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Abstract Dihydropyrimidine dehydrogenase (DPD) is a
rate-limiting enzyme of (fluorinated) pyrimidine degrada-
tion that plays a significant role in the pharmacokinetics of
5-fluorouracil (5-FU). In addition, a catabolite of 5-FU
induces a certain toxicity, and the sensitivity of 5-FU is
determined by DPD activity in tumors. DPD is thus impor-
tant clinically. Drugs have been developed that control
variations of the pharmacokinetics of 5-FU by controlling
or inhibiting DPD, thereby reducing toxicity and improv-
ing sensitivity. These fluorinated pyrimidines with DPD-
inhibiting activity, called DPD-inhibitory fluoropyrimi-
dines, contribute to oral therapy with 5-FU for cancer. This
paper summarizes the important role of DPD in cancer
chemotherapy with 5-FU.

Key words 5-Fluorouracil · Dihydropyrimidine dehydro-
genase (DPD) · DPD-inhibitory fluoropyrimidines (DIFs)

Introduction

5-Fluorouracil (5-FU), first synthesized by Heidelberger et
al. in 1957,1 has been employed for the treatment of various
solid cancers for more than 45 years. In Japan, 5-FU deriva-
tives such as tegafur, doxifluridine (5�-DFUR), and a mixed
compound of tegafur and uracil at a molar ratio of 1 : 4
(UFT) have been developed since the 1970s and employed
in oral therapy for cancer. In the United States and Europe,
the development of UFT/leucovorin (LV), capecitabine,
eniluracil/5-FU, 1M tegatur – 0.4M gimeracil – 1M ostacil
potassium (S-1), and so on began during the 1990s, and oral
cancer therapy with fluorinated pyrimidines has attracted
attention.2,3

Among these agents, UFT/LV, eniluracil/5-FU, and S-1
are classified as dihydropyrimidine dehydrogenase (DPD)-
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inhibitory fluoropyrimidines (DIFs)4,5 (Table 1). Literally,
they are fluorinated pyrimidines that have been developed
for the purpose of inhibiting DPD (EC 1.3.1.2). This paper
summarizes the importance of DPD in chemotherapy,
mainly regarding 5-FU and its control.

Roles of DPD in the pharmacokinetics of 5-FU

Dihydropyrimidine dehydrogenase is an enzyme that cata-
lyzes the first, rate-limiting step of (fluorinated) pyrimidine
degradation6 (Fig. 1). It is known to exhibit high activity in
the liver and mononuclear cells, and its activity is widely
distributed in a variety of organs, such as the small intestinal
mucosa.7,8 The liver is thought to limit the rate of degrada-
tion, however, because it has a relatively large volume.
Aboagye et al.9 reported that 96% of 5-FU exposed to the
liver is degraded. In fact, the elimination half-time (T1/2) of
5-FU administered in blood is only about 20min.6

Although 5-FU is mainly degraded in the liver, it is not
easy to collect samples for measuring DPD activity. Periph-
eral mononuclear cells (PMNCs) that exhibit a weak posi-
tive linear correlation with DPD activity in the liver are
used as surrogate markers,10 and DPD activity in PMNCs
(PMNC-DPD) is inversely correlated with clearance of 5-
FU.11,12 PMNC-DPD activity is also known to exhibit circa-
dian variations and to be involved in variations of blood
5-FU concentrations during intravenous infusion.13 PMNC-
DPD exhibits, however, large intra- and interindividual
variation.14 It is also reported that measurements of
DPD activity vary depending on the composition of the
PMNCs (proportions of lymphocytes and monocytes) and
the protein level.15

Relation between DPD and 5-FU-related toxicity

Genetic DPD deficiency

Since the report by Tuchman et al. in 1985,16 a relation
between severe 5-FU toxicity and low DPD activity has
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been reported (Table 2). The conformation of the DPYD
gene (chromosome 1, p21–q22), its sequence,17 and its
crystal structure18 have been identified; mutation/deletion
of some base sequences has also been reported (Table 3).
The exon 14-skipping mutation is well known,19 but the
relation between DPD deficiency and low DPD activity has
not been fully explained.20 Although reports on its promoter
region have recently appeared,21,22 independent groups
showed different regions; hence future investigation is
awaited. It is reported that DPD activity is low, appearing in
about 3% of the Caucasian population;23 it is even lower in
Japan, with only two cases of identified DPD deficiency
having been reported.24,25 An ethnic difference is thus at-
tracting interest.

Toxicity caused by 5-FU catabolites

It has been shown experimentally that a degradation prod-
uct of 5-FU, α-fluoro-�-alanine (F-BAL), and its metabo-
lites induce a certain toxicity.26,27 Because the patterns of
toxicity development clearly differ between DIF prepara-
tions and non-DIF preprations,28–31 the possibility cannot be

denied that control or inhibition of DPD decreases the
degradation products and decreases toxicity.32–35

Relation between DPD and sensitivity to 5-FU

It is well known that thymidylate synthase (TS), a target
enzyme of 5-FU, affects the sensitivity of 5-FU.36–38 It is
also reported that DPD determines 5-FU sensitivity.39–44

Aboagye et al. noted that 83% of 5-FU exposed to tumor is
degraded,9 and it has been confirmed in clinical situations
that DPD in tumors determines the effect of chemotherapy
mainly based on 5-FU.45,46 DPD, a rate-limiting enzyme for
the degradation of 5-FU, is thought to be a strong factor in
determining the effect of 5-FU, rather than TS. The possi-
bility of employing DPD as a prognostic factor is also
suggested,46,47 although these results may be reflected in
tumor progression.48 It has been shown that DPD activity or
expression in tumors differs from that in normal tissues
depending on the type of carcinoma.45,49–52 Larger-scale in-
vestigations and development of a method for inhibiting
DPD according to the type of tumor are expected.

DPD inhibitory fluoropyrimidines

Because the pharmacokinetics and sensitivity of 5-FU are
determined by DPD, stabilization of the pharmacokinetics
of 5-FU and enhancement of its efficacy have been at-
tempted by means of DPD inhibition. These fluoropyri-
midines exhibiting a DPD inhibitory effect have recently
been classified as DIFs.4 It has also been revealed that their
oral administration provides pharmacokinetics comparable
to those seen with intravenous administration,53,54 and it
achieves a similar efficacy conveniently and safely.28,29 Inhi-
bition of DPD in tumors might be an effective strategy for
overcoming the resistance of tumors with high DPD expres-
sion to 5-FU.55–58

Table 1. Classification of oral fluoropyrimidines

Drug Mode of DPD inhibition Remarks

DIFs
UFT Competitive (moderate) Tegafur/uracil
Eniluracil/5-FU Inactivation –
S-1 Competitive (strong) Tegafur/CDHP/Oxoa

Non-DIFs
5-FU None –
Tegafur None 5-FU prodrug
Doxifluridine None 5-FU prodrug
Capecitabine None Doxifluridine prodrug

DIFs, dihydropyrimidine dehydrogenase (DPD)-inhibitory fluoro-
pyrimidines; UFT, a mixed compound of tegafur and uracil at a molar
ratio of 1 : 4; 5-FU, 5-fluorouracil; S1, 1 M tegafur – 0.4 M gimeracil –
1 M ostacil potassium; CDHP, gimeracil
a Tegafur/gimeracil/oteracil potassium

Fig. 1. Metabolic pathway of
5-fluorouracil (5-FU). dUMP,
dUDP, and dTMP, deoxyuridine
mono-, di-, and triphosphate,
respectively; mTHF, 5,10-
methylene tetrahydrofolate; TS,
thymidylate synthase; FdUrd,
fluorodeoxyuridine; TK, thymi-
dine kinase; TP, thymidine
phosphorylase; DHFU, dihydro-
fluorouracil; FUPA, fluorour-
eidopropionic acid; FBAL,
α-fluoro-�-alanine; UP, uridine
phosphorylase; OPRT, orotate
phosphoribosyltransferase; FUrd,
fluorouridine; UK, uridine kinase;
RNR, ribonucleotide reductase;
FUMP, FUDP, and FUTP, fluou-
ridine mono-, di-, and triphos-
phate, respectively
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Conclusions

The regulation mechanism for DPD itself has not been
clarified. With the future progress of research, selection of
drugs based on genetic pharmacological techniques and
development of a drug that controls DPD more effectively
are expected.
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