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Abstract
Population density estimates are necessary to inform management and conservation, yet are difficult to obtain for cryptic 
species such as carnivores, and often require intensive sampling. We implemented a single-survey, closed session, scat 
sampling protocol to estimate bobcat density using fecal DNA and spatial capture-recapture at two sites over five sessions 
in Virginia, USA. We employed a Poisson encounter model to allow for multiple detections on scat transect segments over 
a single collection interval, and compared single session and multistrata (closed, multi-site, multisession) spatial capture-
recapture (SCR) approaches to estimate density for each site and session. We found improved precision for most estimates 
using the multistrata SCR approach, sharing data on baseline detection and individual movement across sites and sessions. 
We suggest the summer session estimates are representative of the resident population, that differences in density between 
summer and winter are representative of potential net recruitment, and that differences between consecutive summer ses-
sions are representative of the net recruitment realized for the population (dependent on survival and emigration). Finally, 
we assessed factors affecting precision in single session model estimates and provide recommendations to improve detection 
and reduce credible intervals that may be applicable across the bobcat range and to other carnivore species. The single survey 
transect methodology provides flexibility in monitoring carnivore populations specifically, or as part of concurrent monitor-
ing for multiple carnivore species. This methodology has potential to dramatically increase the effectiveness of conservation 
and management dollars, improving our ability to monitor carnivore populations and assess conservation needs and actions.

Keywords Felid conservation · Lynx rufus · Multistrata spatial capture-recapture · Noninvasive genetic sampling · 
Population density · Scat transects

Introduction

Populations of many carnivore species are decreasing (IUCN 
2017), and charismatic carnivores are commonly used as 
flagship or umbrella species in conservation (Andelman and 

Fagan 2000; Carroll et al. 2001; Sergio et al. 2006). As a 
result, the density and local abundance of many carnivores 
are critical metrics required for assessing population sta-
tus and conservation actions (May 1999). The recent rapid 
advancements of noninvasive sampling technology and 
quantitative approaches have improved our ability to monitor 
cryptic and wide-ranging carnivores (Karanth 1995; Waits 
and Paetkau 2005; O’Connell et al. 2010; Kelly et al. 2012; 
Davidson et al. 2014). However, sampling requirements for 
abundance estimates are intensive, often requiring multiple 
detector devices (e.g., camera-traps) at each sampling sta-
tion, large extent spatial coverage, and repeated visits to sites 
within a single session (Ruell et al. 2009; Sun et al. 2014; 
Wilton et al. 2014). As a result, monitoring of carnivores can 
be time consuming and costly (Rodgers and Janecka 2013).

Bobcats (Lynx rufus) are widespread across the United 
States (Kelly et al. 2016), and populations are reported to be 
stable or increasing in most states (Roberts and Crimmins 
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2010). Although bobcat populations in some regions are 
increasing, the status of bobcat populations in other areas 
is unknown or of concern (Riley et al. 2003; Litvaitis et al. 
2006). Sound estimates of abundance are needed to moni-
tor the status of these populations, detect possible increases 
or declines over time, and allow for explicit management 
decisions. Yet, despite the wide distribution of bobcats 
throughout North America, estimates of population abun-
dance and density are scant and often are not comparable 
due to non-standardized methodologies and differing sources 
of sampling bias (Thornton and Pekins 2015). Thus, bobcats 
provide a suitable case study for demonstrating the diffi-
culties, and possible solutions, to improve monitoring for 
carnivore populations.

Most states rely on harvest statistics to track bobcat popu-
lation trends and inform management practices (Roberts and 
Crimmins 2010). However, the development of relatively 
inexpensive remotely-triggered cameras promoted studies 
of bobcats because, as with many other felid species, their 
recognizable spot patterns enabled researchers to identify 
individuals and generate encounter histories for capture-
mark-recapture applications (CMR) to estimate abundance 
(Heilbrun et al. 2006; Thornton and Pekins 2015). However, 
accurate photographic identification of individuals typically 
requires images of both flanks of an animal, and maintaining 
sampling grids with two cameras at each station, at an extent 
appropriate to estimate population density of carnivores, 
can be intensive (both in time and financial costs). In addi-
tion, variation in bobcat pelage (Young 1978; Croteau et al. 
2012), where markings are indistinct in some regions, such 
as the central Appalachians, can hinder accurate identifica-
tion of individuals and other carnivores that may not have 
temporary or permanent distinguishing marks. As a result, 
researchers have developed several alternative camera study 
designs and model advancements to improve the precision of 
estimates and reduce required sampling effort. These include 
incorporating a known marked population (e.g., telemetry 
collars) and single-side and hybrid camera station designs 
(McClintock et al. 2013; Sollmann et al. 2013; Alonso et al. 
2015; Augustine et al. 2018, in press).

As an alternative to camera-trap surveys, noninvasive 
genetics surveys have been employed to estimate population 
density (Russell et al. 2012; Davidson et al. 2014; Rodgers 
et al. 2014). A study in southern California found scat tran-
sects easy and efficient to implement and yielded reasonable 
amplification success for identification of individual bob-
cats from nuclear DNA (nDNA) microsatellites (Ruell et al. 
2009). Scat transects also allow for concurrent sampling of 
species that are not individually identifiable on camera, but 
may be sampled using fecal DNA (Morin et al. 2016a). How-
ever, the abundance models employed by Ruell et al. (2009) 
required multiple scat detection surveys repeated over a sin-
gle closed session to account for imperfect detection, which 

drastically increases the field effort and cost of monitoring, 
and may violate assumptions of closure for single session 
abundance estimates.

Although often implemented with multiple sampling 
occasions, noninvasive genetic sampling and capture-recap-
ture methods do not necessarily require repeated surveys 
to estimate density, thus reducing required sampling effort 
(Miller et al. 2005; Morin et al. 2016a). Spatial capture-
recapture (SCR) models use the spatial information from 
trap locations to directly estimate density from the observed 
data (Royle et al. 2013). Additionally, recent development 
of a single microsatellite primer multiplex that distinguishes 
between felid species allows for rapid and efficient iden-
tification of individuals at a reduced laboratory effort per 
species (Wultsch et al. 2014). Thus, the integration of non-
invasive genetic sampling with SCR methods may provide a 
useful method for monitoring felid populations, either as the 
target population, an umbrella species, or as a component of 
the carnivore guild (Carroll et al. 2001).

We employed a single occasion scat sampling protocol at 
two sites in the mountains of Virginia over five different time 
periods (from July 2011 to July 2013) to estimate closed 
population abundance for each session. We used a recently 
developed microsatellite multiplex (Wultsch et al. 2014) to 
identify individual bobcats from fecal samples to estimate 
density during each session at both sites using three differ-
ent parameterizations of SCR models. First, we estimated 
density independently for each site and session using the 
basic SCR model  (SCR0). Second, we fit a closed popula-
tion, multi-site, multisession (or strata) model to estimate 
density for each site and session, where detection and indi-
vidual movement were estimated separately for each season 
(summer or winter), but were constrained to remain the same 
for each site to allow for greater sample sizes in fitting the 
detection function. Finally, we fit a closed population, mul-
tistrata model, simultaneously estimating density for both 
sites and all five sessions, with detection and individual 
movement constrained to be constant across sites and sea-
sons. We expected the multistrata approaches would improve 
precision in estimated parameters as long as the data were 
sufficient to estimate parameters, and animal movement and 
detection were similar across sites, and possibly seasons. 
Finally, we evaluated factors affecting parameter estimation 
using this method and provide recommendations for imple-
mentation in other regions and for other felid species.

Methods

Field methods

We monitored two study areas, one each in two counties in 
western Virginia positioned along the eastern divide in the 
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northern Ridge and Valley Province of the central Appala-
chian Mountains (Bath and Rockingham Counties, Fig. 1). 
The forest structure and species composition in both study 
areas is primarily mature deciduous forest canopy including 
chestnut oak (Quercus prinus), red oak (Q. rubra), white oak 
(Q. alba), and tulip poplar (Liriodendron tulipifera), and 
the understory included rhododendron (Rhododendron maxi-
mum) and eastern mountain laurel (Kalmia latifolia). Public 
lands comprised large swaths of the study areas including 
the George Washington National Forest, state Wildlife Man-
agement Areas, and the Nature Conservancy Warm Springs 
Mountain Preserve. Elevation ranged from 350 to 1365 m 
(Bath), and 363 to 1335 m (Rockingham) and mean daily 
temperature ranged from a minimum of − 4.6 °C in Janu-
ary to a mean maximum of 31.6 °C in July (NOAA, public 
data 2012). Average annual precipitation was 97.79 cm, with 
most precipitation occurring between March and September. 
In addition to bobcats, there was a diverse carnivore guild, 
including coyotes (Canis latrans) and black bears (Ursus 
americanus).

Each study area was comprised of > 200 km of scat col-
lection transects within a 250 km2 area. Transects included 
dirt roads, hiking trails, and well-defined game trails on pub-
licly managed lands (predominantly National Forest) in each 
study area: 213 km in Bath County, 208.5 km in Rocking-
ham County. Trained field technicians searched transects for 
carnivore scats, collected fecal DNA samples, and recorded 
GPS locations for five closed sessions from July 2011 to 
July 2013 (3 summer sessions, and 2 winter sessions). Each 
closed session consisted of a single survey to allow adequate 
scat accumulation between clearing of transects and sample 
collection, and we cleared transects of scat 1 month prior to 
closed sessions to ensure temporal and geographic closure 
as described in Morin et al. (2016a). In addition to the sam-
ples collected for the closed sampling sessions to estimate 
density, we also collected samples during separate surveys 
in the same study areas for a diet study (Morin et al. 2016b), 
which we refer to as concurrent sampling sessions. For the 
purposes of increasing sample sizes for genetic analyses and 
individual matching, we supplemented the closed capture 
survey samples with additional bobcat genotype samples 
from the concurrent sampling sessions. However, these 
additional samples were not included in the closed spatial 
encounter histories used to estimate density over closed 
sessions.

Genetic analysis methods

We extracted DNA from feces using Qiagen QIAmp DNA 
stool kit (Qiagen,Valencia, CA, USA) in a lab designated 
for low-quality, low-quantity DNA and screened all samples 
using mitochondrial DNA species identification multiplex 
(Davidson et al. 2014; De Barba et al. 2014) as described 

in Morin et al. (2016a). To determine bobcat individual 
genotypes, we combined 8 nuclear microsatellite loci iden-
tification primers, F124, F85, FCA043, FCA090, FCA096, 
FCA126, FCA275, and FCA391 (Menotti-Raymond and 
O’Brien 1995; Menotti-Raymond et al. 2005), in a multi-
plex for polymerase chain reaction (PCR) amplification and 
analyzed samples using the Applied Biosystems 3130xl ABI 
capillary machine (Applied Biosystems, Foster City, CA, 
USA) and associated software as described in Wultsch et al. 
(2014). We included a PCR positive (known bobcat tissue 
sample) and PCR negative control in each PCR plate to iden-
tify PCR failure or potential contamination.

Genotyping errors are common in low quality-low 
quantity DNA samples from allelic dropout and polymer-
ase errors (Taberlet et al. 1996). Thus, we used a two-step 
multitube process to cull poor quality nDNA samples. We 
initially performed PCR for each sample twice and removed 
samples with < 50% amplification across the eight micros-
atellite loci. Then we repeated PCR 3 more times for each 
remaining sample to confirm alleles for each locus. We 
required two repetitions to confirm heterozygous loci and 
three repetitions to confirm homozygous loci to minimize 
potential genotyping errors. Additionally, we used RELI-
OTYPE (Miller et al. 2002) to confirm > 95% accuracy of 
genotypes observed in only a single sample.

Finally, we matched genotypes from different scat samples 
to the same individual bobcat using GenAlEx 6.501 (Peakall 
and Smouse 2006, 2012). We used the individual bobcat 
samples confirmed at all 8 loci to estimate  PIDsibs (Waits 
et al. 2001) in GenAlEx 6.501 to conservatively distinguish 
between genetically similar siblings  (PIDsibs < 0.001 at 6 loci 
required for a match,  PIDsibs = 0.0008 at all 8 codominant 
loci). We then matched all samples with confirmed alleles 
at 6 or more loci, resolved mismatch alleles, and removed 
samples that could not be confirmed as a match or a single 
genotype due to poor sample quality.

To ensure we only included bobcat samples in our spa-
tial capture-recapture data set, we screened for domestic cat 
(Felis cattus) samples in two ways. First, during the initial 
species identification screening we were able to identify an 
additional fragment in the mtDNA control region (amplified 
at both 104–106, and 129–130 bp ranges) that amplified for 
domestic cats, but not bobcat samples (only amplified at 
104–106 bp range). We removed all samples that amplified 
at the species-specific fragment size for domestic cats. Sec-
ond, following identification of individuals based on nDNA 
genotypes, we compared all individuals to genotypes from 
19 samples identified as domestic cats in a previous study 
using 7 of the same 8 markers (Mesa-Cruz et al. 2016). We 
screened the felid genotypes in STRU CTU RE version 2.3.4 
(Pritchard et al. 2000) with 7 loci, 2 assumed populations 
(bobcat and domestic cat), 100,000 burnin and 200,000 iter-
ations, and a parameter set including no admixture and an 
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independent allele model. Once we finalized the confirmed 
bobcat individual genotype database, we used samples from 
the 5 closed-session population monitoring surveys for each 
site to construct spatial capture-recapture encounter histories 
(10 SCR data sets) to estimate density.

Density estimation

We used three different spatial capture-recapture (SCR) 
models to estimate bobcat density (Electronic Supplemen-
tary Material (ESM) S1). First, we estimated density inde-
pendently for each site and session with ten separate closed 
session models  (SCR0, Royle et al. 2013, Chap. 5). For each 
site and session, we constructed a spatially-indexed encoun-
ter history using 0.5-km transect segments as “traps”, or 
detectors ( j ), and assigning each scat sample to the nearest 
detector using the Near function in the Proximity toolbox 
in ArcGIS (ESRI 2011). The model is hierarchical, consist-
ing of a process model assuming that individual animals ( i ) 
use space around a latent individual activity center ( si ), and 
that probability of detection decreases monotonically with 
distance away from the individual activity center (detection 
kernel, p ), represented by a scaling parameter (σ). Thus, 
detection of an individual along a transect segment ( j ) is 
dependent on the distance of the transect segment from 

the individual’s activity center, pij = �0 × e
−

(

1

2�

)2

deuc(si,xj)
2

 , 
where xj is the location of trap j , and �0 , is the baseline 
encounter rate, or expected rate of detection if a transect 
segment is at the same location as an individual’s activity 
center.

We used data augmentation to estimate the count of indi-
viduals that were present in the state space during a sampling 
session, but not detected (Royle and Young 2008). We set 
a large upper bound ( M ) for the maximum number of pos-
sible individuals within S for each site and session (Table 1). 
We represented undetected individuals with encounter his-
tories consisting of all zeros, as they were not detected dur-
ing the survey. We associated an indicator variable ( zi , the 
outcome of a Bernoulli trial) with each possible unobserved 
activity center to estimate if it was a real individual pre-
sent but not detected during the study ( zi = 1 ), or if the 
augmented encounter history was a structural zero and not 
part of the population ( zi = 0 ), with a binomial distribution 

characterizing all trials ( � ). Density ( ̂D ) is derived by sum-
ming the number of individuals detected and the proportion 
of possible undetected individuals estimated to be real ( ̂N ), 
and dividing by the area of S . We used a Poisson encounter 
model to allow for multiple detections of an individual at 
a single detector, and for each site, we used a state space 
size representative of a buffer ≥ 2� (Table 1), as density 
no longer scales with S beyond this threshold (Royle et al. 
2013).

We formatted data using the scrbook package (Royle 
et al. 2014) in R (R Core Team 2015) and implemented each 
model using the rjags (Plummer 2014), and coda (Plummer 
et al. 2006) packages in R. Model settings for each inde-
pendent site and session  SCR0 model included 3 Markov 
chain Monte Carlo (MCMC) chains with 50,000 adaptations 
for the Metropolis-within-Gibbs algorithm to reduce slow 
mixing in chains and increase effective sample sizes. After 
adaptation, we sampled 100,000 iterations from the posterior 
distributions of each monitored parameter ( ̂�0 , �̂ , �̂ , N̂ , and 
D̂ ) at a thinning rate of 1 (no thinning), and discarded the 
first 50,000 iterations for burn-in. These settings were exces-
sive in effort. However,  SCR0 models for two sessions at one 
site displayed poor mixing and unidentifiable parameters, 
and the increased effort allowed us to fully evaluate the lack 
of fit for these instances while keeping settings for all sin-
gle session models consistent. We assessed MCMC conver-
gence by visually inspecting trace plots for each monitored 
parameter, and comparing R̂ statistics to 1.1 (Gelman and 
Rubin 1992). We reported the posterior means and standard 
deviation, medians, and 95% credible intervals (CRI) for �̂0 , 
�̂ , and �̂ , but reported the preferential, unbiased posterior 
mode for D̂ (Chandler and Royle 2013), estimated using the 
MCMCglmm package (Hadfield 2010). We also monitored 
estimated locations of activity centers ( ̂si ), and the outcome 
of each Bernoulli trail ( zi ) for of the final 50,000 iterations 
of the independent fits of the  SCR0 models. This allowed 
for estimation of realized density surfaces for each site and 
session with a fitted model (ESM S2).

Although single session models are useful when only one 
site or season of data is available, sharing detection infor-
mation across sites and sessions should improve estimation 
of detection and scaling parameters as a result of increased 
sample size and result in improved precision in density esti-
mates for each site and session (Royle and Converse 2014). 
Thus, we fit two different multistrata SCR models constrain-
ing baseline detection and scaling parameter ( � ) across sites 
or sessions. The multistrata model approach simultaneously 
estimates density for each site and season (a multi-site, mul-
tisession model). First, we used dummy variables for season 
to estimate a beta coefficient for both baseline detection and 
� separately for each season (summer or winter for the 5 
sessions), but constraining the parameters to be the same 

Fig. 1  Approximately 400  km of scat collection transects were 
located in Bath and Rockingham Counties in Virginia, USA 
(> 200  km in each county). Transects were designated on establish 
dirt roads, hiking trails, and well used game trails and divided into 
0.5-km segments to use as detectors for spatial capture-recapture 
models. This region of Virginia is in the Ridge and Valley Province 
of the Appalachian Mountains, and there was differential variability 
in elevation of transect segments between the two sites, as shown in 
the histograms 

◂
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across sites  (SCRseas). This allowed for greater information 
about individual home range movement shared across sites, 
expected to improve estimation of density for the site with 
very low number of detected individuals, but assumes indi-
viduals display similar home range movements in the two 
study areas, and increased the number of estimated param-
eters. Second, we fit a multistrata model that estimated 
density and data augmentation parameter ( � ) for each site 
and session, but constrained baseline detection and � to be 
the same across sites, and also across all sessions  (SCRms). 
This model allowed for the greatest shared information 
across sites producing the most detection of individuals to 
improve estimation of density for each session and site, and 
reduced the number of parameters required to be estimated. 
It assumes individuals across study sites demonstrate simi-
lar movement from home range activity center resulting in 
detection regardless of season. This assumption might be 
reasonable for fecal DNA sampling of territorial animals 
such as bobcats that may mark the extent of individual 

territories across seasons, even if home range utilization 
changes within a territory, or species that do not have differ-
ential seasonal home range use. For both multistrata models, 
we included three MCMC chains with 2000 adaptations for 
the Metropolis-within-Gibbs algorithm and sampled 10,000 
iterations from the posterior distributions of each monitored 
parameter at a thinning rate of 1, and discarded the first 
2000 iterations for burn-in. For the multistrata approach, 
state space and trap locations were different between sites, 
but held constant between sessions (1128.71 km2 state space 
area for Bath County and 1211.97 km2 state space area for 
Rockingham County), M was held constant for all sites 
and seasons (450 maximum individuals detected and not 
detected within the state space for each site and season), and 
� was estimated for each site and session (ESM S1).

Finally, to guide future sampling and monitoring efforts, 
we were interested in assessing factors that could improve 
precision in model estimates of D and � . Using the output 
from the independent runs of the  SCR0 models for each site 

Table 1  Capture and spatial recapture rates, model settings, and parameter estimates for spatial capture-recapture  (SCR0) model to estimate bob-
cat density for each site and session in Bath and Rockingham Counties, Virginia, July 2011–July 2013

a  Model setting for data augmentation—the maximum number of possible individuals (detected and undetected) in the state space
b  Area of the state space within which all possible individuals (detected and undetected) are located
c  The model estimates the total number of individuals ( ̂N ) within the state space ( S ). Density ( ̂D ) is derived byN̂∕S
d  Scaling parameter related to home range size that estimates distance an individual may be detected from its center of activity ( s

i
)

e  Baseline encounter rate—the expected detection rate of an individual if a trap is located at the animal’s activity center
f  Data augmentation parameter—the probability that proposed undetected individuals (M individuals detected) are actual individuals in the pop-
ulation
g  Number of spatial recaptures number of times observed

Site session Individuals 
captured (total 
captures)

Count of indi-
viduals recap-
tured (spatial 
recaptures)

Ma Sb  (km2) D̂
c (95% CRI) �̂d (95% CRI) �̂0

e (95% CRI) �̂f (95% CRI)

Bath Jul 2011 16 (21) 4  (24)g 650 874.29 13.88/100 km2 
(7.78, 61.76)

1.43 km (0.77, 
3.04)

0.02 (< 0.01, 
0.07)

0.34 (0.10, 0.83)

Bath Feb 2012 33 (48) 6  (24, 3, 5) 500 874.29 25.84/100 km2 
(13.95, 50.21)

1.70 km (1.13, 
2.70)

0.02 (0.01, 
0.05)

0.50 (0.24, 0.88)

Bath Jul 2012 13 (19) 5(25) 300 874.29 7.08/100 km2 
(3.77, 25.62)

1.68 km (0.98, 
2.96)

0.03 (0.01, 
0.08)

0.30 (0.11, 0.75)

Bath Mar 2013 30 (56) 12  (26,  33,  43) 250 759.08 13.96/100 km2 
(9.62, 22.40)

1.27 km (0.98, 
1.70)

0.08 (0.04, 
0.14)

0.45 (0.28, 0.68)

Bath Jul 2013 18 (26) 5  (23,  32) 400 759.08 12.35/100 km2 
(7.38, 35.31)

1.11 km (0.72, 
1.78)

0.06 (0.02, 
0.13)

0.31 (0.14, 0.67)

Rockingham Jul 
2011

14 (29) 4  (22,4,6) 200 887.85 6.65/100 km2 
(3.38, 11.60)

1.50 km (1.03, 
2.26)

0.08 (0.03, 
0.17)

0.29 (0.14, 0.52)

Rockingham Feb 
2012

11 (15) 2  (22) NA NA NA NA NA NA

Rockingham Jul 
2012

18 (26) 7  (26, 3) 300 948.692 10.84/100 km2 
(6.64, 26.14)

1.58 km (1.04, 
2.59)

0.03 (0.01, 
0.07)

0.44 (0.21, 0.83)

Rockingham 
Mar 2013

9 (12) 2(22) NA NA NA NA NA NA

Rockingham Jul 
2013

19 (41) 8  (23,  35) 250 887.85 9.35/100 km2 
(5.29, 16.11)

1.63 km (1.63, 
2.40)

0.05 (0.02, 
0.10)

0.33 (0.18, 0.58)
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and season, we calculated the coefficient of variation (CV; 
SE

mean
∗ 100 ) for D̂ and �̂ . The CV is a measure of dispersion 

around the mean, and lower CV values indicate better preci-
sion. We compared CVs by three metrics: (1) total number 
of individuals detected, (2) an index of spatial recapture suc-
cess (number of spatial recaptures/individuals with spatial 
recaptures), (3) the CV for �̂0 , the baseline encounter rate, 
and (4) �̄�0 from model estimates from each sites and session. 
We expected that CVs for D̂ and �̂ would decrease reflecting 
improved precision, with increased spatial recapture success 
and with greater baseline detection, and we used the results 
to make recommendations to refine future sampling and 
inform study design recommendations for implementation.

Results

We collected a total of 2025 fecal samples in the two study 
areas during the five closed sessions for density estimation. 
Of those samples, we identified 54.57% as bobcat using the 
mtDNA species multiplex, and we genotyped these 1105 
samples, and an additional 78 bobcat fecal samples collected 
during concurrent sampling within both study areas for a 
total of 1183 samples. We successfully amplified nDNA 
at 50% of loci (4 loci) for 480 samples (0.41 amplification 
success rate), and confirmed genotypes at 6 loci for 373 
samples resulting in 0.32 confirmed genotype success rate 
(295 confirmed genotype samples from the 2 sites over the 5 
density sampling sessions). Mean allelic dropout/sample for 
confirmed genotypes was 0.19 (range 0–0.59), and the mean 
number of false alleles/sample for confirmed genotypes was 
0.03 (range 0–0.28). We detected one set of samples mis-
matched at 1 locus that we were unable to resolve, and we 
removed the sample with lower amplification success and 
greater number of false alleles (poor sample quality). No 
individuals mismatched at 2 out of 8 loci. In addition, no 
samples were identified as domestic cat in the STRU CTU 
RE analysis, confirming our ability to screen for domestic 
cats using the mtDNA multiplex. In total, we identified 118 
individual bobcat genotypes across the 2 study sites. For 
the closed session population monitoring, we successfully 
confirmed 108 individual bobcats over 5 sessions at the 2 
study sites (63 individuals/171 confirmed samples in the 
Bath County study area, and 45 individuals/124 confirmed 
samples in the Rockingham study area).

For the independent  SCR0 models, we were unable to 
adequately fit SCR models to data for the two winter ses-
sions at the Rockingham site. Due to the insufficient num-
ber of recaptures at this site (11 individuals with 2 spatial 
recaptures in February 2012, and 9 individuals with 2 spatial 
recaptures in March 2013), the data augmentation parameter 
was unidentifiable (returned the uniform distribution of the 
prior), and resulting density estimates increased with even 

unrealistic increases in M (the model was not able to distin-
guish structural zeros for these two data sets, and therefore 
could not produce reliable density estimates). However, we 
were able to fit  SCR0 models and estimate density for all 
other sessions across the two study areas (Table 1). Although 
posterior distributions and 95% credible intervals overlapped 
for all sessions, density estimates were generally lower in 
Rockingham compared to Bath County (Fig. 2). Posterior 
modes for density estimates for the summer sessions in 
Rockingham County were relatively consistent. Density in 

Fig. 2  Violin plots of posterior distributions of bobcat density esti-
mates (top) and SCR scaling parameter � (bottom). The five sampling 
sessions are shown in panels left to right for the Bath County (BA: 
left in each panel) and Rockingham County (RO: right in each panel) 
study areas, Virginia, USA. Light colored violins represent estimates 
from independent single session  SCR0 models and dark colored vio-
lins represent estimates from the multistrata  SCRms model, where 
baseline detection and � are constrained to be constant across sites 
and sessions. Thick lines for each violin plot represent the interquar-
tile range, and thin lines represent the 95% credible intervals (CRI). 
Mean parameter estimates are represented by white circles. In the top 
plot, posterior modes for density estimates are dark circles. In the bot-
tom plot, the 95% CRI for the single estimate of � from the  SCRms are 
represented by the hatched polygon. Encounter histories were gener-
ated from individual bobcats identified using nDNA microsatellites 
extracted from fecal samples collected while walking transects. Den-
sity was estimated using a single survey sampling protocol and spa-
tial capture-recapture models for each site, over 5 sessions from July 
2011 to July 2013. The winter scat collection sessions did not result 
in sufficient detections to fit  SCR0 models, and estimates for those 
sessions are omitted (February 2012 and March 2013)
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Bath County was greatest in February 2012, but also rela-
tively consistent across summer sessions.

We were unable to fit the  SCRseas model, estimating 
beta coefficients to allow baseline detection and � to differ 
between summer and winter due to the greater number of 
parameters, relatively small sample size, and poor MCMC 
mixing. However, we were able to fit the  SCRms model and 
estimate density for each session, including the two win-
ter sessions for the Rockingham site that were inestima-
ble with the single session model approach (Table 2). The 
 SCRms density posterior distributions were more precise and 
showed less spread compared to the  SCR0 density posterior 
distributions, and the  SCRms 95% CRI for � overlapped the 
 SCR0 95% CRI of � for all estimable sessions (Fig. 2). Den-
sity estimates from the  SCRms model were again higher in 
the winter compared to relatively consistent summer density 
estimates in the Bath County study area and ranged from 

8.52 to 20.27 bobcats/100 km2 (posterior modes) across sea-
sons. However,  SCRms D̂ was lower in the winter in Rock-
ingham County study area and ranged from 5.93 to 12.72 
bobcats/100 km2 across seasons, resulting in similar summer 
density estimates between sites (Fig. 2; Table 2).

Coefficients of variation demonstrated how precision in 
�̂ and D̂ both increased with all metrics evaluated for single 
session model estimates (Fig. 3). A decrease in precision, 
or spread around the mean, resulted in an increase in CV 
values, and smaller CV values indicated better precision. 
Increasing numbers of individuals detected and increasing 
spatial recaptures/individuals with spatial recaptures both 
decreased spread around the mean of the posterior distribu-
tions of �̂ and D̂ . Mean baseline encounter rate (�0) also 
improved precision, and increasing precision in baseline 
detection estimates displayed the tightest relationship with 
increasing precision in �̂ and D̂.

Discussion

We were able to estimate bobcat densities by fitting SCR 
models to encounter histories generated using noninvasive 
genetic sampling and single-survey scat collection transects 
over multiple seasons and sites, despite finding that bobcat 
densities were relatively low in the region. This novel pro-
tocol provides a flexible methodology for monitoring carni-
vores compared to previous sampling protocols, by reducing 
the required multiple survey, single session sampling effort, 
and instead, allowing for additional monitoring sessions for 
the same approximate effort. By sharing information over 
multiple seasons and sites, instead of investing in repeated 
surveys within a single session, we increased number of 
samples available to confirm genotype matches, improved 
precision in model estimates, and compared density esti-
mates for both sites over time that could be used to evalu-
ate population growth and potential recruitment. We assess 
limitations in the approach and provide recommendations 
for future implementation for bobcats and other carnivores 
below.

Bobcat density estimates from the Bath and Rockingham 
County study areas were at the low end of those reported 
across the bobcat range (Thornton and Pekins 2015). Pre-
vious studies across the two study areas have found low 
densities of both coyote populations (approximately 4–8 
coyotes/100  km2; Morin et  al. 2016a) and white-tailed 
deer (Odocoileus virginianus) populations (approximately 
20–150 deer/100 km2; Montague et al. 2017), indicative of 
the generally low carrying capacity of the regional habi-
tat (DeCalesta 1997; Diefenbach et al. 1997). Low popu-
lation density can result in poor precision or inestimable 
parameters (Williams et al. 2002). However, by including 
detections over multiple sessions, we were able to improve 

Table 2  Parameter estimates for the multistrata spatial capture-recap-
ture  (SCRms) models to estimate bobcat density for each site and 
session in Bath and Rockingham Counties, Virginia, July 2011–July 
2013

SCRms constrained �0 and � to be constant across sites and seasons. 
The model estimates the total number of individuals ( ̂N ) within the 
state space ( S ). Density ( ̂D ) is derived by N̂∕S . Data augmentation 
parameter—the probability that proposed undetected individuals (M 
individuals detected) are actual individuals in the population. For the 
multistrata approach, state space and trap locations were different 
between sites, but held constant between sessions (1128.71 km2 state 
space area for Bath and 1211.97  km2 state space area for Rocking-
ham), and M was held constant for all sites and seasons (450 maxi-
mum individuals detected and not detected within the state space for 
each site and season), and � was estimated for each site and session. 
For the multistrata model, �̂

ms
 = 1.37 km, 95% CRI (1.21, 1.56), and 

�̂0ms = 0.04, 95% CRI (0.03, 0.06)

Site session D̂
ms

 (95% CRI) �̂
ms

 (95% CRI)

Bath Jul 2011 10.28/100 km2 (6.20, 
16.30)

0.26 (0.15, 0.41)

Bath Feb 2012 20.25/100 km2 (14.62, 
29.86)

0.53 (0.36, 0.75)

Bath Jul 2012 8.52/100 km2 (4.87, 
13.73)

0.21 (0.12, 0.35)

Bath Mar 2013 20.27/100 km2 (13.11, 
28.00)

0.48 (0.32, 0.70)

Bath Jul 2013 10.37/100 km2 (7.00, 
18.07)

0.29 (0.17, 0.46)

Rockingham Jul 2011 9.59/100 km2 (5.45, 
15.02)

0.25 (0.14, 0.41)

Rockingham Feb 2012 6.67/100 km2 (4.04, 
12.71)

0.20 (0.11, 0.35)

Rockingham Jul 2012 11.80/100 km2 (7.34, 
18.65)

0.32 (0.19, 0.51)

Rockingham Mar 2013 5.93/100 km2 (3.14, 
10.89)

0.17 (0.08, 0.30)

Rockingham Jul 2013 12.72/100 km2 (7.84, 
19.64)

0.34 (0.21, 0.53)
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precision and estimate density. Density estimates from the 
 SCRms model suggest there is an increase in number of 
individuals at the Bath County site in the winter sessions, 
compared to the summer sessions. As suggested for coyotes 

(Morin et al. 2016a), it is possible more individual bobcats 
are detected at this site during the winter session when 
bobcats are more mobile and potentially attempting to dis-
perse from their natal range. Little information is available 

Fig. 3  Scatterplots showing 
effects of four different metrics 
on precision of the posterior 
distributions for density ( ̂D , left 
column) and the scaling param-
eter ( � , right column) estimates, 
as measured by coefficients of 
variation (CV). Metrics evalu-
ated included mean baseline 
encounter rate ( ̂�0 , top row), 
CV for the posterior distribution 
of �̂0 (second row), number of 
spatial recaptures/individuals 
with spatial recaptures in a 
session at a site (a measure of 
spatial recapture success, third 
row), and number of individu-
als detected in a session at a 
site (last row). As precision 
increases, CV values decrease, 
and lower CV values are desir-
able

λ0̄
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on bobcat dispersal (Kamler et al. 2000) since dispersal is 
difficult to observe. However long distance dispersal move-
ments (> 100 km) have been reported (Nielsen and Woolf 
2003). Thus, the winter session may include not only resi-
dent bobcats with established home ranges, but also indi-
viduals attempting to immigrate into the local Bath County 
population, still detected during a short foray into the study 
area. If we consider the summer session estimates to be rep-
resentative of the adult resident population, any difference 
in density between summer and the following winter session 
could represent potential recruitment into the population for 
the following year, while the difference between consecutive 
summer sessions would be the net recruitment realized for 
the population (dependent on survival, successful immigra-
tion, and emigration). Conversely, density estimates from 
the Rockingham study site remained relatively consistent 
across seasons and years (wide overlap of 95% CRI). This 
may reflect an unchanging population, low potential recruit-
ment, or the very low density may represent a limitation in 
the approach to detecting population changes over short peri-
ods of time at the current sampling intensity for the study 
area extent.

The monitoring and estimation methods demonstrated 
provide multiple advantages to previous efforts to estimate 
bobcat densities, and have potential to improve monitor-
ing of carnivore populations worldwide. The single-survey, 
scat collection protocol reduced field effort/km of transects 
surveyed compared to those protocols and estimation meth-
ods that require multiple survey occasions within a closed 
session (Ruell et al. 2009). Thus, instead of repeated visits 
within a single session, we were able to monitor transects 
for additional seasons. The field costs to cover the same area 
we surveyed with cameras at an adequate spacing to estimate 
density (< 2σ, Sun et al. 2014) would likely have been much 
greater than the costs to implement a single scat survey, 
when considering costs of cameras at each station and field 
effort to maintain the camera trap grid during a closed ses-
sion. For example, if we wanted to estimate density for the 
Bath County study area in summer 2012, based on the mean 
 SCRms estimate of σ (1.37 km), spacing between camera sta-
tions would need to be < 2.74 km. To cover the same area 
surveyed using scat transects (a 250 km2 grid), a minimum 
of 40 camera stations would be required (2 cameras/station 
to identify individuals using both flanks, but see Augustine 
et al. 2018, in press), and this would likely be insufficient to 
estimate density with reasonable precision (see recommen-
dations on spatial extent below). Additional site visits may 
also be required for a 1 month survey, depending on the bat-
tery life and memory capacity of the cameras. Ultimately, the 
costs of field effort and equipment must be balanced against 
the costs of compiling data, including DNA extraction and 
PCR, postprocessing of photographs, and success rates of 
identification of individuals for both approaches. However, 

the use of noninvasive genetics also allows for additional 
population and landscape genetics analyses, including efforts 
to describe dispersal and immigration (Janečka et al. 2007; 
Croteau et al. 2010; Wultsch et al. 2016), providing valuable 
additional information about population dynamics.

We provide several recommendations on general sam-
pling implementation, and suggest refinements and modifica-
tions to improve on resulting estimates for cryptic carnivore 
species. First, a limitation to the scat transect methodology 
is that sampling is restricted to existing trails and roads. As 
a result, some areas may not be surveyed. For example, we 
were unable to fit single session  SCR0 models to data sets 
for the two winter sessions at the Rockingham site due to 
poor detection. Because we were able to adequately sample 
bobcats in winter at the Bath County site, poor detection 
does not appear to be related to general climate conditions, 
but perhaps to differential space use during the winter in 
relation to our sampling transects. While the overall eleva-
tion between the sites was generally equivalent, the spatial 
arrangement of established dirt roads and hiking trails used 
as transects, resulted in a greater proportion of transect seg-
ments at higher elevations at Rockingham (Fig. 1). Thus, if 
bobcats spend more time in more protected areas at lower 
elevations during harsh winter months, detection would 
decrease. There is also a greater number of hound hunts in 
the Rockingham area in the fall and winter months. Bobcats 
may respond by retreating from frequently used roads and 
trails along ridgelines, decreasing opportunities for detection 
on scat transects at that study site. Thus, greater stratification 
of transect segments across the elevation gradient, incorpo-
rating more game trails, and supplemental use of cameras 
in areas without trails and roads, could improve detection 
and allow for density estimation in the Rockingham study 
area (Harmsen et al. 2010). Differential use of areas with 
available transects should be considered when implementing 
scat transect surveys. If suitable transects are not available, 
alternative sampling methods such as using detection dogs, 
sampling multiple data types, and unstructured spatial sam-
pling should be considered, but will likely result in greater 
effort and financial cost (Russell et al. 2012; Sollmann et al. 
2013; Davidson et al. 2014).

Second, precision of both the single session and multi-
strata models could be improved. As precision was directly 
related to number of individuals detected, increasing the 
overall survey area could allow for better estimation, as 
could increasing the density of transects in some areas to 
increase potential for spatial recaptures (Royle et al. 2013, 
Chap. 10; Sun et al. 2014; Wilton et al. 2014). As in Morin 
et al. (2016a), we also suggest extending the closed session 
allowing for more scat deposition that would increase spatial 
recapture rates, as long as demographic closure is not vio-
lated. Sampling strategies that increase DNA amplification 
rates could also increase baseline detection of individuals, 
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which would improve precision for density estimates. While 
our results demonstrate that a 1-month sampling interval can 
be effective for estimating population density for this species 
in this geographic region, this interval will vary by species, 
region, local environmental conditions, population density, 
and detection rates (Lonsinger et al. 2015; Woodruff et al. 
2015). We were able to amplify samples with a 32% suc-
cess rate for confirming genotypes over a 1-month interval. 
However, while the single-survey method decreased effort 
compared to multiple occasion surveys, it is possible that 
collecting samples every 2 weeks in our study area could 
decrease environmental degradation and improve amplifi-
cation rates. The resulting dataset could then be treated as 
a single occasion (summed over all occasions) or multiple 
occasion sampling protocol, due to the use of the Poisson 
encounter model. We suggest an initial pilot study evaluat-
ing DNA degradation and scat deposition rates would aid 
in identifying the appropriate length of closed sessions and 
whether additional surveys may be required (Lonsinger 
et al. 2015; Woodruff et al. 2015). In addition, home range 
movements for felids can differ depending on sex, which can 
influence detection probabilities and resulting precision of 
parameters (Sollmann et al. 2011). Including sex-specific 
estimation of �0 and � could improve model estimates if 
there is sufficient data to support estimation of additional 
parameters, but handling of individuals with unknown sex 
identification, which can result from partial genotypes from 
low-quality DNA, should be carefully considered.

Finally, timing and frequency of closed sessions utiliz-
ing this method will depend on study objectives. If only 
one session is planned, greater sampling intensity over 
a larger extent is necessary to estimate parameters with 
precision. Similarly, as we were unable to fit the more 
complex  SCRseas model with our data, sampling should 
be intensified to increase sample sizes over multiple ses-
sions if there are large differences in seasonal movement 
and detection. However, if multiple sites or sessions are 
monitored, and some parameters can be constrained to be 
the same across sites and sessions, intensity of each single 
session may be reduced if a multistrata SCR approach is 
employed. If the primary objective is to monitor density 
for a region, we recommend a summer survey for our study 
sites to represent the resident adult bobcat population. 
If assessing trends in population growth is the primary 
objective, we also recommend summer sessions, but large 
intervals including multiple years between surveys will 
be required due to the nature of demographic stochastic-
ity, as well as precision in estimates, even if improved. 
However, there are also benefits to winter sampling of 
bobcats in our region, separate or in conjunction with, 
summer sampling. These include higher individual identi-
fication success rates, estimating potential net recruitment, 
providing realized density surfaces (ESM S2) for use in 

spatially-explicit winter harvest, evaluating seasonal habi-
tat associations with local bobcat densities, and identifying 
areas with higher potential for predation pressure on prey 
populations compromised by snowfall. Thus, monitoring 
objectives, individual identification success rates, species 
life history and local ecology should be carefully consid-
ered in planning the timing of sampling sessions.

Conservation and monitoring are expensive and resources 
are limited (McCarthy et al. 2012). As a result, new, effi-
cient methodologies are needed for monitoring low-density 
populations including many endangered carnivore popula-
tions worldwide. Our single-survey, scat transect sampling 
method, combined with a single microsatellite multiplex 
and SCR hierarchical models, reduces sampling effort and 
provides an advantage to previously employed methods of 
density estimation for felid populations. Employing single 
survey sessions increases the number of sessions that can be 
conducted including surveys across more sites, as repeated 
surveys within a session at a site are no longer required. In 
addition, density estimates for felids without visually iden-
tifiable marks are obtainable using this method, and because 
only one microsatellite multiplex is required, multiple felids 
can be sampled simultaneously (Wultsch et al. 2014) without 
additional field or laboratory costs. As a result, this method-
ology has potential to dramatically increase the effectiveness 
of conservation dollars and improve understanding of wild 
felid ecology and the ability to monitor carnivore popula-
tions and assess conservation needs and actions.
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