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Abstract Radiotherapy plays an important role in the

treatment of various malignancies, and intensity-modulated

radiotherapy (IMRT) is an attractive option because it can

deliver precise conformal radiation doses to the target

while minimizing the dose to adjacent normal tissues.

IMRT provides a highly conformal dose distribution by

modulating the intensity of the radiation beam. A number

of malignancies have been targeted by IMRT; this work

reviews published data on the major disease sites treated

with IMRT. The dosimetric advantage of IMRT has

resulted in the significant reduction of adverse effects in

some tumors. However, there are few clinical trials com-

paring IMRT and three-dimensional conformal radiother-

apy (3D-CRT), and no definite increase in survival or the

loco-regional control rate by IMRT has been demonstrated

in many malignancies. IMRT also requires greater time and

resources to complete compared to 3D-CRT. In addition,

the cost–effectiveness of IMRT versus 3D-CRT has not yet

been established.
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Introduction

Precise radiotherapy techniques including three-dimen-

sional conformal radiotherapy (3D-CRT), stereotactic

radiotherapy, intensity-modulated radiotherapy (IMRT),

and image-guided radiotherapy (IGRT) have been devel-

oped in recent decades with the rapid development of

computer technology and radiation physics. Shinji Takah-

ashi was one of the pioneers of this field, and conformal

radiotherapy was achieved in Japan in the 1960s using

rotating multileaf collimators (MLCs) [1]. In the 1990s,

with the development of the more sophisticated IMRT,

these conformal techniques were overtaken by inverse

treatment-planning procedures.

IMRT provides highly conformal dose distribution by

modulating the intensity of the radiation beam. IMRT can

deliver precise radiation doses to the target while mini-

mizing the dose to adjacent normal tissues. Typically,

IMRT delivery is performed by conventional MLC-

mounted linear accelerators. To create non-uniform dose

intensity, there are three different types of IMRT delivery

using conventional linear accelerators: step-and-shoot,

sliding window, and volumetric modulated arc therapy

(VMAT). In step-and-shoot IMRT, small MLC-generated

segments are used for dose delivery, and radiation is not

delivered while the leaves move to create the next segment.

Sliding-window IMRT uses modulated MLC velocity to

change the beam intensity in multiple static radiation fields,

and the radiation is delivered as the leaves are moving.

VMAT is one of the rotational forms of IMRT with moving

MLC and changing dose rates during rotational dose

delivery. In general, VMAT offers more conformal dose

distributions and faster treatment times [2].

A helical tomotherapy unit is a completely dedicated

rotational IMRT machine with a megavoltage computed
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tomography (CT) detection system. Tomotherapy delivers

narrow intensity-modulated beams in a helical manner as

they are rotated around the patient. The CyberKnife is a

stereotactic radiation machine in principle, but the dose

intensity for the target can be modulated. A CyberKnife

can deliver multiple narrow beams from non-coplanar and

non-isocentric angles, and the dose delivery has excellent

dose conformality and steep dose gradients.

To deliver a highly conformal radiation dose by IMRT,

it is necessary to secure geometrical precision. The

administration of IMRT is often accomplished with an

image-guidance-capable system using on-board cone-beam

CT, in-room CT, ultrasonography, or other optical image

techniques.

These sophisticated techniques have spread rapidly and

widely around the world. IMRT has opened a new era in

radiation oncology, and it will be one of the standard

radiotherapy practices for many tumors in the near future

[3].

This work reviews the published data with regard to the

major malignancies treated with IMRT. Potential disad-

vantages of IMRT are also discussed.

Clinical perspective

Brain

IMRT could be highly attractive for the treatment of brain

tumors because brain tumors frequently occur in an area

close to several radiosensitive normal tissues (Fig. 1). In

particular, the simultaneous integrated boost (SIB)

technique using IMRT, which delivers different doses to

the gross tumor volume and sub-target surrounding the

primary tumor, is promising in the treatment of glioblas-

tomas (GBMs). GBMs are considered to have a low a/b
ratio, and the potential benefit of administering hypofrac-

tionated regimens with the SIB technique has been

explored [4, 5]. Amelio et al. [4] summarized in their

review that IMRT is clearly better than 3D-CRT in terms of

dose conformity and sparing of organs-at-risk (OARs),

although 3D-CRT and IMRT provide similar dosimetric

results in terms of target coverage. However, there are no

definite data to suggest that this dosimetric benefit will

translate into a clinical advantage. Amelio et al. [4] con-

cluded that hypofractionated IMRT with temozolomide in

GBM patients with a good prognosis may be somewhat

beneficial, although this must be confirmed by properly

designed trials.

Hippocampus sparing in whole-brain radiotherapy using

IMRT is also challenging. The development of neurocog-

nitive decline is observed in a portion of patients after

whole-brain radiotherapy. Although techniques for hippo-

campus sparing have been demonstrated in some papers,

there are limited available data showing the clinical ben-

efits [6].

Head and neck

One of advantages of IMRT for head and neck lesions is

that with IMRT clinicians can increase the therapeutic ratio

in tumors close to the critical organs, such as the brain stem

and optic nerves. IMRT also allows sparing of the ana-

tomical structures involved in swallowing [7]. Xerostomia

Fig. 1 Example of axial dose distribution by intensity-modulated radiotherapy for a patient with a postoperative anaplastic meningioma
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is not a critical symptom, but it can be very inconvenient

for a long period. Retrospective and prospective studies

have shown that IMRT resulted in a decrease in xerostomia

compared to 3D-CRT [8, 9], with improved quality of life.

Classically, in the 3D-CRT treatment plans, patients

with head and neck cancer are irradiated using sequential

radiotherapy plans to treat smaller boost fields from larger

fields to elective nodal areas, which is known as a

‘‘shrinking-field approach.’’ IMRT has opened a new

window for the SIB technique, which enables the simul-

taneous delivery of individualized dose levels to the targets

and elective nodal areas within a single treatment fraction

[10]. This technique may have some advantages for head

and neck cancer: the possibility of dose escalation to the

targets, thus decreasing the overall time of the treatment by

moderating treatment acceleration.

Dose painting or biologically conformal radiotherapy is

also a promising technique, in which the dose is increased

in the radioresistant parts of tumors and decreased in the

radiosensitive parts, to improve tumor control [11]. How-

ever, there are no definite data on the superiority of IMRT

for head and neck tumors from the point of disease control.

In addition, the proper delivery of IMRT requires sufficient

knowledge of the complex anatomy of the head and neck

region. A thorough understanding of local and regional

tumor spread is also required. Adaptive radiotherapy cus-

tomizing the radiation plan in response to anatomical

changes during treatment may be necessary to ensure that

the prescribed dose is actually delivered to the targets.

Large clinical trials are needed to clarify the effectiveness

of IMRT over 3D-CRT in head and neck cancer treatment.

Breast

Postoperative radiotherapy has been a part of the standard

process of breast-conserving therapy after lumpectomy for

many years, supported by a large amount of evidence [12].

Standard radiotherapy provides two tangential opposed

fields with wedges. However, conventional irradiation may

produce hot areas in the dose distribution, because the

shape of the breast is complex. IMRT for the breast can

produce a more uniform dose distribution, resulting in a

possible reduction of adverse effects. As for acute toxicity,

Freedman et al. [13] reported that breast IMRT was asso-

ciated with significant improvement in grade 2 and 3 der-

matitis, a finding that is supported by another study [12].

However, only a few retrospective reports exist on the

decrease in late toxicities with less follow-up for patients

receiving IMRT [13]. Moreover, if breast cancer-related

outcomes are the main outcome of interest, there seems to

be no evidence of a difference in local recurrence rates

between IMRT and conventional tangential radiotherapy.

Further studies on late toxicities and disease control are

needed, with longer follow-ups.

Lung

Conventional radiotherapy is frequently performed for lung

cancer with a total dose of 60 Gy in 30 fractions in com-

bination with chemotherapy, and excellent local control is

not achieved in many cases. Although the higher radiation

doses to the tumor lead to a better chance of local control,

there may be difficulties due to the toxicities of the normal

tissues. IMRT can deliver higher conformal doses to the

target while sparing surrounding OARs. However, there are

some potential problems with the use of IMRT for lung

tumors: target motion and the potential toxicity of a lower

dose to larger volumes of the lung.

In the reports of dosimetric comparisons between IMRT

and 3D-CRT, standard toxicity parameters such as V20

(the percentage of lung volume receiving 20 Gy or more)

are improved by IMRT [14]. However, greater lung vol-

umes would receive a lower dose because IMRT needs

larger monitor units and a larger number of beam direc-

tions. Several reports have mentioned the need for caution

regarding these larger volumes of lower-dose irradiated

lung, as critical radiation pneumonitis has been reported in

conjunction with IMRT for lung cancer [15]. Thus, in

addition to the standard lung toxicity parameters, other

parameters such as V5 and V10, which are related to lower-

dose irradiated lung volumes, may be more clinically

relevant.

Respiratory motion is another issue for thoracic IMRT

[16]. Typically, radiotherapy is delivered with the patient

breathing normally. Although four-dimensional CT-based

planning to incorporate the tumor motion within the target

volume has been introduced in clinical practice, dose cal-

culations are carried out on a static data set. In patients

treated with IMRT, the effect of tumor motion may lead to

a different dose actually being delivered in another phase.

With greater target movement, the potential risk of a

mismatch between the planned and delivered doses may

become larger. For tumors with a greater amount of

respiratory motion, a respiratory gating technique or

abdominal compression is required to reduce this mismatch

of dose delivery.

As for tumor control, there are no randomized trials

comparing the tumor control provided by IMRT and 3D-

CRT as radiotherapy for lung tumors, although Jiang et al.

[17] reported in their retrospective analysis on the

improvement of toxicities and favorable outcomes with

IMRT. In a review Bezjak et al. [16] stated that the cur-

rently available data are insufficient to fully determine the

clinical advantages of IMRT.
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Prostate

It is well known that disease control in prostate cancer is

dependent on the radiation dose [18, 19]. Randomized

controlled trials and retrospective large series have con-

firmed the benefit of dose escalation, in particular, for the

improvement of biochemical tumor control. IMRT pro-

vides concave dose distributions according to the shape of

the prostate and seminal vesicles, and allows a safe dose

escalation to the target while minimizing the dose to the

bladder and the rectum. Therefore, even in the absence of

definitive randomized control studies comparing IMRT

with 3D-CRT, IMRT has increasingly been adopted as the

standard radiotherapy technique for prostate cancer, with

favorable results in large institutional series [18, 20, 21]. In

guidelines, IMRT is recommended for the radical external

radiotherapy of prostate cancer where an escalated radia-

tion dose greater than 70 Gy dose is required [21].

The role of pelvic radiotherapy in the management of

high-risk prostate cancer remains controversial [21]. The

SIB technique, which simultaneously delivers a high dose

to the prostate and a lower dose to the pelvic nodes, is

promising [22]. The role of IMRT for pelvic nodes in the

treatment of prostate cancer remains an area for continued

investigation.

Hypofractionated IMRT is another challenge for pros-

tate cancer. Since the a/b ratios for prostate cancer are

much lower than those of other malignant tumors, prostate

cancer may be highly sensitive to fraction size. Several

large randomized trials comparing conventional fraction-

ation to hypofractionation, typically using image-guided

techniques, are ongoing [23]. However, it should be noted

that at present hypofractionated IMRT should be used only

in the context of clinical trials.

In the postoperative setting, some studies demonstrated

that IMRT achieved decreased late toxicity rates [24], but

there were insufficient data to indicate that IMRT is

superior to 3D-CRT [21, 25].

Uterus

In radiotherapy for gynecological cancers, there are four

main OARs: the small bowel, bladder, rectum, and bone

marrow [26]. The dosimetric benefits of IMRT have

resulted in the reduction of both gastrointestinal (GI) and

genitourinary (GU) toxicities [26]. Gandhi et al. [27] also

reported that IMRT decreased the incidence rate of acute

and late GI toxicities compared to 3D-CRT, with compa-

rable clinical outcomes. IMRT may also be beneficial for

the reduction of hematological toxicities due to the

decrease in the irradiated volume of bone marrow, which

was shown by the results of the Radiation Therapy

Oncology Group (RTOG) 0418 trial [28]. Regarding

treatment outcomes in the postoperative setting, disease-

related outcomes appear to be similar for IMRT and 3D-

CRT [29], although no randomized comparisons of IMRT

to 3D-CRT techniques in this context are available.

One of the promising areas for gynecological IMRT is

the boost approach for nodal disease [26]. An additional

10–15 Gy to involved nodes may be achieved safely, with

the dose to the small bowel limited to 45–50 Gy.

An issue in the use of IMRT for gynecological cancers is

the effect of inter- and intra-fraction motion on targets and

OARs. Organ motion patterns are reported to be patient-

specific, with some having large shifts (*40 mm) of the

target volume [30]. In cases without surgery, the significant

tumor regression during radiotherapy may be also a prob-

lem linked to IMRT delivery. These possibilities may

present the risk of tumor underdosing or increased dose to

normal tissues.

Spinal metastasis

Advanced cancer patients frequently develop spinal bone

metastases. Conventional radiotherapy with total doses of

8–30 Gy in 1–10 fractions is the current standard for spinal

metastases; however, the dose escalation is limited because

of the tolerance of the spinal cord. IMRT generates highly

conformal dose distributions, and image guidance enables a

precise treatment delivery. This treatment for spinal

metastases is preferably called ‘‘stereotactic body radio-

surgery/radiotherapy,’’ because total doses ranging from 20

to 30 Gy are fractionated into fewer fractions and rigid

spine immobilization is required. Stereotactic body radio-

therapy has proven to be an efficient alternative to con-

ventional radiotherapy, in particular for patients with

restricted spinal metastasis [31], although a higher risk of

vertebral compression fractures was reported [32].

Potential disadvantages

As noted above, there are several disadvantages of IMRT

that should be considered. First, the complexity of IMRT

delivery results in a greater consumption of resources

compared to 3D-CRT techniques. Much more time is

required for the radiation physicist and oncologist to con-

tour the targets and OARs and to make an appropriate

treatment plan. Multiple iterations are often required before

an optimal plan is achieved. The radiation beam delivery is

also more complex, requiring more time for quality control

and assurance protocols to confirm the quality of the

treatment. IMRT also needs more expensive and sophisti-

cated treatment-planning software and related systems.

This increased complexity has strained the resources of

radiation departments.
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Second, inter-observer variability regarding the con-

touring is an issue, because IMRT generates a highly

conformal dose distribution to the targets. It is well known

that there is significant inter-observer variability in the

contouring at various disease sites. Consensus guidelines

must be published and practice is required for the appro-

priate contouring of the targets.

Third, with the increased accuracy of radiation delivery,

a greater incorporation of motion is necessary to prevent

marginal misses. Immobilization must be certain and pre-

cise to minimize positioning errors. In most cases, expen-

sive image-guidance-capable systems are required to

confirm the position of the target in daily setups and/or

during irradiation. IMRT treatments are thus more costly to

provide.

There are many analyses of cost–effectiveness com-

paring IMRT with 3D-CRT, some favorable to IMRT [33]

and others unfavorable [34]. Variations exist between

countries in the determination of cost estimates, depending

in part on healthcare billing practices. The cost–effective-

ness of IMRT versus 3D-CRT should be properly

evaluated.

Finally, because of the greater leakage and scattered

radiation in IMRT compared to 3D-CRT, there are theo-

retical concerns about an increased risk of radiation-

induced secondary primary cancer. It has been estimated

that the incidence of secondary malignancies by IMRT

compared with 3D-CRT may increase from 1 to 1.75 % for

patients surviving for 10 years [35]. In particular, there are

special concerns in patients with pediatric cancer. Although

the actual increase in the incidence of secondary primary

cancer by IMRT is not well demonstrated, it should be

noted that a small increased risk of secondary primary

cancer has been observed in irradiated prostate cancer

patients compared to a non-irradiated population in several

studies [36].

Conclusion

IMRT requires greater time and resources to complete than

3D-CRT. For planners, treatment planning has become a

more time-consuming process with IMRT. IMRT also

requires more quality assurance steps to maintain the per-

formance of the radiotherapy delivery system. The dosi-

metric advantage of IMRT has resulted in the reduction of

adverse effects in some tumors. However, no increase in

survival or the loco-regional control rate has been clearly

demonstrated in many malignancies. Although there is a

definite dosimetric advantage of IMRT, clinicians should

be aware of these uncertainties and use caution when

choosing IMRT.
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