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Abstract Transformation is required to achieve homo-
scedasticity when we perform ANOVA to test the effect of
factors on population abundance. The effectiveness of
transformations decreases when the data contain zeros.
Especially, the logarithmic transformation or the Box–Cox
transformation is not applicable in such a case. For the
logarithmic transformation, 1 is traditionally added to avoid
such problems. However, there is no concrete foundation as
to why 1 is added rather than other constants, such as 0.5 or
2, although the result of ANOVA is much influenced by the
added constant. In this paper, I suggest that 0.5 is preferable
to 1 as an added constant, because a discrete distribution
defined in {0, 1, 2, . . .} is approximately described by a cor-
responding continuous distribution defined in (0, `) if we
add 0.5. Numerical investigation confirms this prediction.

Key words ANOVA · Box–Cox transformation · Heteros-
cedasticity · Iwao’s m* 2 m regression · Taylor’s power law

Introduction

Many works have been developed about which measure
should be used to describe the variability of populations
(Williamson 1984; McArdle et al. 1990; Gaston and
McArdle 1993; Leps 1993; McArdle and Gaston 1993,
1995). If we want to analyze the cause of population dynam-
ics, a logarithmic scale is preferable in many cases, because
mortality, as well as reproduction, is a multiplicative pro-
cess. Life table analyses such as key-factor/key-stage analy-
ses adopted a logarithmic scale for this reason (Yamamura
1999). One of the difficulties of logarithmic scale is that we
cannot calculate the logarithm if the data contain zeros. In
such a case, loge(x 1 1) or log10(x 1 1) is traditionally used,
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where x is the number of individuals. However, the variabil-
ity of loge(x 1 1) is much different from that of loge(x) when
x is small. Hence, McArdle and Gaston (1992) recom-
mended the coefficient of variation (CV) as a measurement
of population variability, because CV performs the same
way as the standard deviation of loge(x) and is unaffected by
zeros.

The logarithmic transformation is also frequently used to
achieve homoscedasticity or stability of variance when we
perform ANOVA to test the effect of factors on the popu-
lation abundance. If the data contain zero, 1 is traditionally
added to each data or only to the zeros. However, there is
no concrete foundation as to why 1 is added rather than
another constant, such as 0.5 or 2, although the result of
ANOVA is much influenced by the added constant. In this
article, I first summarize the procedure to determine the
transformation formulae to stabilize the variance of popula-
tion counts. Then, I suggest that 0.5 is a reasonable choice as
the added constant. Numerical investigation is also con-
ducted to determine an appropriate constant.

Heteroscedasticity in populations

The variance of population increases with increasing mean.
Bliss (1941) suggested two equations to describe the
heteroscedasticity:

s2 5 gm 1 hm2 (1)
s2 5 amb (2)

where m and s2 are the mean and variance of the number of
individuals in a sample, and a, b, g, and h are constants. The
general applicability of Eqs. 1 and 2 were first shown by
Iwao (1968), based on his m* 2 m regression, and by Taylor
(1961), based on his power law, respectively. A consider-
able amount of controversy has been held about which of
the two is superior as an ecological model (Iwao and Kuno
1971; Taylor et al. 1978; Taylor 1984; Itô and Kitching 1986;
Kuno 1991; Routledge and Swartz 1991; Perry and Woiwod
1992). For the practical purpose of description, however,



both equations fit the data equally well in most cases, and
hence I later use both equations to investigate the effect of
added constant on the stabilization of variance.

Derivation of the transformation formula

Taylor series expansions

Let us assume that the variance of a variable x is given by a
function of the mean d(m). Let f(x) be a function of x. Using
Taylor series expansions around the mean, m, we obtain:

        f x f m f m x m( ) ( ) ¢( )( ) 5  1  2  1 . . . (3)

where f9(m) is the first derivative of f(x) evaluated at x 5 m.
By squaring the above equation, we obtain an approxima-
tion of the variance of f(x):
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where E and V indicate the expectation and variance,
respectively. This method to obtain the variance is usually
called the delta method because of the reliance upon first
derivatives (Stuart and Ord 1994, p 350). Our present con-
cern is to find the function f(x) that yields a constant vari-
ance irrespective of m. Then, we obtain from Eq. 4:

f x( ) 5 w

d x( )
dxÚ (5)

where w is an arbitrary constant (Beall 1942; Bartlett 1947).
If we know the form of d(x) beforehand, therefore, we can
derive a transformation formula using Eq. 5. When the
distribution of x is a Poisson distribution, for example, we
have d(m) 5 m, and hence we obtain the transformation
formula, f(x) 5 ÷

–
x. If the coefficient of variation (CV) of the

distribution is constant, we obtain f(x) 5 loge(x), because
d(m) is proportional to m2. Iwao and Kuno (1968) derived
the transformation formulae based on Eq. 1:
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Bliss (1941) derived the transformation formulae based on
Eq. 2:
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Equation 7 includes the square root transformation as its
special case of b 5 1.

Box–Cox transformation

Box and Cox (1964) proposed a procedure for determining
a transformation formula, which is applicable when we do
not know the form of d(x) beforehand. They used a modi-
fied form of Eq. 7:
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This transformation is continuous around λ 5 0, although
Eq. 7 is discontinuous around b 5 2. Hence, we can obtain
a series of transformations, including ÷

–
x and loge(x), by

changing λ continuously. They estimated the parameter λ
by the maximum-likelihood method based on the assump-
tion that the distribution after the transformation follows a
normal distribution. To obtain the estimate, the working
variable, y, is first calculated:
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where G is the geometric mean of x. ANOVA is performed
for this working variable. Box and Cox (1964) showed that
the maximum-likelihood estimate of λ coincides to the λ
that minimizes the residual sum of squares in this ANOVA.
Hence, we can easily find the maximum-likelihood estimate
by comparing the residual sum of squares for various λ.

Problem caused by zeros

The above transformations meet serious difficulties when
the data contain zeros because Eqs. 6 and 7 contain loge(x)
transformation. We cannot use the Box–Cox transforma-
tion in this case, either, because Eq. 9 containing the geo-
metric mean of x in the denominator becomes infinity if
data contain zeros. Hence, we should use (x 1 c) instead
of x to avoid these problems. Box and Cox (1964) sug-
gested that the maximum-likelihood method is available to
select an appropriate value of c in the modified Box–Cox
transformation:
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However, Hill (1963) showed that the maximum-likelihood
estimation of c is not acceptable even when loge(x 1 c)
exactly follows a normal distribution. Let us denote the
smallest data by xmin. Then, the likelihood becomes infinity
when c 5 2xmin in this case. Thus, 2xmin always becomes a
global maximum-likelihood estimate of c, but such an esti-
mate is not acceptable. Several alternative principles to
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determine the parameter c have been proposed (Hill 1963;
Griffiths 1980; Berry 1987). Although these procedures are
applicable under a certain range of assumptions, they re-
quire complicated calculations. Thus, we need another
practical principle to determine the value of c.

A general approximation

The above difficulties seem to occur because zeros do not
meet the assumption that is involved in the transformation.
The slope of these transformation functions (Eqs. 6–8) be-
comes larger as x approaches zero. Let us consider a small
difference in x, which is denoted by ∆x. The difference in
the transformed value, f(x 1 ∆x) 2 f(x), decreases with
increasing x. In that sense, the quantity of ∆x is more com-
pressed if the position of ∆x is far from zero, but it is more
expanded if the position is near zero. The expansion effect
of transformation becomes larger as the position of ∆x ap-
proaches zero. Hence, these transformations are most suit-
able for a continuous distribution defined in (0, `) such as
shown by the curve in Fig. 1. However, the distribution of
individuals is a discrete distribution defined for {0, 1, 2, . . .}.
As shown in Fig. 1a, such a discrete distribution cannot be
well approximated by a continuous distribution. If we want
to describe the discrete distribution by a continuous distri-
bution, the discrete distribution should be shifted by 0.5, as
shown by Fig. 1b. Such a shifted discrete distribution is
approximately described by a continuous distribution with
the same variance if the mean is large. Therefore, we can
expect that c 5 0.5 is a reasonable choice to enhance the
effect of transformation.

Numerical evaluation of approximation

To evaluate the effectiveness for using c 5 0.5, I conducted
numerical calculations for several combinations of param-
eters. It is known that the distribution of individuals can be
approximately described by a negative binomial distribu-
tion in most cases. McArdle et al. (1990) used a negative
binomial distribution, whose parameters are subjected to
the constraint of Eq. 2, to evaluate the stabilization effect
of the logarithmic transformation. In a similar way, I use a
negative binomial distribution defined by
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whose parameter k is subjected to the constraint of Eq. 1 or
2. We should also calculate the effect of transformation for
a corresponding continuous distribution to evaluate how a
discrete distribution approaches a continuous distribution
by adding 0.5. Eq. 11 can be approximately described by a

gamma distribution with a shape parameter k and a scale
parameter k/m, if m is large:
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Hence, we use Eq. 12 whose parameters have the same
constraint in its mean and variance. Bartlett (1936) used a
similar approach to evaluate the effect of square root trans-
formation. I calculated only the transformation for a realis-
tic range, s2 $ m, for each combination of parameters.

When we have a relation s2 5 m2, which corresponds to
g 5 0 and h 5 1 in Eq. 1 or a 5 1 and b 5 2 in Eq. 2, Eqs.
6 and 7 recommend a logarithmic transformation, loge(x). In
this case, the transformed variable of a gamma distribution
showed a conspicuous homoscedasticity as indicated by the
horizontality of the dotted line in Fig. 2. The variance of the
transformed variable of a negative binomial distribution
converges to that of the gamma distribution as the mean
increases. The convergence is much influenced by the value
of c. Among calculated values of c, c 5 0.2 seems to be most
preferable in this situation, because it shows superior
horizontality. c 5 0.5 is not the best choice in this case, but
it is preferable to c 5 1.

Fig. 1. Approximation of a discrete distribution defined in {0, 1,
2, . . .} by a continuous distribution defined in (0, `). a Insufficient
approximation without adding constant. b Improved approximation by
adding 0.5
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The square root transformation is recommended by Eqs.
6 and 7 for the relation s2 5 m that corresponds to g 5 1 and
h 5 0 in Eq. 1 or a 5 1 and b 5 1 in Eq. 2. This case has been
discussed by Bartlett (1936). The variance after transforma-
tion for c 5 0.5 quickly converges to that of a gamma
distribution with increasing mean (Fig. 3). The stabilization
effect for c 5 1 is considerably worse than that of c 5 0.5.
When the mean density is too small, the variance after the
transformation is small irrespective of the choice of c, indi-
cating that any transformation of this type is unsuccessful
for such a case.

When we have a relation s2 5 m1.5, which corresponds to
intermediate values of parameters, a 5 1 and b 5 1.5, in Eq.
2, Eq. 7 recommends a power transformation x0.25. In this
case, the stabilization effect of transformation is excellent
for a gamma distribution, as shown by the horizontality of
the dotted curve in Fig. 4. The variance after transformation
for c 5 0.5 quickly converges to that of a gamma distribu-
tion with increasing mean. The convergence is very slow for
c 5 1.

When we use intermediate values of parameters, g 5 0.5
and h 5 0.5, in Eq. 1, Eq. 6 recommends a transformation
loge(÷

–
x 1 ÷x

—
11). The variance after transformation for

c 5 0.5 is similar to that of a gamma distribution (Fig. 5).
The superiority of c 5 0.5 over c 5 1 is also clear in this
case.

Discussion

I recommended the transformation using (x 1 0.5), such as
÷x

—
1
—

0.5 and loge(x 1 0.5), to stabilize the variance of popu-
lations for ANOVA. Figures 2–5 indicate that c 5 0.5 is
preferable to c 5 1, although it is not always the best choice.
The square root transformation with c 5 0.5 was first rec-
ommended by Bartlett (1936) as the analogy with Yates’
(1934) continuity correction that is used to approximate a
tail probability of a discrete distribution by a tail probability
of the corresponding continuous distribution. I recom-
mended the use of c 5 0.5 by a different reason – a discrete
distribution defined in {0, 1, 2, . . .} is approximately de-
scribed by a continuous distribution defined in (0, `) if we
use c 5 0.5. Anscombe (1948) studied optimal values of c
for several specified distributions. If the distribution is a
Poisson distribution, for example, c 5 3/8 is optimal in a
sense that the variance converges most quickly as the mean
increases. If the distribution follows a negative binomial
distribution with constant k, another transformation, loge(x
1 k/2), may be recommended for a large m. If the form of
distribution is not known, however, c 5 0.5 seems to be a
reasonable choice.

The loge(x 1 1) transformation will be thus less prefer-
able for ANOVA, because the inconstancy of variance does

Fig. 2. Effect of adding constant (c) on the stabilization of variance of
a negative binomial distribution with a constraint s2 5 m2 that cor-
responds to g 5 0 and h 5 1 in Eq. 1 or a 5 1 and b 5 2 in Eq. 2. A
logarithmic transformation, loge(x 1 c), is used. Each number beside a
solid curve indicates the c used in the calculation. The dotted curve is
that of a gamma distribution with the same constraint for variance

Fig. 3. Effect of adding constant (c) on the stabilization of variance of
a negative binomial distribution with a constraint s2 5 m that corre-
sponds to g 5 1 and h 5 0 in Eq. 1 or a 5 1 and b 5 1 in Eq. 2. A square
root transformation, Î–x—

1c–, is used. Meaning of each curve is the same
as in Fig. 2
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not guarantee the assumption of the F-test. This transfor-
mation may not also be suitable for describing the popula-
tion dynamics. Notice that the population dynamics should
be defined for the total population in an area but not
defined for the number of observed individuals, because the
latter is influenced by the sampling variability that is not of
interest to us. In most cases, the zero observation indicates
that the population density is very low but does not indi-
cate that the population is truly zero. If the sample size is
extremely large, zero will not occur in many cases. In that
sense, zero data are artifacts that derive from the deficiency
in sampling effort. Then, it is preferable to use an approxi-
mation for the dynamics of the logarithm of true total popu-
lation. Let us imagine that the sample size becomes r times
larger to obtain the total population N. Then, the frequency
distribution of N/r is a continuous alternative to the distri-
bution of x, if r is extremely large. By the same argument
shown in Fig. 1, therefore, loge(x 1 0.5) transformation
yields an approximation for the distribution of loge(N/r),
i.e., the distribution of loge(N) 2 loge(r). Hence, loge(x 1
0.5) transformation seems to be preferable to loge(x 1 1)
for evaluating the population dynamics as well as for per-
forming ANOVA.

One of the possible misuses of the logarithmic transfor-
mation is to add a constant to the mean population instead
of the total population before transformation. As an illus-
tration, let us consider that 100 plants are examined and x
individuals are observed on them. In this case, if we use

Fig. 4. Effect of adding constant (c) on the stabilization of variance of
a negative binomial distribution with a constraint s2 5 m1.5 that corre-
sponds to a 5 1 and b 5 1.5 in Eq. 2. A power transformation, (x 1
c)0.25, is used. Meaning of each curve is the same as in Fig. 2

Fig. 5. Effect of adding constant (c) on the stabilization of variance of
a negative binomial distribution with a constraint s2 5 0.5(m 1 m2) that
corresponds to g 5 0.5 and h 5 0.5 in Eq. 1. An arc-hyperbolic trans-
formation, loge(Î–x—

1c– 1 Î–x—
1c–1

—1), is used. Meaning of each curve is
the same as in Fig. 2

logarithmic transformation after adding 0.5 to the mean
population (x/100), the transformation corresponds to the
logarithmic transformation using c 5 50, because we have
loge(x/100 1 0.5) 5 loge(x 1 50) 2 loge(100). Taylor series
expansions about x around 0 yield:

          
log log . . .e ex c c

x
c

x
c

 1   1  2  1 ( ) ( )<  
2

22
(13)

If c/x is large, therefore, the transformation formula ap-
proaches f(x) 5 loge(c) 1 x/c, i.e., no transformation. Thus,
the logarithmic transformation may become meaningless if
0.5 is added to the mean population in this case. I recom-
mended c 5 0.5 because it is half of the discrete unit (see
Fig. 1). When we analyze mean population, x/100, however,
the discrete unit is 1/100, and hence we should add 0.5/100
before the logarithmic transformation in such a case.
Thus, we should more carefully select an appropriate con-
stant when we analyze the mean density instead of total
population.
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