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Abstract Understanding mechanisms of evolutionary
diversification is central to evolutionary biology. Microbes
constitute promising model systems for observing processes
of diversification directly in the laboratory. One of the main
existing paradigms for microbial diversification is the evolu-
tion of cross-feeding polymorphisms, in which a strain spe-
cializing on a primary resource coexists with a cross-feeding
strain that specializes on a waste product resulting from
consumption of the primary resource. Here I propose a
theoretical model for the evolutionary dynamics through
which cross-feeding polymorphisms can gradually emerge
from a single ancestral strain. The model is based on the
framework of adaptive dynamics, which has proved to be
very useful for studying adaptive processes of divergence
under sympatric conditions. In particular, the phenomenon
of evolutionary branching serves as a general paradigm for
diversification. I show that evolutionary branching naturally
occurs in evolutionary models of cross-feeding if (1) there is
a trade-off between uptake efficiencies on the primary and
secondary resources, and (2) this trade-off has positive cur-
vature. The model also suggests that the evolution of cross-
feeding should be more likely in chemostat cultures than in
serial batch cultures, which conforms with empirical obser-
vations. Overall, the model provides a theoretical metaphor
for the evolution of cross-feeding polymorphisms.
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Introduction

Understanding the origin and evolution of diversity is one
of the central problems in population biology. In particular,
understanding the processes of speciation is of fundamental
importance. Although traditional discussions of speciation
are based on geographic patterns of species distributions
(Mayr 1963; Turelli et al. 2001), recent theoretical devel-
opments have studied the ecological mechanisms that can
drive adaptive divergence between different lineages
(Geritz et al. 1998; Dieckmann and Doebeli 1999; Doebeli
and Dieckmann 2000). In this context, the phenomenon of
evolutionary branching is of particular importance. During
this evolutionary process, frequency-dependent selection
drives an evolving lineage to a point in phenotype space
where selection turns disruptive, after which the lineage
splits into two diverging phenotypic branches. Evolutionary
branching is a paradigm for evolutionary diversification
emerging from the theoretical framework of adaptive dy-
namics (Metz et al. 1996; Dieckmann and Law 1996; Geritz
et al. 1998). The main conceptual idea underlying this
theory for evolutionary dynamics is that the phenotypic
distribution of a resident population, as well as its ecological
dynamics, are important determinants of the environment
that a mutant phenotype encounters when it first appears in
the population. This intuitively appealing idea is captured
in the notion of the invasion fitness, which describes how
the long-term growth rate of a rare mutant depends on the
resident phenotypes. Roughly speaking, adaptive dynamics
is then derived as the gradient dynamics of the invasion
fitness function, which yields, in its simplest interpretation,
a theory for gradual evolutionary change in asexual popula-
tions. Although this asexual theory has already generated
a number of interesting and useful theoretical results about
general mechanisms of diversification (e.g. Doebeli and
Ruxton 1997; Kisdi 1999; Geritz et al. 1999; Maire et al.
2001), models for evolutionary branching obviously must be
extended with population genetics to be meaningful for
diversification in sexual populations, i.e., for speciation.
This has indeed been achieved (Dieckmann and Doebeli
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1999; Kisdi and Geritz 1999; Doebeli and Dieckmann 2000),
leading to a general theory of adaptive speciation under
sympatric conditions, i.e., speciation in the presence of gene
flow and in the absence of geographic isolation.

The past years have seen a surge of empirical data
suggesting that contrary to traditional views, speciation in
the presence of gene flow is not an uncommon occurrence
in nature (for pertaining recent reviews, see Turelli et al.
2001; Via 2001). However, even though there are some
nice empirical examples of recent or ongoing adaptive
divergence (Schluter 1994), possibly leading to speciation
(Schliewen et al. 2001; Jiggins et al. 2001), many natural
model systems tend to be inappropriate for experimental
tests of speciation processes because generation times of the
organisms involved, and hence the time scale of evolution-
ary change, are too long. There is an important exception to
this, however: experimental evolution in microorganisms
offers an escape from the conundrum of long generation
times. Indeed, microorganisms appear to constitute very
promising model systems for studying the evolution of
diversity (Helling et al. 1987; Rosenzweig et al. 1994; Turner
et al. 1996; Xu et al. 1996; Rainey and Travisano 1998;
Treves et al. 1998; Travisano and Rainey 2000; Rozen
and Lenski 2000; Kassen et al. 2000). For example, Rainey
and Travisano (1998) found rapid evolution of phenotypi-
cally and genetically distinct lineages out of a single ances-
tral Escherichia coli lineage in spatially heterogeneous
habitats.

The ecological mechanisms underlying the evolution and
maintenance of this diversity are not yet well understood.
However, it is clear that frequency-dependent selection
plays an important role, because the various phenotypes
tend to have positive growth rates when they are rare in an
environment consisting of populations of the other pheno-
types (Rainey and Travisano 1998). This is precisely the
situation embodied by the invasion fitness function in adap-
tive dynamics, and it is particularly tempting to try to apply
this theoretical framework to bacterial evolution because in
many such systems the assumption of asexual reproduction
appears to be largely satisfied.

One of the best understood cases of evolutionary diver-
sification in bacteria is the evolution of a cross-feeding poly-
morphism in E. coli (Helling et al. 1987; Rosenzweig et al.
1994; Turner et al. 1996; Treves et al. 1998; Rozen and
Lenski 2000). This process can be envisaged as follows:
bacteria limited by a single nutrient, glucose, first evolve
to become more efficient in glucose uptake. However, this
increased efficiency comes at the expense of efficient up-
take of secondary “waste” products, such as acetate, that
are secreted during glucose metabolism. Therefore, mu-
tants that are efficient metabolite consumers, but less effi-
cient on the primary resource, can invade the system,
leading to a polymorphism with one type being efficient in
the uptake of the primary resource, and the other type
being efficient at “cross-feeding” on the products resulting
from the resource metabolism of the first type. This descrip-
tion is of course just a simplified caricature, and in reality
the processes involved are rather intricate (Rosenzweig et
al. 1994). In particular, cross-feeding on different metabo-

lites can lead to coexistence of different specialist and gen-
eralist cross-feeders (Rosenzweig et al. 1994; see also
Dykhuizen and Davies 1980, for coexistence between gen-
eralist and specialist microbial strains).

It is intuitively clear that cross-feeding polymorphisms
require the existence of trade-offs between uptake efficien-
cies on different nutrients. Such trade-offs could be the
consequence of physiological constraints on catabolic path-
ways for different nutrients. Indeed, there is some empirical
evidence that such trade-offs exist and that they are medi-
ated by differential enzyme activities (Rosenzweig et al.
1994; Turner et al. 1996), which makes it likely that these
trade-offs have a genetic basis; i.e., that for any given strain,
its position on the trade-off curve is genetically determined.
Although some distinct genetic differences between dif-
ferent strains constituting a glucose—acetate cross-feeding
polymorphism have been suggested (Rosenzweig et al.
1994), it is reasonable to assume that genetic change along
the trade-off curve is gradual because the metabolic path-
ways involved are rather complicated and can be affected in
many different ways. This assumption is supported by the
finding that a number of different morphs have been found
in E. coli cross-feeding polymorphisms (Helling et al. 1987).
Therefore, adaptive dynamics appears to be an appropriate
theoretical framework for studying the evolution of cross-
feeding.

The purpose of this article is to present a model for the
gradual evolution of a cross-feeding polymorphism from
a single ancestral lineage. The model is based on classical
Michaelis—Menten dynamics for the uptake of a resource
that is continually supplied in a chemostat. It is assumed
that this primary resource is limiting, and that its consump-
tion results in the production of a secondary nutrient as a
metabolic waste product. A trade-off in uptake rates of the
primary and secondary resource then results in frequency-
dependent selection, because the fate of a mutant depends
on the environment generated by the resident: if the resi-
dent is very efficient on the primary resource, it produces a
lot of secondary metabolites, so that it may pay a mutant to
be efficient on these secondary resources at the expense of
primary efficiency; on the other hand, if the resident is not
very efficient on the primary resource, then metabolites are
not very abundant, and it may simply pay to be more effi-
cient on the primary resource. I show, in the simple model
presented, that this frequency dependence can lead to evo-
lutionary branching, and hence to the gradual evolutionary
split into two distinct strains, one a specialist on the primary
resources, and the other a specialist on the secondary re-
source that is produced by the primary resource specialist.

By yielding a stable polymorphism the model also serves
as a mathematical description of an example of coexistence
of two different bacterial species on a single primary re-
source. It has long been known that microbial organisms
can violate the ecological principle of competitive exclusion
in a number of ways (Stewart and Levin 1973; Thingstad et
al. 1996; Xu et al. 1996; see also references in Rosenzweig et
al. 1994). Yomo et al. (1996) have introduced an interesting
mathematical model for coexistence between two different
microbial strains living in chemostats in which the bacteria



are provided with a single external resource. In their model,
the external resource is metabolized by the bacteria into
a secondary resource, and both resources are essential for
bacterial growth. Yomo et al. (1996) showed that strains
with different metabolic rate constants for synthesizing the
secondary resource from the primary resource can coexist.
The resulting polymorphism is similar to a cross-feeding
polymorphism, except that in cross-feeding scenarios, it is
usually only the primary resource that is limiting in the
ancestral strain (i.e., the secondary metabolite is not essen-
tial for growth of the strain that is not cross-feeding).

In the model of Yomo et al. (1996), coexistence requires
a certain degree of differentiation in the metabolic rate
constants of the two competing strains. Even though it
is reasonable to assume that single mutations affecting
enzymatic activity could lead to a considerable change in
metabolic rates, this model therefore does not describe an
evolutionary process that is driven by mutations of arbi-
trarily small effects. In addition, Yomo et al. (1996) only
considered competition between two given strains differing
in their metabolic rates, and they did not address the ques-
tion of how metabolic rates would change evolutionarily
due to selection in each of the competing strains. In con-
trast, the model introduced here allows for arbitrarily small
mutational effects, and for repeated occurrence of new
mutations in the strains that are already present. In this
way, the model shows how arbitrarily small phenotypic
changes can lead to the gradual evolution of cross-feeding
polymorphisms.

Perhaps the most widely cited theoretical description of
microbial coexistence on a single resource is that by Stewart
and Levin (1973), who show how a trade-off between
growth rates at low and high concentration of a single re-
source can lead to coexistence of different types in serial
batch cultures, i.e., in an environment in which the concen-
tration of the resource changes temporally. In chemostat
cultures, however, where the influx of the resource is con-
stant, such a trade-off cannot lead to coexistence (Stewart
and Levin 1973). Interestingly, when the model introduced
here is modified to describe serial batch cultures rather than
chemostats, the evolution of a cross-feeding polymorphism
through a trade-off between uptake efficiencies on primary
and secondary resources becomes much less likely. This
result conforms with empirical data suggesting that cross-
feeding polymorphisms in E. coli are less likely to evolve
when the bacteria are propagated in batch cultures than
when they are cultured in chemostats (Rozen and Lenski
2000; M. Travisano, personal communication).

The model

Adaptive dynamics is based on calculations of the invasion
fitness function for mutant phenotypes in the ecological
environment generated by resident phenotypes. Therefore,
the first step in formulating a model for the evolutionary
dynamics of cross-feeding consists of setting up a model for
the ecological dynamics of a monomorphic population con-
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sisting of a single phenotype. Here I take this basic model to
be a Michaelis—Menten type model for microbial growth in
a chemostat culture. Let n(f) be the population density of
the bacteria at time ¢, and let ¢(¢) be the concentration of the
primary resource, here glucose, in the chemostat at time .
The flow rate at which chemicals and organisms enter and
leave the chemostat is denoted by d, so that in the absence
of bacteria consuming the glucose, the rate of change in the
glucose concentration in the chemostat is

dc

o d-c+d-c @8]
where ¢, is the glucose concentration in the ambient envi-
ronment supplying the chemostat with glucose. If consump-
tion of secondary metabolic waste products is neglected, so
that growth of the bacterial population is only due to con-
sumption of glucose, the rate of change of the population
density is given by

dn _ 1,-c

dt k, + ¢

‘n—d-n 2)

where r, and k, are parameters describing how the per
capita bacterial growth rate changes with glucose concen-
tration: r, is the maximal per capita growth rate, whereas k,
is equal to that glucose concentration at which the per
capita growth rate is r,/2. Because of bacterial consumption,
glucose concentration is decreased, so that the differential
equation for the glucose concentration becomes

%Z_i Tg € n—d-c+d-c (3)
dt ngg+c

where y, is the “yield” (that is, y, units of population incre-
ment are produced from one unit of the primary resource).
Equations 2 and 3 constitute the basic Michaelis—-Menten
dynamics for bacterial growth on a single limiting resource
in a chemostat (Edelstein-Keshet 1989).

I now extend this model to cross-feeding by assuming
that bacteria secrete a secondary nutrient, here acetate, into
the chemostat as a metabolic waste product of glucose con-
sumption. Thus, the rate of production of this secondary
nutrient is proportional to the glucose consumption rate

1 r-c

g . . .
y_ k +c " At the same time, the secondary nutrient is
g g

also consumed by the bacteria, with different parameters
describing uptake efficiency. If a(f) denotes the concentra-
tion of the secondary nutrient in the chemostat at time ¢, the
bacterial growth rate therefore becomes

@: r:g'C -n+ r;l.a
dt k, +c k, +a

n—d-n 4

where r, and k, are Michaelis—Menten constants describing
bacterial growth due to consumption of the secondary nutri-
ent. The assumption underlying this equation is that uptake
of the two resources is decoupled, so that waste products
are first secreted into the medium and are subsequently
consumed in a secondary metabolic pathway. It has been
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argued that Eq. 4 is a an appropriate model for bacterial
growth on two different resources in a chemostat (Stewart
and Levin 1973; Gottschal and Thingstad 1982).

Uptake of the secondary resource results in a decrease of
its concentration, and taking the rate of production and the
rate of loss due to outflow into account, the rate of change
of a(t) becomes

da_ 1 na n—da+ LS, )
dt yaka+a ygkg+c

Here y, is the yield for growth on acetate, and e is a constant
of proportionality describing how glucose metabolism
translates into production of the secondary nutrient.
Because glucose uptake is not directly affected by the pro-
duction of the secondary nutrient, the dynamic equation
for the glucose concentration remains the same, and Egs. 3—-
5 therefore describe bacterial growth on a primary resource
in a chemostat with the addition of bacterial growth due to
production of a secondary nutrient during consumption of
the primary resource.

Before we formulate the evolutionary dynamics emerg-
ing from this ecological setup, we must specify which of the
parameters in the ecological model should be viewed as
phenotypic properties and which parameters should be
regarded as nonevolving, externally fixed quantities. For
consumption of a single resource without production of a
secondary nutrient, i.e., for the situation described by Eqgs. 2
and 3, it is known that coexistence of different bacterial
strains is not possible. Instead, if we consider the compound
parameter J = k,d/(r, — d), which is the equilibrium concen-
tration of the primary resource in the absence of cross-
feeding, then in a mixture of strains the strain with the
lowest J value will outcompete all other strains (Stewart and
Levin 1973; Hanson and Hubbell 1980). In particular, in a
mixture of strains with equal k, values, the strain with the
highest maximal growth rate r, outcompetes strains with
lower r,. Note that coexistence of two strains is possible in
competition in serial batch if both the r, values and the k,
values are different and ranked in reverse order in the two
strains (Stewart and Levin 1973). We discuss batch culture
models at the end of this section, but for now we concen-
trate on chemostat cultures, and for simplicity we single out
the maximal growth rates r, and r, as evolvable traits and
consider all other quantities as fixed parameters. In particu-
lar, a glucose specialist has a high r, and a low r,, and vice
versa for the acetate specialist. We note that the parameter
e, determining how much waste acetate is secreted during
glucose metabolism, is likely also an evolving trait, so that e
is higher, i.e., acetate production increased, in strains that
are more specialized on glucose (that is, these strains are
very efficient at glucose uptake, but they also produce a
lot of waste during glucose metabolism; Rosenzweig et al.
1994). However, to keep things simple I do not consider this
quantity as a phenotypic trait in this article, and instead it
will be considered, together with the other quantities k,,
k, y, and y,, as an external parameter (note that these
parameters may nevertheless influence the evolutionary
dynamics).

maximal growth rate on acetate, r,

2 4 6

maximal growth rate on glucose, 1,

Fig. 1. Possible trade-off curves r, = g(r,) between maximal growth
rate on glucose, r,, and maximal growth rate on acetate, r,. Shown are
the functions r, = u, — vyrs with 4, = 3 and v, = 0.1, and r, =
uyexp[—v,r,] with 1, = 3 and v, = 0.2. Note that for the latter g’ < 0 and
g" > 0 for all r, > 0, whereas for the former g’ < 0 and g" < 0 for all
r, > 0 (note that the biologically feasible range of r, is bounded by
the condition g(r,) = 0)

Thus, the two traits whose evolution is to be studied are
r, and r,, and to study the evolution of cross-feeding I as-
sume that there is a trade-off between these two traits that
constrains all possible phenotypes to a one-dimensional set
in the two-dimensional r-r, plane. Specifically, I assume
that there is a negative trade-off of the form

r, = g(n) (6)

such that g'(r,) <0 (Fig. 1). Thus, the phenotypic value of 7,
is uniquely determined by the value of r, (and vice versa).
Under these assumptions, the task is to study the adaptive
dynamics of the trait r,. To do this, we consider the growth
rate of a rare mutant r, in an environment determined
by the ecological dynamics of a resident population that is
monomorphic for a resident phenotype r,. If the ecological
system given by Eqgs. 3-5 is run to equilibrium for trait
values 7, and r, = g(r,), then the resulting equilibrium con-
centrations of glucose and acetate will be functions c*(r,)
and a*(r,) of the resident phenotype. So long as the mutant
is rare, it will not affect these concentrations. Therefore, the
growth rate of the mutant population density n,,,(¢) in the
environment set by the resident will be

’

dn,,, T - c* - a*
#:*—.nm +n—‘nm —d.nm 7

dt k,+cx ™ ket ™ w O
where r, and r', = g(r,) are the phenotypes of the mutant,
and where k,, k,, y,, y,, and d are, as mentioned, fixed
parameters.

Therefore, the per capita growth rate of the mutant r|
in the resident r,, which we denote by f(ryr,), is given
by
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where we have used the constraining relation r, = g(rp).
Based on the invasion fitness function f{r,r,), we can define
the selection gradient D(r,) as

of (1
D(r) = —grzrg)

' ©)

£

.=

According to the canonical equation of adaptive dynamics
(Dieckmann and Law 1996), the evolutionary dynamics of
the trait , is then given by

ﬂ =m~D(r)

% (10)

where m is a quantity that is determined by the mutational
process and controls the speed of evolution. As we are only
concerned here with qualitative features of the evolutionary
dynamics of r,, we can set m = 1 without loss of generality.

Note that so long as D(r,) < 0, r, will evolve to smaller
values, while the contrary is true when D(r,) > 0. Equilib-
rium points for the adaptive dynamics, which are also called
evolutionarily singular points, are points r¥ in phenotype
space satisfying

D(r¥)=0 (11)
A singular point is an evolutionary attractor if
dD

for in that case selection tends to increase r, if r, < r¥fand to
decrease r, if r, > r¥ ie., the evolutionary dynamics will
converge toward 7. An evolutionarily singular attractor r§is
called a branching point if r§is a fitness minimum (Geritz et
al. 1998), i.e., if

>0 (13)

-
=1

Thus, to find evolutionary branching points for the trait
r, we first have to solve Eq. 11 and then check whe
ther inequalities 12 and 13 are satisfied. It follows from Eq.
9 that

(14)

D(r) = k:: (cri)(rg) ’ gk(rlaa(g))

Because g'(r,) < 0 by assumption, while all the other terms
appearing in the last equation are >0, it is possible that the
equation D(rf) = 0 has a solution (note that this would not
be possible if g’ > 0). However, it turns out that analytical
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solutions are not feasible, due to the complexity of the
expressions c*(r,) and a*(r,); in particular, it is also not
feasible to determine analytically whether an evolutionarily
singular point ¥is actually an attractor, i.e., whether Eq. 12
holds. These issues therefore have to be handled numeri-
cally by using pairwise invasion plots (Geritz et al. 1998), as
is explained shortly.

First, let us note, however, that if an evolutionary singu-
lar attractor r¥ exists, then the second derivative of the
invasion function is given by

9*f (rg',rz,")

= - 7 15
5 (15)

k, +a*(r§‘)

g%
=g

Therefore, inequality 13 is satisfied if and only if g"(r¥) > 0,
i.e., if and only if the trade-off curve between r, and r, has
positive curvature at the singular point, as would necessarily
be the case if g"(r,) > 0 independent of r,, e.g., for trade-offs
of the form
g(rg) = Uy exp[—v(J : rg] (16)
where u, and v, are parameters determining the exact shape
of the trade-off (cf. Fig. 1). For our numerical results, we
shall therefore consider trade-offs of the form of Eq. 16.
If analytical tools are lacking, a good alternative for
determining the adaptive dynamics numerically consists of
using pairwise invasion plots (Geritz et al. 1998), in which
one plots, for each resident-mutant pair (r,r;), the sign of
the invasion fitness function f{r,,r,). Thus, in such plots the
resident trait value is on the x-axis, the mutant trait value is
on the y-axis, and a particular point (r,,r;) is marked with a
dot if f(rg,r,) > 0,i.e.,if the mutant r; can invade the resident
7., and the point (r,ry) is left blank if f(ryr,) = 0, ie., if
the mutant 7, cannot invade the resident. Note that by
definition f{(r,r,) = 0, so that the diagonal is always blank.
If there is a range of resident r, values for which a region
adjacent to and above the diagonal consists of marked dots,
and a region adjacent to and below the diagonal is blank,
this implies that for each such resident mutants with slightly
higher trait values can invade, whereas mutants with slightly
lower trait values cannot invade. Thus, in such cases the
trait value evolves to higher levels through a series of muta-
tional steps, i.e., through a sequence of trait substitutions
(Dieckmann and Law 1996), as indicated in Fig. 2A. A
similar but opposite remark is true if there is region of
resident r, values for which the region adjacent to and
above the diagonal is blank, while the region adjacent to
and below the diagonal is marked (Fig. 2B).
Evolutionarily singular points are those points on the
X-axis in a pairwise invasion plot at which the sign pattern
of f(r,.r,) across the diagonal changes (Geritz et al. 1998). In
particular, evolutionary attracting singular points r¥ are
those points on the x-axis for which mutants with higher
values than the resident are favored for residents with r, <
r¥ (marked region above the diagonal for r, < r¥), while
mutants with lower values than the resident are favored for
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Fig. 2. Schematic illustration of various A
pairwise invasion plots. Gray areas consist

of resident mutant pairs (r,,r,) with f(r,,r,)
> 0, i.e., resident-mutant pairs for which
the mutant can invade the resident (see
text). A For all resident trait values, ,
mutants with r, > r, have a positive growth
rate whereas mutants with r, < r, have a
negative growth rate. Therefore, there is
directional selection for larger trait values.
The arrow indicates a series of trait
substitutions, each of which is character-
ized by one vertical and the subsequent
horizontal segment of the path; during
each trait substitution, a mutant success-
fully invades (vertical segment) and

mutantr'g

becomes the new resident (horizontal

segment), with the whole series of substitu-

tions leading to an evolutionary increase in

r,- B Similar to A, but now with directional

selection for small trait values. C A C

R
resident Iq

singular point is indicated by * on the x-
axis. To the right of *, selection favors
larger trait values (gray area above
diagonal), and to the left of * selection
favors smaller trait values (gray area below
diagonal). Therefore, * is an evolutionary
attractor. In addition, the vertical line
through * is outside the gray area; hence, *
is evolutionarily stable (no mutant can
invade). D The singular point * is an
evolutionary attractor as in C but now the
vertical line through * lies entirely in the
gray area, which means that all mutants
can invade; therefore, * is a fitness

mutant r';

* *

B
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minimum, i.e., an evolutionary branching
point

resident i

residents with r, > r¥(marked region below the diagonal for
r, > r¥). Two such situations are shown in Fig. 2C,D. In both
cases, the point indicated by * on the x-axis is a singular
point attracting the evolutionary dynamics. In Fig. 2C, the
vertical line passing through the singular point lies entirely
in a blank region, which means that once the resident value
is ¥, no mutant can invade. Therefore, this attractor for the
adaptive dynamics is evolutionarily stable. In contrast, in
Fig. 2D the vertical line passing through the singular
attractor r¥ lies entirely in a marked region, which means
that every mutant can invade. In other words, in this situa-
tion r¥is actually a fitness minimum, and hence an evolu-
tionary branching point. If, for a given set of parameters,
the pairwise invasion plot looks like the one shown in Fig.
2D, then the trait r, will first evolve to rf¥, after which the
population will become polymorphic and consist of two
phenotypic branches that diverge evolutionarily from each
other (see Geritz et al. 1998 for a complete theoretical
treatment of evolutionary branching in one-dimensional
trait spaces).

Therefore, in a numerical exploration we must look for
pairwise invasion plots that look qualitatively like the one
shown in Fig. 2D. The existence of such plots will imply the
evolution of a cross-feeding polymorphism as envisaged in
this article.

To conclude this section, I briefly mention how the
model can be adapted to bacterial populations that are

—_— -

resident ty

propagated in serial batch cultures. Following Stewart and
Levin (1973), the ecological model given by Eqgs. 3-5 is
changed by assuming a series of dynamic cycles represent-
ing the single batches. The dynamics for each single batch
are obtained from Egs. 3-5 by setting the parameter d = 0
(no outflow), and by assuming the following initial condi-
tions for the variables ¢, n, and a: ¢(0) = ¢, is set to some
(high) initial value representing the initial concentration of
glucose in the batch; n(0) is set to some small fraction of the
endstate of the previous batch, representing the serial trans-
fer of a small inoculate from the previous batch to the new
batch, i.e., n(0) = p-n(t.,,), where p denotes the fraction
used for the inoculation and n(t,,,) is the bacterial popula-
tion density at the end of the previous batch dynamics;
finally, a(0) = 0, representing the fact that all glucose, and
hence all secondary acetate, has been used up in the previ-
ous batch. With these initial conditions the dynamics are
then again run to ¢,,, and the process of inoculation into a
new batch is repeated. This iteration is done until n(z,,,)
reaches an equilibrium, i.e., until n(z,,,) does not change
further from one batch to the next.

The success of a mutant is then determined by assuming
that the mutant is initially very rare, so that the ecological
dynamics in a single batch of the quantities n(f), c(¢), and
a(t), where n(t) is the resident population density, are the
same as just described, and the mutant dynamics in a single
batch are simply determined by



dnmut — rg’ - C r(:i, -a
- 5 . nmut + -5 . nmut
dt k,+c k, +a

(17)

where r, and 1', = g(r,) are the mutants trait values. (Note
that this differs from Eq. 7, in which the nutrient concentra-
tions are at their equilibrium values c¢* and a*; here, these
concentrations undergo the batch dynamics just described.)

Starting from a very small initial condition 7,,(0), one
calculates n,,,,(%.,q) in the chemical environment determined
by the dynamics of the resident during a single batch. The
inoculate size of the mutant in the next batch is then
P Nou(tenq), and the mutant can invade, i.e., the invasion
fitness f(r;,r,) > 0, if and only if

Pt (0)

—— <1
p- nmut(temi)

(18)

By plotting the sign of the quantity 1 — n,,,(0)/[pAu ()],
one can then construct pairwise invasion plots as before,
from which one can deduce the adaptive dynamics of
the trait , in a regime of serial batch cultures. As we will see
in the next section, these dynamics are generally different
from the evolutionary dynamics in models for chemostat
cultures.

Results

Recall that a central assumption in the adaptive dynamics
model developed in the previous section is the trade-off
r, = g(r,) between the maximal growth rates on the primary
resource glucose, r,, and the maximal growth rate on the
secondary resource acetate, r,, We assumed that this trade-
off is of the form r, = usexp[—vyr,], where u, and v, are
parameters. For a given u,, the parameter v, determines
the “severity” of the trade-off, i.e., how fast the value of r,
declines with an increase in r,. Numerical simulations in-
dicate that, depending on the rate e at which metabolized
glucose is transformed into secondary acetate, the following
two qualitatively different types of pairwise invasion plots
represent typical evolutionary scenarios in the model so
long as the severity of the trade-off is not too high, i.e., for
low to moderate v,

If e is high enough, the invasion fitness function f(r,.r,)
constructed in the previous section yields pairwise invasion
plots like the one shown in Fig. 3A. This plot shows the
existence of two evolutionarily singular points, indicated by
a and b on the x-axis. Here b is an evolutionary repellor,
because for any r, < b we have f(rr,) > 0 for r; <r,, and for
any r, > b we have f(r,,r,) > 0 for r, > r,. In other words,
selection moves r, away from b on both sides of b. Exactly
the contrary is true for a: on both sides of a, selection drives
r, closer to the singular value (see magnification in Fig. 3B).
Therefore, a is an evolutionary attractor. Moreover, a is a
branching point, because f{r;,a) > 0 for all mutants r, that
are close to a. Thus, if the initial value of r, at which the
evolutionary process is started lies above b, then r, will
steadily increase over evolutionary time. However, if the
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Fig. 3. Pairwise invasion plots for the evolution of cross-feeding. A
Tradeoff r, = u,exp[—vyr,] with u, = 3 and v, = 0.2 (this function is
shown in Fig. 1). The pairwise invasion plot shows an evolutionary
branching point (a) and a repellor (b). Parameter values: k, = 1, y, =
L, k,=1y,=1,d=1,¢,= 10, e = 1.5. B Magnification of the small
square indicated in A. C Here e = 0.5, i.e., there is less efficient
conversion of glucose into acetate. The pairwise invasion plot shows
that there is now uniform selection for larger r, values
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Fig. 4. A Evolutionary dynamics of a cross-feeding polymorphism
after evolutionary branching. To simulate evolution in two coexisting
strains, the basic ecological model 3-5 was extended in a straight-
forward way to competition between two bacterial strains. A given
ecological system comprising two strains was first run to equilibrium,
and then a mutant occurred with probability 0.1 in either strain. If a
mutation occurred, its r, value was chosen from a normal distribution
with mean the resident r, value and variance 5% of the mean. If the
mutant had a positive growth rate on the equilibrium glucose and
acetate concentrations determined by the two resident strains (which
necessarily have zero growth rates on these concentrations, because
they are at ecological equilibrium), then the mutant was assumed to
replace the resident strain in which it appeared (otherwise the resident
strain remained unchanged), and the new system was again run to
ecological equilibrium. This process was started with two initial resi-
dent strains with r, values that were very close to and on opposite sides
of the branching point shown in Fig. 3B, representing a situation just
after the initial polymorphism is established at the branching point.
The figure illustrates diverging evolution in the two branches. Param-
eter values as for Fig. 3A. B Ecological dynamics of coexistence be-
tween glucose specialist and acetate cross-feeder. The two coexisting
strains correspond to the polymorphism present at time ¢ = 1000 in A.
One of the strains is a glucose specialist (high r, = 5.78, low r, = 0.94),
the other is an acetate cross-feeder (low r, = 1.21 and high r, = 2.36)
(note that the y-axis does not have units because the absolute magni-
tude of densities and concentration is arbitrary)

initial value of r, lies between 0 and b, then r, will first
converge to a, after which the population will become di-
morphic. Figure 4 shows an example of the diverging evolu-
tionary dynamics that occur after the population has
converged to the branching point a. In one of the two
branches r, evolves to ever higher values, and in the other
branch r, evolves to ever lower values. In the example
shown, both these processes would only stop because of
externally imposed constraints on the range of physiologi-
cally possible efficiencies of resource uptake. What is clear,
however, is that the evolving polymorphism consists of
one phenotype with a high r, and a correspondingly low r,,
representing a glucose specialist, and one phenotype with a
low r, and a correspondingly high r,, representing an acetate
specialist. Figure 4B shows the ecological dynamics of a
coexisting pair consisting of a glucose specialist and an ac-
etate crossfeeder. It is important to note that these coexist-
ing specialists gradually evolved from a single ancestor
through the process of evolutionary branching.

Technically speaking, the branching point a and the
repellor b in Fig. 3A arise because the one-dimensional
subset in the resident-mutant plane defined by f(r;.r,) = 0
has the shape carved out by the marked regions in Fig. 3A.
This set consists of the diagonal [as f(r,,r,) = 0 in any case],
as well as of a second curve that arches across the diagonal
before it bends back toward the x-axis, enclosing the blank
area above the diagonal in the diagram. As the rate of
production of acetate during glucose metabolism, given by
e, is decreased, this blank area becomes smaller, until for
small enough e the curved part of the set defined by f(r,,r,)
= 0 no longer intersects the diagonal. If this is the case, the
whole region above the diagonal is marked [i.e., f(r,r,) > 0
for any r; > r,], indicating that there is now uniform selec-
tion for increased r, (cf. Fig. 2A). Note that for a range of
intermediate resident r, values there are mutants with lower
ry values that can invade (as is indicated by the black region
below the diagonal) and subsequently coexist with the resi-
dent (Fig. 3C). However, this can only occur if mutations
toward lower r, values exceed a certain minimal size (which
is given by the vertical distance between the current resi-
dent value and the black area below the diagonal). Such a
scenario may still be relevant for cross-feeding polymor-
phism in real systems, where mutations may have large
effects. Strictly speaking, however, this would not be evolu-
tionary branching as defined in adaptive dynamics, because
in the case shown in Fig. 3C diversification would not occur
for arbitrarily small mutations.

The number of parameters in the model is quite large,
and I have not fully explored the whole range of param-
eters. Note that it is possible to rescale the ecological equa-
tions 3-5 so that of the ten original parameters only six
remain, two of which correspond to the two maximal
growth rates, and the remaining four correspond, respec-
tively, to the ratios y,/v,, k,/k,, c/k,, and to e. Because the
maximal growth rates are used in the trade-off, there are
therefore four external parameters that can potentially
affect the evolutionary dynamics resulting from a particular
choice for the trade-off function. Numerical exploration
indicate that none of the parameters y,/y,, k,/k,, and ¢k,
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Fig. 5. Example of a pairwise invasion plot for the tradeoff r, = u, —
Vo* ri with u, = 3 and v, = 0.1 shown in Fig. 1. In this case, an evolution-
arily singular attractor r*, exists at which the tradeoff curve has
negative curvature, i.e., with g'(r*,) < 0 (cf. Fig. 1). Therefore, the
evolutionary attractor is also evolutionarily stable (cf. Fig. 2C), and no
evolutionary branching occurs. Other parameter values as in Fig. 3A

qualitatively affects the finding that a decrease in e results in
the transition from Fig. 3A to 3C (so long as v, is not too
high). What is affected by changes in the external param-
eters, as well as by the parameter i, in the trade-off func-
tion, is the point of transition between the two regimes.
However, further and more detailed explorations may re-
veal regimes not reported here.

In particular, it is important to note that different
trade-off functions can lead to different evolutionary
dynamics. For example, as already noted (cf. Eq. 16), a
trade-off function with negative curvature cannot lead
to evolutionary branching, and instead often leads to the
existence of an evolutionarily stable singular point r¥ If
such a singular point is an attractor for the adaptive dynam-
ics, an example of which is shown in Fig. 5, then it represents
the final outcome of the evolutionary process, and branch-
ing, i.e., the evolution of a polymorphism, does not occur
in such a model. This result reiterates the fact that posi-
tive curvature of the trade-off function at an evolutionarily
singular point is a necessary condition for evolutionary
branching.

To end this section, it is interesting to note that even with
a trade-off with positive curvature, evolutionary branching
seems to occur much less frequently in the evolutionary
dynamics of populations that are propagated in serial batch
cultures. For example, if the uptake parameters from Fig.
3A are used in the serial batch culture model, the pairwise
invasion plot shown in Fig. 6A is obtained, in which the
curved segment of the set f(r,r,) = 0 barely touches
the diagonal. As mentioned, such cases can still give rise to
the evolution of cross-feeding polymorphisms, especially if
mutations have large effects. However, to obtain clear-cut
cases of evolutionary branching in the serial batch culture
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Fig. 6. Pairwise invasion plots for the serial batch culture model. A
Same parameter values as in the chemostat model whose pairwise
invasion plot is shown in Fig. 3A,B (note that the dilution rate d is not
a parameter in the serial batch culture model, and ¢, now denotes the
initial glucose concentration in a single batch). The area above the
diagonal is dark everywhere, indicating that mutants with higher trait
values than the resident can always invade. There is also a dark area
below the diagonal that touches the diagonal, indicating that for a
range of resident values mutants with lower trait values can invade
provided the difference between resident and mutant exceeds a certain
threshold. The point on the x-axis above which the two dark areas
below and above the diagonal come together is a fitness minimum, but
itis not a branching point, because it is not an evolutionary attractor (to
the right of this point, selection favors larger r, values). B Evolutionary
branching point in the serial batch culture model for higher conversion
rate from glucose to acetate. The trade-off between maximal growth
rates on glucose and acetate was of the form r, = u,exp[—v,r,] with
u, = 5 and v, = 0.1; other parameter values were k, = 1,y, = 1, k, = 1,
v, = 1, ¢, = 10 (initial glucose concentration in a single batch), and
e=5
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Fig. 7. Ecological dynamics of a bacterial population during a single
batch of a serial batch culture (model as described in the text). Acetate
has a significant concentration only for a relatively short period of time.
Note that the bacterial population equilibrates because, for simplicity,
no death is assumed to occur after all the glucose has been used up in
the batch. Parameter values as for Fig. 6A. (Note that the y-axis does
not have units because the absolute magnitude of densities and concen-
tration is arbitrary)

models, the rate e at which acetate is produced from the
glucose metabolism must be much higher. An example of
an evolutionary branching point in serial batch culture is
shown in Fig. 6B. Note that branching only occurs at a very
high resident r, value. Unfortunately, no analytical explana-
tion is available at present why evolutionary branching
occurs for a smaller range of parameters, and in particular
requires higher conversion rates e, when bacterial popula-
tions are propagated in serial batch cultures. Nevertheless,
Fig. 7 provides at least some intuitive arguments for this
phenomenon. The figure shows the ecological dynamics of a
monomorphic population and of the concentrations of the
primary and secondary nutrients during a single batch. The
concentration of the primary nutrient starts off at a high
level and decreases to 0 as it is consumed by the bacteria,
whose population eventually stops growing. The concentra-
tion of the secondary nutrient starts off at 0 in every single
batch (as explained in the previous section), then increases
due to metabolism of the primary resource, and then de-
creases again, due to consumption by the bacteria, as its
production slows down because of a decrease in the con-
sumption of the primary resource. Figure 7 illustrates that
the period of time during which the secondary nutrient is at
high concentrations is relatively short; this is in contrast to
the conditions in the chemostat, where the concentration of
the secondary nutrient attains a (positive) equilibrium
state. This indicates that conditions for cross-feeders, i.e.,
specialists on the secondary resource, appear to be gener-
ally harsher in serial batch cultures than in chemostat
cultures.

Conclusions

The evolution of cross-feeding is one of the main empirical
paradigms for evolutionary diversification and subsequent
ecological coexistence of different microbial species on a
single limiting resource. Various types of cross-feeding
polymorphisms have been observed in the lab (Helling et al.
1987; Turner et al. 1996; Treves et al. 1998; Rozen and
Lenski 2000), but the main mechanism appears to be that
populations propagated from a single ancestral strain in-
crease uptake efficiency on the primary resource, often glu-
cose, which increases the amount of a secondary nutrient
that results as a waste product of the metabolism of the
primary resource. This in turn generates the conditions for
a specialist on this secondary resource to be sustained, i.e.,
the conditions for the appearance of a cross-feeder. Al-
though conditions for coexistence of different microbial
species have attracted interest from theoreticians (Stewart
and Levin 1973; Dykhuizen and Davies 1980; Gottschal and
Thingstad 1982; Thingstad et al. 1996; Yomo et al. 1996),
no theory appears to be available describing the gradual
evolution of a monomorphic population into a cross-
feeding polymorphism. The aim of the present article was to
take the first step in filling this theoretical gap by applying
the theoretical framework of adaptive dynamics to an ideal-
ized model for evolution in bacteria that are cultured on a
single primary resource.

The model is based on an ecological description of the
dynamics of a bacterial population consuming a primary
resource that is continually supplied in a chemostat, as well
as a secondary resource that is produced during consump-
tion of the primary nutrient. The basic assumption I made is
that there is a trade-off between uptake efficiencies on the
two resources (see Fig. 1). Thus, a phenotype is character-
ized by a single trait, its uptake efficiency on the primary
resource (or, alternatively, its uptake efficiency on the sec-
ondary resource, because the two efficiencies determine
each other through the trade-off function). Because equilib-
rium concentrations of both the primary and the secondary
resource depend on the phenotype of a given (monomor-
phic) resident population, the growth rate of a rare mutant
also depends on which resident phenotype is present when
the mutant appears. In other words, the growth rate of
mutants is frequency-dependent, which sets the stage for
evolutionary branching, a process by which a population
first converges to a point in phenotype space at which selec-
tion turns disruptive due to frequency dependence, so that
the population subsequently splits into two diverging phe-
notypic clusters representing the two resource specialists
coexisting in a cross-feeding polymorphism (see Fig. 4).

Besides showing how a cross-feeding polymorphism
can gradually evolve from a single ancestral strain through
evolutionary branching caused by frequency-dependent
selection, the theoretical analysis presented here makes two
predictions. First, for cross-feeding to evolve in the models
analyzed here, the trade-off between efficiencies in uptake
of the primary and the secondary resource should have a
positive curvature (at least at the singular point). Although



it is often difficult to measure the curvature of trade-
offs, this prediction appears to be testable, e.g., by isolating
strains at different times during an experiment that leads
to the evolution of a cross-feeding polymorphism. In ad-
dition, if it were possible to manipulate trade-off curves
experimentally (e.g., by using different types of media
for bacterial growth), one could then test whether evolu-
tionary branching becomes less likely when the curvature
of trade-off curves becomes negative, as predicted by the
model.

The second prediction of the model is that cross-feeding
polymorphisms should be more likely in chemostat cultures
than in serial batch culture, because in the models for the
latter case evolutionary branching appears to require very
high rates of production of the secondary nutrient during
primary resource metabolism (see Fig. 6). This result con-
forms with some empirical data suggesting that, indeed,
cross-feeding polymorphisms are less likely to be found in
evolving bacterial populations that are propagated in serial
batch cultures (Rozen and Lenski 2000). The suggested
mechanism responsible for this is that in the single batches
the concentration of the secondary nutrient is at appre-
ciable levels only for a relatively short period of time, thus
making conditions harsher for specialists on this secondary
resource. Again, this is supported by the models presented
here (see Fig. 7).

Clearly, however, these models are but a first step to-
ward a more thorough understanding of the evolution of
cross-feeding polymorphisms. Future work should include
the analysis of alternative trade-offs, such as between the
maximal growth rate r, attained when the resource is not
limiting and the “scavenging” growth rate k, attained when
the limiting resource is at very low concentrations (Hanson
and Hubbell 1980), or trade-offs between efficiency e and
yield y, (Pfeiffer et al. 2001). In addition, it will be interest-
ing to consider multiple waste products from the primary
metabolism, which could result in the coexistence of mul-
tiple strains exhibiting various degrees of specialization
on the different resources. For example, in addition to the
glucose and acetate specialists, Rosenzweig et al. (1994)
found a third bacterial species that cross-feeds also on glyc-
erol, another waste product, and that exhibits properties of
a generalist feeding on all three resources. In general, it is
important to further reconcile theoretical results about the
evolution of cross-feeding polymorphisms with empirical
studies of this fundamental process of evolutionary
diversification.
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