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Abstract A model for describing the competition–density
(C-D) effect in self-thinning populations was developed on
the basis of the following three basic assumptions: (1) the
growth of mean phytomass follows a general logistic equa-
tion; (2) final yield is independent of initial population den-
sity; and (3) there exists a functional relationship between
actual and initial population densities at any given time.
The resultant equation takes the same reciprocal form as
the reciprocal equation of the C-D effect derived from
Shinozaki–Kira’s theory (i.e., the logistic theory of the C-D
effect), which deals with the density effect in nonself-
thinning populations. However, one of the two time-
dependent coefficients is quite different in mathematical
interpretation between the two reciprocal equations. The
reciprocal equation for self-thinning populations is essen-
tially the same as the reciprocal equation assumed in the
derivation of the functional relationship between actual and
initial population densities. The establishment of the recip-
rocal equation is supported by the empirical facts that
the reciprocal relationship between mean phytomass and
population density is discernible in not only nonself-
thinning populations but also in self-thinning populations.
The present model is expected to systematically interpret
underlying mechanisms between the C-D effect, which is
observed at a time constant among populations with various
initial densities, and self-thinning, which is observed along a
time continuum in a given population.
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Introduction

The competition–density (C-D) effect refers to the rela-
tionship at a particular moment in time between mean
phytomass per plant and the number of plants per unit area
among populations grown at different levels of density. On
the other hand, self-thinning refers to the time trajectory of
mean phytomass and population density, i.e., how mean
phytomass increases as density decreases in a population
over time. It is well known that overcrowded populations
follow the 3/2 power law of self-thinning, which was
first formulated by Yoda et al. (1963) (e.g., Harper 1977;
Charles-Edwards et al. 1986; Silvertown and Doust 1993;
Niklas 1994; Perry 1994; Begon et al. 1996; Watkinson
1997).

The reciprocal equations for describing the C-D effect
(Bleasdale and Nelder 1960; Shinozaki and Kira 1961;
Nelder 1962; Bleasdale 1967; Farazdaghi and Harris 1968;
Watkinson 1980; Vandermeer 1984) originate in the logistic
theory of the C-D effect established by Shinozaki and Kira
(1956). On the basis of the reciprocal equation of the C-D
effect or the basic equation of self-thinning (Shinozaki
1961), Hozumi (1977, 1980, 1983) succeeded to a consider-
able extent in explaining the time trajectory of mean
phytomass and population density during the course of self-
thinning. However, because density does not change in the
populations considered in the logistic theory of the C-D
effect, there would be a theoretical limit in reconciling the
C-D effect and self-thinning within the framework of the
logistic theory of the C-D effect (Minowa 1982; Naito 1992).

The objective of this article is to formulate the C-D effect
in self-thinning populations grown at different levels of den-
sity, holding growth factors other than space constant. Suc-
cessive decreases in density, i.e., self-thinning, occur as the
result of competitive interactions among individual plants
in populations over time. The mean phytomass w at any
given time can only be calculated from yield per unit area y
and the number of surviving plants (i.e., actual population
density r) (Shinozaki 1979; Weller 1987). Namely, these
three variables have the following relationship:
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the functional relationship between mean phytomass
and population density on the basis of the following
assumptions.

Assumption 1

The growth of mean phytomass w follows the general logis-
tic equation

          

1
1

w
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w

W t
 5  2 λ( ) ( )
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ˆ
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(2)

where λ(t) is the growth coefficient and W(t) is the asymp-
tote of w. Both λ(t) and W(t) are allowed to be functions of
time t (Shinozaki 1953a).

Assumption 2

The growth coefficient λ(t) is independent of population
density r.

          

∂
∂r
λ t( )

 5 0 (3)

Under the assumption of logistic growth, growth is largely
free from the inhibitory influence of r in the early period of
growth.

Assumption 3

Final yield per unit area Y(t) is independent of population
density r (Kira et al. 1953); i.e., the law of constant final
yield (Hozumi et al. 1956) holds:
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Assumption 4

Initial mean phytomass w0 is constant irrespective of popu-
lation density r.

        

∂
∂r
w0 0 5 (6)

This assumption is supported with the fact that seeds are
sown simultaneously at t 5 0 irrespective of population
density r.

Using Eq. 4, Eq. 1 can be rewritten in the form
(Shinozaki 1961):
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Here, τ is called biological time (Shinozaki 1961) and is
defined as

Fig. 1. Interrelationships among the fundamental variables to be con-
sidered in self-thinning (based on the diagram by Hozumi 1973). y,
yield; r, actual population density; w, mean phytomass; ri, initial popu-
lation density (independent variable); t, time (independent variable)

      
w

y
 5 

r
(1)

As a result, the mean phytomass w is a function of the yield
y and the actual population density r, both of which are in
turn functions of the number of plants at the beginning of an
experiment (i.e., initial population density ri) and the
period of growth (i.e., time t):

        w w y 5 ,  r( )
        y y t 5 ri  ,( )
and

        r r 5 i  , t( )
The interrelationships among the variables are diagram-
matically shown in Fig. 1.

Before proceeding with the C-D effect in self-thinning
populations, an overview of the logistic theory of the C-D
effect is given and the derivation of the reciprocal equation
of the C-D effect reached by Shinozaki and Kira (1956) is
retraced. In addition, the model of the functional relation-
ship between actual and initial population densities formu-
lated by Shinozaki and Kira (1956) is reconfirmed. Then, a
model applicable to the C-D effect in self-thinning popula-
tions is developed in line with the logistic theory of the C-D
effect. Finally, the interrelationships between the logistic
theory of the C-D effect and the present model are
discussed.

The C-D effect in nonself-thinning populations

Shinozaki and Kira (1956) established the logistic theory
of the C-D effect, in which they succeeded in formulating
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Equation 7 was considered as the most fundamental for-
mula to show the w–r relationship of self-thinning popula-
tions, i.e., the basic equation of self-thinning (Hozumi 1977,
1980).

If the population density r is maintained at a constant
value rc (i.e., in the state of initial population density ri

throughout the experiment), then Eq. 7 reduces to
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A B 5  1 rc (9)
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The coefficients of A and B in Eq. 9 are apparently func-
tions of time t alone, regardless of the population density rc

from Eqs. 3, 5, and 6.
Equation 9 is called the reciprocal equation of the C-D

effect (Shinozaki and Kira 1956), which describes the rela-
tionship between the mean phytomass w and the population
density rc at any given time among a set of nonself-thinning
populations grown at different levels of density. Equation 9
gives an excellent fit to the data and has been applied with
considerable success to the relationship of mean phytomass
to population density for a very wide range of species,
implying that a simple rule underlies the growth of popula-
tions (e.g., Harper 1977; Firbank and Watkinson 1990;
Silvertown and Doust 1993).

Mortality pattern in self-thinning populations

In the time course of self-thinning, plant populations cannot
be denser than an asymptote of population density, whose
level becomes lower as time progresses. Figure 2 depicts the
relationships at any given time between actual population
density r and initial population density ri in Pinus densiflora
stands examined by Tadaki et al. (1979). The relationship
can be well approximated with the following equation pro-
posed by Shinozaki and Kira (1956):
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r r
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where ε(t) represents the reciprocal of the asymptote of r at
time t as ri tends to infinity, and is apparently independent
of r and ri, but is a function of t alone. From here on, we
designate Eq. 12 as the r–ri model.

On the basis of experimental results in self-thinning
populations, Shinozaki and Kira (1956) arrived at the r–ri

model from the following two assumptions, where an imagi-

Fig. 2. Relationships between actual population density r and initial
population density ri at any give time in Pinus densiflora stands (data
from Tadaki et al. 1979). The curves are given by Eq. 12

nary mean phytomass (Ikusima et al. 1955; Kira et al. 1956),
defined as

        
w

y
i

i

 5 
r

(13)

is considered.

Assumption 1

There exists a reciprocal relationship between imaginary
mean phytomass wi and initial population density ri at any
given time in self-thinning populations.

        

1
w

A B
i

i i i 5  1 r (14)

where Ai and Bi are time-dependent coefficients.

Assumption 2

There exists a reciprocal relationship between mean
phytomass w and actual population density r at any given
time in self-thinning populations.

        

1
w

A B 5  1 ¢ ¢r (15)

where A9 and B9 are time-dependent coefficients.
Under situations with extremely low population densi-

ties, populations are not overcrowded, so that the following
equality is realized:

        
w wi i

  r rÆ Æ0 0
5

This equality means that Bi in Eq. 14 and B9 in Eq. 15 agree
with each other. As the following relationships are obvious
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from Eqs. 1 and 13
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Here, let us denote the second term (Ai 2 A9)/Bi on the
right-hand side by ε(t), then the r–ri model (Eq. 12) is
reached.

Yoda et al. (1963) reconfirmed the validity of the
r–ri model on the basis of spacing experiments of
Sesame vulgaris and Fagopyrum esculentum populations.
Watkinson (1980) also reported that the r–ri model fits
extremely well to data collected from populations of
Agrostemma githago and Raphanus sativus. Firbank and
Watkinson (1985, 1990) and Watkinson (1986) recognized
that the r–ri model is useful in describing the density-
dependent mortality pattern in plant populations.

Interrelationships among yield, mean phytomass,
and population density in self-thinning populations

Differentiating both sides of Eq. 1 logarithmically with re-
spect to time t gives the following equation (Hozumi 1980):
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(16)

Equation 16 states that the relative growth rate of mean
phytomass (1/w)(dw/dt) is not equal to the relative growth
rate of yield (1/y)(dy/dt) in self-thinning populations.

If the growth of mean phytomass w is assumed to follow
the general logistic equation (Eq. 2) and no self-thinning
occurs in populations (2(1/r)(dr/dt) 5 0), then Eq. 16 re-
duces to the following equation (Shinozaki 1979):
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Equation 17 states that the growth of yield y follows a
general logistic equation with the growth coefficient of λ(t)
and the asymptote of Y(t). As a result, the law of constant
final yield is successfully reflected in the growth equation of
yield y. Therefore, it follows that the assumption of the
logistic growth of w is equivalent to that of the logistic
growth of y, so far as nonself-thinning populations are
concerned.

However, if the growth of mean phytomass w is assumed
to follow the general logistic equation (Eq. 2) and self-
thinning does occur in populations (2(1/r)(dr/dt) . 0), Eq.
16 reduces to the following equation:
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Equation 18 is identical with a model proposed by
Shinozaki (1976) for describing linear removal from a logis-
tic growing system, so that the growth of yield y is regarded
to follow a kind of logistic equation with the growth coeffi-
cient of λ(t) 2 m and the asymptote of (1 2 m/λ(t))W(t)r.
Because the asymptote is apparently
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Eq. 4 in assumption 3 of the logistic theory of the C-D effect

      
W t
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r

does not hold. In addition, the asymptote depends on popu-
lation density r because the relative mortality rate m is
density dependent. Therefore, it follows that the law of
constant final yield cannot be reflected in the resultant
growth equation of yield y, so far as self-thinning popula-
tions are concerned.

When the logistic theory of the C-D effect is applied
to the density effect in self-thinning populations, assump-
tions 1 and 3 of the theory are in conflict. In this context, it
is concluded that Eq. 7 cannot function as the basic
equation for describing the C-D effect in self-thinning
populations.

The C-D effect in self-thinning populations

Conspecific individual plants are integrated into a higher
level of biotic components, i.e., plant populations,
which grow in a manner similar to that of a whole plant.
Decreases in yield caused by mortality are most likely
matched with increases in phytomass caused by the acceler-
ated growth of survivors. The yield increases to approach
asymptotically a carrying capacity for the environment.
Realization of the constant final yield regardless of popu-
lation density (Donald 1951; Kira et al. 1953) charac-
terizes the growing behavior of plant populations. In
this context, it is reasonable to assume that the growth of
yield y follows the general logistic equation (Eq. 17),
whether self-thinning occurs or does not occur in
populations.

Although the general logistic equation does not give a
specifically determined curve, we can assume that it offers a
general principle for describing population growth. Any
change in actual population growth could be reasonably
traced with the general logistic equation in which two arbi-
trary parameters are adequately modified as functions of
time (Shinozaki 1953a,b).

In light of Eq. 16, the assumption of the logistic growth of
yield y (Eq. 17) inevitably determines the growth of mean
phytomass w as follows:
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Equation 19 is also regarded as a kind of logistic equation
(cf. Eq. 18), whose growth coefficient is λ(t) 1 m and
asymptote W(t) is
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 5  1 1
λ r

(20)

Equation 20 is quite different from Eq. 4 in assumption 3 of
the logistic theory of the C-D effect. Conclusively speaking,
it follows that the asymptote W(t) of mean phytomass w is

      
W t

Y t( ) ( )
 Þ 

r

so far as self-thinning populations are concerned (m . 0).
To develop a model applicable to the C-D effect in self-

thinning populations, the following assumptions are set up
in a manner similar to the logistic theory of the C-D effect.

Assumption 1

The growth of mean phytomass w is described with Eq. 19.
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Assumption 2

The growth coefficient λ(t) for yield y is independent of
initial population density ri.
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 5 0 (21)

Assumption 3

The final yield Y(t) is independent of initial population
density ri.
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 5 0 (22)

Assumption 4

Initial mean phytomass w0, defined as initial yield y0 divided
by initial population density ri, is constant irrespective of ri.
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y
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Assumption 5

The functional relationship of actual population density r
realized at any given time t to initial population density ri is
described with the r–ri model (Eq. 12):
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Assumption 1 is equivalent to the assumption that the
growth of yield y follows the general logistic equation given
by Eq. 17. The logistic theory of the C-D effect assumed
that the growth of mean phytomass w follows the general
logistic equation given by Eq. 2. The assumption of the
logistic growth of mean phytomass w is not compatible with
that of the logistic growth of yield y in self-thinning popula-
tions, as mentioned earlier. Assumptions 2 to 4 are basically
the same as those adopted in the logistic theory of the C-D
effect. However, because Eq. 4 in assumption 3 of the logis-
tic theory of the C-D effect is not valid in self-thinning
populations, Eq. 4 is necessarily excluded in the present
theory. Assumption 5 is newly incorporated into the present
theory.

The five assumptions just discussed lead to the reciprocal
equation of the C-D effect in self-thinning populations
being expressed (Appendix 1) as
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With abbreviations of
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and

        
B

e
w

 5 
2τ

0

(28)

Eq. 26 can be rewritten in the form

        

1
w

A B 5  1 tr (29)

The coefficient B is common between Eqs. 9 and 29 (cf. Eq.
11). The coefficients At and B in Eq. 29 are independent of
actual population density r (Appendix 2), but are depen-
dent on time t alone. If no self-thinning occurs in popula-
tions (i.e., ε(t) in Eq. 12 is zero under the situation of r 5 ri,
so that At becomes equal to A given by Eq. 10 from Eq. 27),
then Eq. 29 is identical to the reciprocal equation of the C-
D effect in nonself-thinning populations (Eq. 9).

Equation 29 is essentially the same as Eq. 15, which was
assumed in the derivation of the r–ri model. The details are
discussed in the next section.

Discussion

Let us consider the imaginary mean phytomass defined as
Eq. 13:
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From these assumptions, we have the following reciprocal
equation:

        

1
w
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i

i i i 5  1 r (32)

The coefficients Ai and Bi in Eq. 32 are respectively ex-
pressed in the forms
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where the biological time τ is defined as Eq. 8:

            
τ 5 λ
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t

t dtÚ ( )

It is recognized that the coefficients Ai and Bi in Eq. 32 are
the same, respectively, as the coefficients A and B in Eq. 9
(cf. Eqs. 10 and 11).

Equation 32 coincides with Eq. 14 assumed in the deriva-
tion of the r–ri model (Eq. 12). When Eq. 14 was assumed,
the biological meanings were not clear. However, as a result
of the present interpretation for the logistic theory of the C-
D effect, validity has been given to Eq. 14.

Let us now replace Eq. 15, i.e., one of the two assump-
tions for the r–ri model, with the r–ri model itself (Eq. 12)
and start with the following two assumptions.

Assumption 1

Equation 14, or Eq. 32, holds in self-thinning populations:
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Assumption 2

The relationship between actual population density r and
initial population density ri is described with the r–ri model
(Eq. 12):
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r r
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i

 ε t( )

These assumptions conclude the following relationship:
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Differentiating both sides of Eq. 13 logarithmically with
respect to time t leads to

      

1 1
w
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dt y
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Therefore, on the assumption that the yield y grows accord-
ing to the general logistic equation (Eq. 17), the growth of
the imaginary mean phytomass wi can be written in the
form:
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where Wi(t) (5 Y(t)/ri) is the asymptote of wi. Equation 31
represents a general logistic equation with the growth coef-
ficient of λ(t) and the asymptote of Wi(t).

We shall now suppose that the logistic theory of the C-D
effect is concerned with the imaginary mean phytomass wi

instead of the mean phytomass w, so that the assumptions of
the theory are modified as follows.

Assumption 1

The growth of imaginary mean phytomass wi follows Eq. 31:
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Assumption 2

The growth coefficient λ(t) is independent of initial popula-
tion density ri:
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Assumption 3

Final yield Y(t) is independent of initial population density
ri:
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Assumption 4

Initial mean phytomass w0 is constant irrespective of initial
population density ri:
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Equation 35 is Eq. 15 itself. In other words, the assumption
for the r–ri model appears as the conclusion.

Because the coefficients Ai and Bi in Eqs. 36 and 37 have
been known as Eqs. 33 and 34, respectively, Eqs. 36 and 37
can be respectively rewritten in the forms:

          
¢ ( ) ( )ÚA e
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Equations 38 and 39, respectively, conform to Eqs. 27 and
28. It is, therefore, recognized that Eq. 35, i.e., Eq. 15, is the
same as Eq. 29, as concluded in the present paper. Although
biological or mathematical interpretation for the coeffi-
cients A9 and B9 in Eq. 15 were obscure in the derivation of
the r–ri model, the definitions of Eqs. 38 and 39, respec-
tively, give mathematical interpretation to the coefficients
A9 and B9 to some extent.

The validity of Eq. 29, i.e., Eq. 15, is supported
with many experimental data (Yoda et al. 1963; Ando
1968, 1992; Drew and Flewelling 1977; Tadaki et al. 1979;
Thoranisorn et al. 1990; Shibuya 1994; Tadaki 1996;
Shibuya et al. 1997) showing that the reciprocal rela-
tionship between mean phytomass (or mean stem
volume) and population density is discernible in not only
nonself-thinning populations but also in self-thinning
populations.

Conclusion

Shinozaki and Kira (1956) were the first to establish the
logistic theory of the C-D effect, which was constructed on
the basis of the following two basic assumptions: (1) the
growth of mean phytomass w follows the general logistic
equation (Eq. 2); and (2) the law of constant final yield
holds. As a result, they concluded that the reciprocal equa-
tion of the C-D effect (Eq. 9)
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is realized at any given time among nonself-thinning popu-
lations grown over a wide range of densities.

On the basis of the review of the logistic theory of the C-
D effect, it has been revealed that Eq. 7
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does not function as the basic equation for describing the
relationship between mean phytomass w and actual popula-
tion density r in self-thinning populations, because the as-
sumption that the growth of mean phytomass w follows the

general logistic equation (Eq. 2) is not consistent with the
assumption of Eq. 4:
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Y t( ) ( )
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r

so far as self-thinning populations are concerned.
To develop a model applicable to the C-D effect in self-

thinning populations, a theory was constructed in a manner
similar to the logistic theory of the C-D effect. The present
theory consists of the following three basic assumptions: (1)
the growth of mean phytomass w follows the general logistic
equation (Eq. 19); (2) the law of constant final yield holds;
and (3) the functional relationship between actual popula-
tion density r and initial population density ri is described
with the r–ri model (Eq. 12). The resultant conclusion is
summarized with Eq. 26 (i.e., Eq. 29):
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Equation (29) is essentially the same as Eq. 15:
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A B 5  1 ¢ ¢r

which was assumed in the derivation of the r–ri model (Eq.
12). Although biological or mathematical interpretation for
the coefficients A9 and B9 in Eq. 15 was obscure, it has
become clear that they are respectively defined as Eqs. 38
and 39:
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The reciprocal equation of the C-D effect realized in
self-thinning populations (Eq. 29; i.e., Eq. 35) is the same in
form as that realized in nonself-thinning populations (Eq.
9). The difference between Eqs. 9 and 29 results from the
difference in mathematical interpretation between the coef-
ficient A in Eq. 9 and the coefficient At in Eq. 29.

There have so far existed theoretical difficulties in har-
monizing the C-D effect observed at a time constant with
the 3/2 power law of self-thinning (Yoda et al. 1963) ob-
served along a time continuum (Hozumi 1977, 1980, 1983;
Aikman and Watkinson 1980; Minowa 1982; Firbank and
Watkinson 1985; Naito 1992). The derivation of Eq. 26,
which describes the C-D effect realized in self-thinning
populations, gives us a clue for solving the problem. A
detailed account of the systematic interpretation will be
published elsewhere.
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Appendix 1

Setting 1/w 5 x, Eq. 19
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is arranged as the linear first-order differential equation
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The general solution of Eq. A1 is
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where k is an arbitrary constant. In consideration of Eq. 8
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and
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Eq. A2 can be rewritten in the form
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Here, considering the initial conditions of w 5 w0 and r 5 ri

at t 5 0, i.e., τ 5 0, we have
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Therefore, Eq. A3 becomes
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Inserting Eq. 12:
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into Eq. A4 leads to Eq. 26:
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Appendix 2

Differentiating both sides of Eq. 12
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with respect to initial density ri gives
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Considering Eq. B1, Eqs. 21, 22, and 24, respectively, can be
rewritten in the forms:
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Here, it is apparent that r2/ri
2 Þ 0, so that the following are

respectively concluded from Eqs. B2, B3, and B4:
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The λ(t) has been verified to be independent of actual popu-
lation density r, which in turn means that the biological
time τ, defined as Eq. 8:

            
τ 5 λ

0

t

t dtÚ ( )

is independent of r. Because τ, Y(t), and w0 have been
known to be independent of actual population density r and
because ε(t) is also known to be independent of r from Eq.
25, the coefficients At and B are demonstrated to be inde-
pendent of r.


