Fourth, the mean TIC of the lesion region was plotted 
automatically.

Finally, all of the quantitative parameters (Einitial, Epeak, 
ESER, SEP, MSI, and  SIslope) were calculated automatically 
using the following formulate [9–13]:

1. SIslope

SImean is the signal intensity at the 120 s [12]. In this 
study, it was replaced by the mean value of the first two post-
contrast time points.  SItail is the signal intensity at the last 
time point. According to the value of  SIslope, the TIC pattern 
can be categorized into three types: type I (persistent) when 

(1)MSI = max(SI
i+1 − SI

i
),

(2)SIslope = [(SItail − SImean)∕SImean] × 100%.

the  SIslope is + 10% or greater, type II (plateau) when the 
 SIslope is between − 10% and + 10%, and type III (washout) 
when the  SIslope is − 10% or less [15, 16].

2. Einitial

SI0 indicates the signal intensity before the contrast agent 
injection and  SI1 indicates the signal intensity at the first 
time point after injecting the contrast agent.

3. Epeak

SIpeak indicates the peak value of the contrast 
enhancement.

4. ESER

SI2 indicates the signal intensity at the second time point 
after injecting the contrast agent.

5. SEP

All of these parameters were calculated using two meth-
ods. First, the mean TIC for the extracted lesion region was 
obtained and the above parameters were derived from the 
mean TIC. Second, the quantitative parameters for each TIC 
corresponding to every pixel in the extracted lesion region 
were calculated and averaged. The corresponding parametric 
maps were color-coded.

Statistical analysis

In this study, we established regression models for the quan-
titative parameters obtained with the two methods described 
previously. The logistic regression model was used to predict 

(3)Einitial = [(SI1 − SI0)∕SI0] × 100%.

(4)Epeak = [(SIpeak − SI0)∕SI0] × 100%.

(5)ESER = [(SI1 − SI0)∕(SI2 − SI0)] × 100%.

(6)SEP = [(SI2 − SI0)∕SI0] × 100%.

Table 1  Detailed 
histopathological diagnoses 
for the benign breast lesions 
(n = 71)

FEA flat epithelial atypia, CCC  columnar cell changes, DH ductal hyperplasia, FCC fibrocystic changes

Lesion type n %

High risk (complex sclerosing lesion, FEA, CCC with focal atypia) 5 7.04
Fibroadenoma, fibroadenomatous hyperplasia 33 46.48
Papilloma 4 5.63
DH, CCC, FCC, focal fibrosis, nodular sclerosing adenosis 16 22.54
Miscellaneous (chronic abscess, gynecomastia, fat necrosis, pseudoangiomato-

sis)
13 18.31
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Fig. 3  Results obtained with 
manual method for one benign 
case and one malignant case, 
which were both selected 
randomly. The first two rows 
showed the results for the 
malignant case, IDC. a Pre-
contrast image with the ROI 
drawn manually. b MSI color-
coded map with ROI. c Mean 
curve of TICs obtained from the 
ROI. d Pathology result. e–h 
The last two rows showed the 
same results as a-d, only for the 
benign case
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a binary response variable and to analyze the possible effects 
of the parameters. Principal component logistic regression 
was applied to obtain accurate estimates of the parameters 
in the models and to avoid co-linearity. First, the parameters 
were standardized and principal component logistic regres-
sion was then performed with SPSS (version 16.0) to estab-
lish the regression models with standardized parameters. 
The regression models were determined by a tenfold cross-
validation strategy. U tests were performed to estimate the 
standardized parameters in the regression models. Finally, 
the standardized parameters were reverted to the original 
parameters.

The diagnostic performance of different methods was 
analyzed based on the receiver operating characteristic 
(ROC) using MedCalc (version 15.8). ROC curves were 
drawn for the regression model derived from the mean curve 
and for the regression model derived from the lesion region, 
respectively. In addition, the ROC curve was drawn for the 
MSI obtained by the manual method. The AUC and the opti-
mal cutoff value were provided by MedCalc automatically. 
The corresponding sensitivity, specificity, and accuracy were 
also calculated. A higher AUC value indicated better diag-
nostic performance. For the TIC categorization, a Wilcoxon 
rank-sum test was performed to compare diagnostic accuracy 
between the manual method and the proposed method. The 
difference was considered significant with a P value less 
than 0.05.

Results

As a result, 142 cases (all female; age range 22–79 years; 
mean age 53.5 years) were collected (71 IDCs and 71 benign 
cases), and the details for benign cases are summarized in 
Table 1. The malignant lesion distribution was 34 left side 
and 37 right side lesions. The benign cases consisted of 29 
left side and 42 right side lesions. The maximum size, aver-
aged by independent measurements of two high-experienced 
radiologists, ranged from 6.7 to 44.3 mm.

Two cases were selected randomly to illustrate the results 
obtained by the manual method (Fig. 3). The results were 
produced using a commercial work station. Figure 4 shows 
the results obtained by the proposed method to differentiate 
between malignant and benign lesions in breast DCE-MR 
images, including the semi-automatically extracted lesions 
and color-coded maps for the quantitative parameters that 
reflect perfusion information.

Table 2 shows the principal component logistic regres-
sion models and the ROC analysis results. The other three 
parameters (Einitial, SEP, and Epeak) did not differ signifi-
cantly between the benign lesions and IDCs (independent 
samples t test, P > 0.05). The estimates of the standardized 

parameters  (SIslope, ESER, and MSI) in the regression mod-
els were significant (U > 2.58, P < 0.01). The AUC values 
representing the diagnostic performance are also shown 
in this table, as well as the optimal cutoff values, sensitiv-
ity, specificity, and accuracy. The AUC was higher for the 
regression model based on the lesion region compared with 
that based on mean curve. The ROC analysis results showed 
that the regression models based on the proposed method 
had higher clinical diagnostic performance than that based 
on the manually obtained MSI. The ROC curves are pre-
sented in Fig. 5.

The sensitivity, specificity, and accuracy of TIC categori-
zation by the manual method and semi-automatic method are 
shown in Table 3. The sensitivity was slightly lower, but the 
semi-automatic method significantly improved the specific-
ity and accuracy (P = 2.43 × 10−6). Thus, the proposed semi-
automatic method can help radiologists discriminate breast 
IDCs and benign lesions using DCE-MRI.

Discussion

Compared with other imaging methods, DCE-MRI has 
many advantages, for example, it is noninvasive, does not 
use radiation and has better soft tissue contrast. Not only can 
DCE-MRI detect lesions that cannot be visualized by mam-
mography or ultrasound [17], but it can also detect multiple 
lesions in ipsilateral or contralateral breast regions [18, 19]. 
The American Cancer Society recommends that women with 
a high risk of breast cancer are candidates for breast MRI 
screening [20, 21]. However, in China, only symptomatic 
patients can be referred for MRI examinations due to limited 
medical resources. DCE-MRI has high sensitivity for breast 
cancer but its specificity is variable [22, 23]. In addition, 
the manual method based on an MRI work station leads to 
intra- and inter-observer variability, partial volume effects, 
and it is time consuming [24]. To improve the specificity of 
MRI and address these issues, computer-aided detection has 
been employed widely to evaluate quantitative parameters 
in the analysis of breast lesions [24–27]. Chang et al. used 
the fuzzy c-means clustering technique to extract a repre-
sentative TIC [28]. Levman measured the tumor’s margin 
to facilitate the diagnosis of breast cancer [29]. In the pre-
sent study, we semi-automatically extracted lesions from 
the subtracted images using the OTSU method. The lesion 
extraction results showed that the mass-like lesions were 

Fig. 4  Results obtained using the semi-automatic method. a–f Sub-
tracted image, partially enlarged image, the determined lesion region, 
subtraction image with the lesion region (the ROI is delineated in 
blue and the lesion region in red), pre-contrast image with the lesion 
region, and mean TIC for the lesion region. g–l Color-coded MSI 
map, Einitial map, Epeak map, ESER map, SEP map, and  SIslope map

◂
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determined correctly, and the necrotic areas in IDCs were 
also excluded from the lesions.

Previous studies have shown that the tumor morphology 
and TIC washout pattern obtained from breast DCE-MR 
images are the strongest predictors of breast cancer [30–32]. 
The different TIC patterns can discriminate malignant and 
benign lesions. A persistent pattern is associated with a 
greater likelihood of a benign lesion, and the washout pat-
tern is associated with a higher likelihood of a malignant 
lesion. The plateau pattern is seen in both malignant and 
benign lesions, but type II is considered to be suggestive 
of malignancy. Our TIC quantitative categorization results 
yielded the same conclusion. According to the  SIslope value 
calculated from the mean curve, 80.4% of the lesions cat-
egorized as type I were benign lesions and 81.8% of the 
lesions categorized as type III were breast IDCs. In the 
present study, 42 lesions (10 benign lesions and 32 malig-
nant lesions) were categorized as type II according to the 
 SIslope value. Based on the results obtained by the regression 
model using the mean curve, the diagnostic accuracy was 
73.8% (four benign lesions and 27 malignant lesions) for the 
plateau pattern. Compared with the categorization results 
produced by the manual method, the proposed method for 
quantitative lesion categorization exhibited higher diagnos-
tic performance.

The TIC washout pattern is a feature of breast cancer, 
so previous studies have suggested that the quantitative 
parameters derived from TIC may be useful for diagnosis. 
However, previous studies have not considered combining 
these parameters for breast diagnosis. The results produced 

using the regression models demonstrated that ESER, MSI, 
and  SIslope were the meaningful indicators of breast IDCs, 
while the three other parameters were not significant in pre-
dicting malignancy (independent samples t test, P > 0.05). 
Indeed, from Eqs. (1), (2), and (5), we can see that ESER 
and MSI represent the enhancement of the lesion, whereas 
 SIslope represents the reduction in the signal intensity. The 
cases with greater ESER and MSI were more likely to indi-
cate breast IDCs, while the cases with greater  SIslope were 
potentially associated with benign lesions. For the lesion 
region identified from the semi-automatic method, the opti-
mal cutoff value of the regression model larger than 0.1215 
was considered significant with respect to malignancy, 
while for the mean curve, the optimal cutoff value was 
0.0644. For the manual method, the optimal cutoff value 
for MSI was 884.427. As mentioned in previous studies, 
the TICs of breast IDCs appear to be obviously enhanced 
with more rapid metabolism due to the large micro-vessel 
density within the lesions, whereas benign lesions exhibit 
more gradual inflow and outflow of the contrast agent [33, 
34]. Thus, the results obtained by our regression models 
were consistent with previous findings. Our results showed 
that the regression model based on the semi-automatically 
determined lesion regions had the best breast lesion diagno-
sis performance (AUC 0.846, sensitivity 81.7%, specificity 
80.3%, and accuracy 81.0%) and it performed significantly 
better than the MSI obtained using the manual method. 
Thus, the regression models could be useful for discriminat-
ing IDCs and benign lesions by breast DCE-MRI, potentially 
reducing the need to biopsy or remove benign lesions.

Table 2  Results of the logistic regressions for the quantitative parameters and the ROC analysis

CI confidence interval, SE standard error, βX estimate of standardized parameters, β estimate of original parameters, OR odds ratio
*Significant difference

Mean curve Lesion region Manual method

ESER MSI SIslope ESER MSI SIslope MSI

βX 0.516 0.479 − 0.521 0.569 0.492 − 0.565 /
SE (βX) 0.115 0.107 0.117 0.124 0.107 0.123 /
U 4.487* 4.477* − 4.453* 4.589* 4.598* − 4.593* /
OR 1.033 1.001 0.982 1.035 1.001 0.984 /
β 0.0323 0.00136 − 0.0184 0.0345 0.00146 − 0.0165 /
Logistic model 0.0323 × ESER + 0.00136 × MSI − 0.0184 × SIslope − 

3.585
0.0345 × ESER + 0.00146 × MSI − 0.0165 × SIslope − 

3.801
/

AUC 0.837 0.846 0.604
SE 0.0427 0.0417 0.0572
95% CI (0.754, 0.900) (0.762, 0.912) (0.503, 0.699)
Optimal cutoff > 0.0644 > 0.1215 > 884.427
Sensitivity 80.3% 81.7% 64.7%
Specificity 77.4% 80.3% 62.0%
Accuracy 78.9% 81.0% 63.35%
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This study had several limitations. First, the number of 
patients included was relatively small. Second, because only 
solitary mass-like lesions were included and the malignant 
cases were only IDCs, the tumor types and their propor-
tions might influence the results. Third, only TIC from 
breast DCE-MRI was analyzed semi-automatically, and 
lesion morphology was not considered as an analysis target. 
In fact, some previous studies have suggested that the TIC 
pattern should be analyzed after evaluating the morphology 
of lesions [26, 27]. We believe the diagnostic performance 
would be improved if the morphology of lesions and the 
parameters derived from the TICs were combined. Hence, 
further research should be carried out. Fourth, breast MRI 
analyses have been conducted with volume images, but our 
study used two-dimensional images.

Regardless of these limitations, our study is the first to 
investigate a semi-automatic method for distinguishing 
breast IDCs and benign lesions using regression models 
based on multiple parameters derived from the TICs by 
DCE-MRI. The proposed method has high sensitivity and 
specificity in the diagnosis of breast IDCs.
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