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Abstract Pharmacogenomics is the study of how genetic
inheritance influences the responses to drugs. Genetic
polymorphisms in drug-metabolizing enzymes result in
altered pharmacokinetics in therapeutic drugs. In recent
years, there has been great progress in our knowledge of the
effects of cytochrome P450 (CYP) polymorphisms on the
pharmacokinetics of therapeutic drugs. CYP enzymes cata-
lyze the activation or detoxification of several anticancer
drugs. Anticancer drugs generally have a narrow therapeu-
tic margin. Therefore, the interindividual variability in their
efficacy and toxicity is a major problem in clinical practice.
In this review, genetic polymorphisms of CYP enzymes
and their clinical relevance in cancer chemotherapy are
discussed.

Key words Drug-metabolizing enzymes · Cytochrome P450
· Interindividual variability · Genetic polymorphism ·
Chemotherapy

Introduction

Most medications exhibit large interindividual variability
in their efficacy and toxicity, which is a major problem in
clinical practice. These interindividual differences are due
in part to genetic polymorphisms in genes encoding drug-
metabolizing enzymes. For most drugs, oxidative metabo-
lism by cytochrome P450 (CYP) is a common metabolic
pathway.1 Human CYP enzymes, particularly the CYP1,
CYP2, and CYP3 families, play a role in the metabolism of
drugs and environmental chemicals. Genetic polymor-
phisms have been described in all the main CYPs that con-
tribute to the metabolism of drugs (http://www.imm.ki.se/
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CYPalleles/). There is accumulating evidence that CYP
polymorphisms contribute significantly to interindividual
variations in the capacity of individuals to metabolize drugs.
The mutated alleles cause abolished, reduced, altered, or
increased enzymatic activity, because of single nucleotide
polymorphisms (SNPs), gene deletions, or gene duplica-
tions. When the therapeutic index is narrow, polymor-
phisms can be considered to be clinically significant.

Most anticancer drugs also exhibit significant inter-
patient variability in pharmacokinetics and toxicity.
Anticancer drugs generally have a narrow therapeutic
index. Some drugs are prodrugs and are biotransformed to
active counterparts, and other drugs are detoxified by
metabolic enzymes. Several CYP isoforms participate in
the metabolic pathways. This review focuses on the role of
genetic polymorphisms of CYP enzymes in cancer
chemotherapy.

CYP2A6 and tegafur

In the human CYP2A family, three genes, CYP2A6,
CYP2A7, and CYP2A13, have been reported.2 Among
them, only the CYP2A6 gene encodes an active protein,
while the two other genes produce catalytically defective
enzymes.3,4 CYP2A6 is well known as a nicotine C-oxidase
enzyme.5 Pharmaceutical drugs that are metabolized by
CYP2A6 include SM-12502 (a platelet-activating factor
antagonist), valproic acid, and halothane.6 As for anticancer
drugs, CYP2A6 metabolizes tegafur, which has been used
clinically for over 20 years. Tegafur is a prodrug and is
bioactivated to 5-fluorouracil (5-FU) by CYP2A6.7,8

There is significant interindividual difference in
CYP2A6 activity, and this is due to genetic polymorphisms.
Several variant alleles have been reported to decrease or
delete the enzymatic activity (http://www.imm.ki.se/
CYPalleles/cyp2a6.htm). CYP2A6*4, the allele with the
whole gene deleted, completely lacks the enzymatic activ-
ity.9,10 It should be noted that the frequency of the
CYP2A6*4 allele is high in Orientals, with a frequency of
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approximately 15%–20% of the population.6 Alleles pos-
sessing an SNP, such as CYP2A6*2,3 CYP2A6*5,11

CYP2A6*6,12 CYP2A6*7,13 CYP2A6*10,14 CYP2A6*11,15

and CYP2A6*1716 have been reported to show decreased
enzymatic activity in vitro and/or in vivo. The CYP2A6*9
allele with an SNP in the TATA box shows decreased
transcriptional activity and decreased enzymatic activity in
vitro and in vivo.17,18 A CYP2A7/CYP2A6 hybrid allele
(CYP2A6*12) carrying an unequal crossover in intron 2 has
been reported to show decreased enzymatic activity in
vivo.19 The CYP2A6*1X2 allele has a duplication of the
CYP2A6 gene.20

There is accumulating evidence that individuals who are
homozygous or heterozygous for certain variant alleles are
poor metabolizers of CYP2A6.6,10,21–23 Such evidence sug-
gests the possibility that the pharmacokinetics of tegafur
may also be affected by CYP2A6 genetic polymorphisms. In
fact, the CYP2A6*11 allele which leads to decreased enzy-
matic activity was found in a Japanese patient who showed
a higher than normal value for the area under the plasma
concentration-time curve (AUC) for tegafur.15 It should be
remembered that the catalytic activity for converting
tegafur to 5-FU is not specific for CYP2A6, because this
activity is also possessed by CYP1A2 and CYP2C8.7 In
addition, cytosolic thymidine phosphorylase is also involved
in the conversion of tegafur to 5-FU.24,25 Therefore, the
impact of genetic polymorphisms of CYP2A6 on in vivo
tegafur pharmacokinetics remains to be clarified.

CYP2B6 and cyclophosphamide

CYP2B6 is involved in the metabolic activation of cyclo-
phosphamide and ifosfamide.26 Although the contribution
of CYP2B6 to the activation of ifosfamide is relatively
low (20% of the total activity, whereas CYP3A4 contributes
40% of the total activity), its contribution to cyclopho-
sphamide activation is extremely high (80% of the total
activity, whereas CYP3A4 contributes only 4% of the total
activity).27,28 4-Hydroxycyclophosphamide, the main me-
tabolite formed by CYP2B6, equilibrates with aldopho-
sphamide, and can then undergo chemical decomposition
into phosphoramide mustard and acrolein.29 Phosphora-
mide mustard is an active DNA alkylating metabolite and
acrolein is a toxic byproduct, which causes hemorrhagic
cystitis.

Several variant alleles for the CYP2B6 gene have been
reported. Lang et al.30 have reported that the C1459T
(Arg487Cys) polymorphism in the CYP2B6*5 and
CYP2B6*7 alleles shows decreased protein levels compared
with the wild type. Ariyoshi et al.31 have reported that
the G516T (Gln172His) polymorphism found in the
CYP2B6*6, CYP2B6*7, CYP2B6*9, and CYP2B6*13 alle-
les shows increased enzymatic activity compared with the
wild type. Jinno et al.32 expressed CYP2B6*2 (Arg22Cys),
CYP2B6*3 (Ser259Arg), CYP2B6*4 (Lys262Arg),
CYP2B6*5 (Arg487Cys), CYP2B6*6 (Gln172His and
Lys262Arg), and CYP2B6*7 (Gln172His, Lys262Arg, and

Arg487Cys) in COS-1 cells. They reported that CYP2B6.4,
CYP2B6.6, and CYP2B6.7, sharing a common mutation
(Lys262Arg), exhibited higher Vmax and Vmax/Km values
than the wild type for 7-ethoxy-4-trifluoromethylcoumarin
O-deethylation.32 Recently, novel alleles possessing SNPs in
the coding region (CYP2B6*8 – CYP2B6*15) and in the 5�-
flanking region (CYP2B6*1B – CYP2B6*1N) have also
been reported.33–35 Among them, several alleles exhibited
decreased or undetectable enzymatic activity.

Xie et al.36 reported that CYP2B6*6 carriers have a sig-
nificantly higher catalytic ability for cyclophosphamide 4-
hydroxylation in vitro compared with CYP2B6*1 carriers.
In Japanese, CYP2B6*2, CYP2B6*4, CYP2B6*5, and
CYP2B6*6 have been found with low allele frequencies.37

In our preliminary study with Japanese patients, we found
that the AUC values of cyclophosphamide tended to be
lower in subjects possessing the CYP2B6*6 allele than in
subjects with the wild type (unpublished data). Further in
vivo studies are required to determine the clinical impact of
CYP2B6 polymorphisms on the outcome of treatment with
cyclophosphamide.

CYP2C8 and paclitaxel

Paclitaxel, derived from the needles and bark of the
Western yew, Taxus brevifolia, exerts its cytotoxic action
through the promotion of microtubule assembly and stabili-
zation by preventing depolymerization.38 CYP2C8 is a
key enzyme for the detoxification of paclitaxel to form 6α-
hydroxypaclitaxel, which is approximately 30 times less
toxic than paclitaxel.39,40

Several polymorphisms have been described for the
CYP2C8 gene. Dai et al.41 reported that CYP2C8*2
(Ile269Phe) and CYP2C8*3 (Arg139Lys, Lys399Arg)
showed decreased paclitaxel 6α-hydroxylase activity in
vitro. It has been reported that the median paclitaxel 6α-
hydroxylase activity in liver microsomes from heterozy-
gotes of CYP2C8*4 (Ile264Met) was lower than that in the
wild type, although the difference was not significant.42 The
CYP2C8*5 allele has a deletion of adenine 475, which is
expected to cause amino-acid alterations from codon 159,
and an early stop codon at residue 177.43 Soyama et al.44

found an SNP causing an amino-acid change of Pro404Ala
in a Japanese subject and reported that the in vitro clear-
ance of paclitaxel 6α-hydroxylation of the variant was re-
duced in comparison with that of the wild type, because of
the labile protein.

Recently, we investigated the interindividual variability
of the pharmacokinetics of paclitaxel and its metabolites in
Japanese patients with ovarian cancer in relation to genetic
polymorphisms of the CYP2C8 gene (unpublished data).
However, we could not find a relation between the CYP2C8
genotype and the pharmacokinetics/pharmacodynamics
of paclitaxel, owing to the very rare allele frequency (only
the CYP2C8*5 allele in 0.25% of Japanese).45 Therefore,
genotyping of the CYP2C8 gene might have limited utility
in predicting adverse effects from paclitaxel in Japanese
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cancer patients. In contrast, these variant alleles are more
frequent in Caucasians and African-Americans (2%–
15%).41,42 Studies in these populations will provide more
critical information on the effects of CYP2C8 SNPs on the
pharmacokinetics of paclitaxel.

CYP2D6 and tamoxifen

The CYP2D6 gene is one of the best-studied human CYPs.
The molecular basis of the variations in CYP2D6 activity
is well understood. Correlations between the phenotype
and genotype have been extensively studied for various
drugs.46,47 Currently, at least 88 different allelic variants
of CYP2D6 have been identified. CYP2D6 activity is
absent in 5%–10% of European and North American
Caucasian populations.48,49 More than 95% of Caucasian
poor metabolizers can be identified by screening for the
CYP2D6*3 (frameshift), CYP2D6*4 (splicing defect),
CYP2D6*5 (whole deletion), and CYP2D6*6 (frameshift)
alleles.50 The remaining poor metabolizers are likely to be
homozygous or heterozygous for a range of different inac-
tive alleles. In addition, gene duplication is responsible for
ultrarapid metabolism in 1%–3% of the European popula-
tion, 8% of southern European populations, and up to 20%
of some Arabian and North African populations.51 Some
individuals in this category have 13 copies of CYP2D6 ar-
ranged as tandem repeats, but a single gene duplication
event more commonly occurs. In Japanese, the frequency
of poor metabolizers is relatively low (around 0.5%).52

Furthermore, many individuals who are classified as inter-
mediate metabolizers may be either heterozygous for one
or the inactive alleles or homozygous for alleles associated
with impaired metabolism. The CYP2D6*10 allele
(Pro34Ser) is particularly common in Japanese (allele fre-
quency is approximately 40%) and is associated with
decreased enzymatic activity.53

Concerning anticancer drugs, CYP2D6 plays a role in
the conversion of tamoxifen, which is a selective estrogen
receptor modulator.54 Tamoxifen is widely used for all
stages of estrogen receptor-positive breast cancer. There is
wide interindividual variability in the clinical efficacy and
side effects of tamoxifen.55,56 The mechanisms underlying
the variable response to tamoxifen have been the subjects
of intense study, but remain obscure. Tamoxifen is con-
verted to the more potent antiestrogen 4-hydroxytamoxifen
by CYP2D6.54 The formation of 4-hydroxy-N-desmethyl
tamoxifen from N-desmethyl tamoxifen is also catalyzed by
CYP2D6.57,58 One hypothesis is that altered patterns of
metabolism of tamoxifen might contribute to the interindi-
vidual variability. Stearns et al.57 reported that subjects who
carried a variant allele for CYP2D6 had significantly lower
plasma concentrations of the antiestrogenic metabolite 4-
hydroxy-N-demethyl tamoxifen than subjects who carried
wild-type alleles. However, it is not clear whether patients
with low CYP2D6 activity and a low 4-hydroxy-N-demethyl
tamoxifen concentration will experience less clinical benefit
from tamoxifen. Recently, Desta et al.58 have comprehen-

sively characterized tamoxifen biotransformation and re-
ported that CYP3A4 is also a major enzyme involved in the
principal tamoxifen sequential metabolic routes. Thus, fur-
ther in vivo studies should be performed to determine the
impact of genetic polymorphisms of CYP2D6 on tamoxifen
pharmacokinetics/pharmacodynamics.

CYP3A and docetaxel and etoposide

The CYP3A subfamily is the predominant isoform in
human liver (30%–50% of total CYP content)59 and con-
tains four members, CYP3A4, CYP3A5, CYP3A7, and
CYP3A43.60–62 CYP3A4 is abundantly present in human
liver and intestine.59 CYP3A5 shows polymorphism in its
expression, with universal expression in intestinal and fetal
liver, but detectable expression in only 30% of adult livers.63

CYP3A7 is universally expressed in fetal liver, but is
also expressed in some adult livers. Compared to other
CYP3A isoforms, CYP3A43 mRNA is expressed at lower
levels in the liver (0.1%–0.2% or CYP3A4 transcript).64,65

To date, information concerning the function of CYP3A43
is limited.

CYP3A is the most important isoform that catalyzes
more than 50% of all drugs.66 Because CYP3A4 and
CYP3A5 have overlapping substrate specificity, it is difficult
to estimate the contribution of each member to the total
metabolism. A wide interindividual variation in the cata-
lytic activity of CYP3A has been reported in the general
population.67,68 The variable expression of CYP3A5 and
CYP3A7 may account in part for the degree of variation
seen in the metabolism of CYP3A4 substrates.

A number of recent studies have improved our under-
standing of the molecular basis of interindividual variations
in the levels of CYP3A4 and in the expression of CYP3A5.
In the case of CYP3A4, several variant alleles that affected
the coding region, CYP3A4*2 to CYP3A4*19, have
been identified. The CYP3A4*2 (Ser222Pro), CYP3A4*4
(Ile118Val), and CYP3A4*5 (Pro218Arg) alleles were
shown to encode a protein with decreased activity.69,70

CYP3A4*6 causes a frameshift and it is related to im-
paired metabolism.70–72 The CYP3A4*17 (Phe189Ser) and
CYP3A4*18 (Leu293Pro) alleles result in decreased
and increased activity compared with the wild type,
respectively.73 In Japanese, CYP3A4*6, CYP3A4*11
(Thr363Met), CYP3A4*16 (Thr185Ser), and CYP3A4*18
alleles have been detected.74 All the nonsynonymous
mutations are seen at low frequencies and seem unlikely
to be able to fully explain the interindividual variations
in CYP3A4 activity. Although a number of SNPs in the
5�-flanking region have also been detected, they do not
appear to be associated with altered transcriptional
activity.74–77

Polymorphisms of CYP3A5, which can account for the
variation in the expression of this gene, have been found. In
particular, the CYP3A5*3 allele, which has an SNP in intron
3 (A6986G), leads to alternative splicing and protein trun-
cation.63 This allele is the most common in all ethnic groups,



17

and the allele frequency in Japanese is 75%.78 Rare alleles,
CYP3A5*4–CYP3A5*10, causing an amino-acid change,
splicing defect, or frameshift, have also been identified.79–81

The polymorphisms in CYP3A5 may result in the altered
hepatic clearance of several drugs.

With regard to anticancer drugs, CYP3A4 is in-
volved in the metabolism of etoposide and teniposide,82

vinblastine,83,84 vincristine,83 vindesine,85 doxorubicin,86

ifosfamide,26,87 and docetaxel.88 The reduced docetaxel
clearance was correlated with low CYP3A4 activity, mea-
sured by erythromycin breath test.89 Patients with the worst
toxicities were the patients with the lowest erythromycin
breast test results and docetaxel clearance.89 The signifi-
cance of the CYP3A5 polymorphism in docetaxel clearance
has not been defined.90 Concerning the disposition of
etoposide, Kishi et al.91 have reported that the CYP3A5*3
polymorphism is associated with lower etoposide clearance
than the wild type in African-Americans. However, the
impact of CYP3A polymorphisms on the pharmacokinetics
of anticancer drugs has not been fully evaluated. Because
the effects of genetic polymorphisms of CYP3A on the
pharmacokinetics of drugs are complex, further studies are
needed to characterize them clinically.

Conclusion

A major problem in cancer chemotherapy is the prediction
of tumor responses and toxicity.92 The unpredictable dispo-
sition of drugs may result in undertreatment, leading to
insufficient therapeutic effects, or overtreatment, leading to
toxicity. Genetic variability in drug-metabolizing enzymes
may be a determinant of the variations in these outcomes.
Many of the polymorphisms have been demonstrated to
show functional significance, but, in some cases, the signi-
ficance is still not completely clear. Concerning drug-
metabolizing enzymes other than CYP, such as thiopurine
methyltransferase (TPMT), dihydropyrimidine dehydroge-
nase (DPYD), thymidylate synthase (TYMS), and
UDP-glucuronosyltransferase (UGT), there are emerging
data showing associations between polymorphisms and
the pharmacokinetics/pharmacodynamics of anticancer
drugs.93,94 In contrast, pharmacogenetic studies of CYP
enzymes for anticancer drugs, especially in vivo studies,
have been limited. Pharmacogenetic screening prior to
cancer therapy will contribute to the precise prescription of
treatment. To utilize genetic information for the individual-
ization of treatment for cancer, more retrospective in vivo
studies need to be performed.
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