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Abstract During the 20th century, population ecology

and science in general relied on two very different statis-

tical paradigms to solve its inferential problems: error

statistics (also referred to as classical statistics and fre-

quentist statistics) and Bayesian statistics. A great deal of

good science was done using these tools, but both schools

suffer from technical and philosophical difficulties. At the

turning of the 21st century (Royall in Statistical evidence: a

likelihood paradigm. Chapman & Hall, London, 1997; Lele

in The nature of scientific evidence: statistical, philosoph-

ical and empirical considerations. The University of Chi-

cago Press, Chicago, pp 191–216, 2004a), evidential

statistics emerged as a seriously contending paradigm.

Drawing on and refining elements from error statistics,

likelihoodism, Bayesian statistics, information criteria, and

robust methods, evidential statistics is a statistical modern

synthesis that smoothly incorporates model identification,

model uncertainty, model comparison, parameter estima-

tion, parameter uncertainty, pre-data control of error, and

post-data strength of evidence into a single coherent

framework. We argue that evidential statistics is currently

the most effective statistical paradigm to support 21st

century science. Despite the power of the evidential para-

digm, we think that there is no substitute for learning how

to clarify scientific arguments with statistical arguments. In

this paper we sketch and relate the conceptual bases of

error statistics, Bayesian statistics and evidential statistics.

We also discuss a number of misconceptions about the

paradigms that have hindered practitioners, as well as some

real problems with the error and Bayesian statistical para-

digms solved by evidential statistics.

Keywords Bayesian statistics � Error statistics �
Evidential statistics � Information criteria � Likelihoodism �
Statistical inference

Introduction

The use of statistics in science is a topic dear to our hearts.

We were humbled and frightened by the request to give an

overview introducing not only our field of Evidential

Statistics, but also Error Statistics, and Bayesian Statistics.

We are aware of the hubris of trying to define essentially all

of statistics in a single essay, but we ask the readers’

indulgence for our following instructions.

The understandings of statistics expressed in this

article are our ideas that we have come to through dec-

ades of struggling to make sense of ecology through

statistics. It will be clear from the other papers in this

special feature of Population Ecology that there are other

viewpoints on the use of statistics in ecology. We offer

these ideas in the hope that they may help readers with

their own struggle to support their scientific endeavors

through statistics.

Technological tools have historically expanded the

horizons of science. The telescope gave us the skies. The

microscope gave us the world’s fine structure. The cyclo-

tron gave us the structure of matter. Perhaps the ultimate

technological tool helping scientists see nature is statistics.

This manuscript was submitted for the special feature based on a

symposium in Tsukuba, Japan, held on 11 October 2014.
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It is not an exaggeration to state that statistics gives us all

of science. Although mathematics has been recognized as a

fundamental tool ecologists can use to learn from the nat-

ural world (Underwood 1997; Cohen 2004), our central

tenet is that effective use of this tool requires learning to

filter scientific arguments through the sieve of statistical

argumentation.

There is confusion about statistics among ecologists,

philosophers and even statisticians. This confusion is ter-

minological, methodological, and philosophical. As the

statistician Royall (2004) has said: ‘‘Statistics today is in a

conceptual and theoretical mess.’’ That does not mean that

statistics is not helpful, nor does it mean that scientific

progress is not being made. Scientists have a phenomenal

ability to ‘‘muddle through’’ (Lindblom 1959) with what-

ever tools they have. Our goal is to help working scientists

understand statistics, and thereby help them muddle

through more effectively.

More concretely our goals are: (1) to sketch the 3 major

statistical paradigms that can be used by researchers, and in

so doing introduce to many readers evidential statistics as a

formal inferential paradigm that integrates control of error,

model identification, model uncertainty, parameter esti-

mation and parameter uncertainty. (2) To clarify some of

the major confusions infesting arguments among paradigm

adherents. (3) To discuss a few real problems arising in the

error statistical and Bayesian approaches. And, (4) to raise

some ideas about statistics and science which may help

scientists use statistics well.

For more than a century a scientist wanting to make

inference from experimental or observational data was

stepping onto a battlefield strongly contested by two

warring factions. These camps are generally referred to

as frequentist and Bayesian statistics. In order to

understand these factions, and given that statistics’

foundation lies in probability theory, one must be aware

that the two camps have their roots in two widely dif-

ferent definitions of probability (Lindley 2000). Already

confusion starts because the labels ‘‘frequentist’’ and

‘‘Bayesian’’ confound two related but distinct arguments:

one on definitions of probability and another on styles of

inference.

Evidential statistics has arisen as a natural response to

this tension, and has been constructed, more or less con-

sciously, from both paradigms by appropriating good fea-

tures and jettisoning problematic features (Lele 2004a, b;

Royall 2004). With three choices the debate can shift from

a winner take all struggle to a discussion of what is most

useful when dealing with particular problems. Given the

scope, our discussion will be largely conceptual, with

indicators into the scientific, statistical, and philosophical

literatures for more technical treatment.

Interpretations of probability

The idea of probability, chance or randomness is very old

and rooted in the analysis of gambling games. In mathe-

matics, a random experiment is a process whose outcome is

not known in advance. One simple example of a random

experiment consists of (you guessed it) flipping a coin once.

From the coin flip, we go onwards defining the sample

space, X, of an experiment as the set of all possible out-

comes in the sample (which in the coin flipping experiment

is the set {Head, Tail}, and an event as a realized outcome

or set of outcomes). These definitions set the stage for

defining what models derived from probability theory.

However, we caution that even the most apparently

simple of these definitions and concepts have subtle and

hidden complexities. What we call ‘‘random’’, like a coin

flip, can be quite non-random. What we call and model as

randomness comes from at least 4 different sources (Gut-

torp 1995): (1) uncertainty about initial conditions, (2)

sensitivity to initial conditions, (3) incomplete process

description, and (4) fundamental physical randomness.

Kolmogorov’s axioms and measure theory give the tools

to work with many kinds of probabilities. These axioms

state that a probability is a number between 0 and 1

associated with a particular event in the sample space of a

random experiment. This number is a measure of the

chance that the event will occur. If A is an event, then Pr(A)

measures the chance that the event will occur. Furthermore,

if X is the sample space of our random experiment,

PrðXÞ ¼ 1. Finally, if two or more events are disjoint (i.e.,

do not have any outcomes in common), the probability of

at least one of these events occurring is equal to the sum of

the individual probabilities.

Any system that satisfies the requirements of the pre-

ceding paragraph is a probability and can be manipulated

according to the rules of probability theory. However, what

these manipulations mean will depend on how probability

is interpreted. There are 5 major schools of interpretation

of probability: classical (or Laplacian), logical, frequentist,

subjective, and propensity. All of them can be and have

been critiqued (see Hájek 2012). When we think about

science we use a combination of the frequentist, propen-

sity, and subjective interpretations so for the purposes of

this essay, we will give a brief introduction to only these

three interpretations of probability. Laplacian probability is

discussed by Yamamura (2015).

The frequency interpretation of probability itself has two

flavors. The finite frequency interpretation of probability

states that the probability of an event is just the proportion

of times that event occurs in some finite number of trials

(Venn 1876). The countable frequency interpretation of

probability states: if the random process is hypothetically
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repeated, then the long-run proportion of times an event

occurs is the probability of the event (von Mises 1951).

Propensity probability (Peirce 1878; Popper 1959) is

simply the innate or natural tendency of an event to occur

in an experimental or observational setting. If you flip a

coin, there is an innate tendency for it land showing heads.

Similarly, a radioactive atom has an innate tendency to

decay in a given time period.

In our opinion, combining these two frequency defini-

tions of probability with the propensity definition of

probability creates an effective framework for learning

from nature. While we cannot know this propensity fully,

we can approximate it using finite frequencies. On the

other hand, if one has a model or models of the workings of

nature, one can calculate the long run frequency proba-

bilities of events under the model. It is the matching of

finite frequency approximations of event propensities with

model based long run frequency calculations of event

probabilities that form the bases of inference.

The subjective interpretation of probability involves

personal statements of belief regarding the chance of a

given event, with beliefs being constrained to vary between

0 and 1. Subjective probabilities for the same event vary

among individuals.

The different interpretations of probability constitute

fundamentally different approaches to representing the

world. Consequently they lead to intrinsically different

ways of carrying a statistical analysis in science.

Fisher’s foundational contribution to statistics
science

Fisher’s likelihood function

Fisher’s likelihood function lies at the very foundation of

statistics (Edwards 1992; Pawitan 2001). To introduce

likelihood, consider experiments in which a series of suc-

cess/failure trials are carried and their results recorded.

Real examples are medical drug trials or wildlife mark-

recapture studies. How do we write a probability model for

these experiments? Can we build a statistical model to

explain how the data arose?

The data being the number of successes recorded in a

given experiment, it is natural to try to model these counts

as the outcome of a binomial random variable X. By so

doing, the set of all possible outcomes, or sample space, is

formally associated with a set of probabilities. These

sample space probabilities naturally add up to one. Let n be

the number of (independent) trials carried out (set a priori)

and x the number of successes actually observed in one

realization of the experiment. Assume that the probability

of success p in each trial remains unchanged. Hence, the

probability of a particular sequence of x successes and

n - x failures is pxð1� pÞn�x
and it follows that

PrðX ¼ x; pÞ ¼ n

x

� �
pxð1� pÞn�x

The probabilities depend on the parameter p. Thus this

model is useless for prediction and understanding the nat-

ure of the trials in question if the value of p is not estimated

from real data. Once estimation is achieved, we may seek

to answer questions such as: can the success probability be

assumed to be constant over a given array of experimental

settings? Using the same example, Fisher (1922) argued

that, given an outcome x, graphing
n

x

� �
pxð1� pÞn�x

as a

function of the unknown p, would reveal how likely the

different values of p are in the face of the evidence. This is

a switch in focus from the descriptive inference about the

data common at the time to inference about the process

generating the data. Noting that the word ‘probability’

implies a ratio of frequencies of the values of p and that

‘‘about the frequencies of such values we can know nothing

whatever’’, Fisher spoke instead of the likelihood of one

value of the unknown parameter p being a number of times

bigger than the likelihood of another value. He then defined

the likelihood of any parameter as being proportional to the

probability of observing the data at hand given the

parameter. Thus, the likelihood function of p is:

‘ðp; xÞ ¼ c � n

x

� �
pxð1� pÞn�x:

where ‘c’ is a constant that does not depend on the

parameter of interest as (see Kalbfleisch 1985). This

function uses the relative frequencies (probabilities) that

the values of the hypothetical quantity p would yield the

observed data as support for those hypothetical values

(Fisher 1922). The distinction between likelihood and

probability is critical, because as a function of p, ‘(p) is not

a probability measure (i.e., it does not integrate to 1).

The value p̂ that maximizes this function is called the

Maximum Likelihood (ML) estimate of the parameter

p. The graphing of the likelihood function supplies a natural

order of preference among the possibilities under consider-

ation (Fisher 1922). Such order of preference agrees with the

inferential optimality concept that prefers a given probability

model if it renders the observed sample more probable that

other tentative explanations (i.e., models) do. Thus, by

maximizing the likelihood function derived from multiple

probability models (in this case values of p) as hypotheses of

how the data arises, one is in fact seeking to quantify the

evidential support in favor of one probabilistic model (value

of p) over the others (see Fisher 1922; Kalbfleisch 1985;

Sprott 2000; Pawitan 2001; Royall 2004).
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Because likelihood ratios are ratios of frequencies, they

have an objective frequency interpretation. Stating that the

relative likelihood of one value p1 over another value p2,

written as ‘ðp1; xÞ=‘ðp2; xÞ, is equal to a constant k means

that the observed data, x, will occur k times more fre-

quently in repeated samples from the population defined by

the value p1 than from the population defined by p2 (Sprott

2000). Because of this meaningful frequentist interpreta-

tion of likelihood ratios, authors like Barnard (1967), or

Sprott (2000) stated that the best way to express the order

of preference among the different values of the parameter

of interest using likelihood is by working with the relative

likelihood function:

R(p; x) ¼ ‘ðp; xÞ
max

p
‘ðp; xÞ

¼ ‘ðp; xÞ
‘ðp̂; xÞ

This frequency interpretation of likelihood ratios is the

basis for likelihood inference and model selection.

It is useful to expand on our understandings of the terms

‘‘model’’, ‘‘parameter’’, and ‘‘hypothesis’’. For us, a model

is a conceptual device that explicitly specifies the distri-

bution of data. To say for instance that the data are

‘‘gamma distributed’’ is only a vague model, inasmuch the

values of the shape and rate parameters of this mathemat-

ical formulation of a hypothesis are not specified. For-

mally, biological hypotheses are not fully specified as a

mathematical model until the parameter values of the

probabilistic model are themselves explicitly defined.

Different parameter values, or sets of values, actually index

different families of models. Hypotheses then, become

posited statements about features of the mathematical

models that best describe data. We term a model that is

described up to functional form, but not including specific

parameter values, a model form.1

Fisher’s principles of experimentation and testing

In Fisher’s (1971) experimental design book there is an

account of an experiment famously known as ‘‘Fisher’s

lady tasting tea experiment’’. This account tells the story of

a lady that claimed to be able to distinguish between a tea

cup which was prepared by pouring the tea first and then

the milk and another tea cup where the milk was poured

first. Fisher then wonders if there is there a good experi-

ment that could be devised in order to formally test the

lady’s claim using logical and mathematical

argumentation. Although seemingly trivial, this setting

where a scientist, and in particular, an ecologist claims to

be able to distinguish between two types of experimental

units is a daily reality.

Decades ago, in the late 1980s, one of us was faced with

a similar experimental problem. While in Japan doing

research on seed-beetles, MLT taught himself to visually

distinguish the eggs of Callosobruchus chinensis and C.

maculatus to the point where he asserted that he could

indeed make such distinction. Doubting himself (as he

should have), MLT recruited the help of prof. Toquenaga

to set up tea-lady like blind trials to test his assertion

(except there was no beverage involved and the subject

certainly is not a lady, and perhaps not even a gentleman).

In this case, testing the researcher’s claim involved giving

the facts—the data—a chance of disproving a skeptic’s

view (say, prof. Toquenaga’s position) that the researcher

had no ability whatsoever to distinguish between the eggs

of these two beetle species.

This tentative explanation of the data is what is gener-

ally called ‘‘the null hypothesis’’. To Fisher, the opposite

hypothesis that some discrimination was possible was too

vague and ambiguous in nature to be subject to exact

testing and stated that the only testable expectations were

‘‘those which flow from the null hypothesis’’ (Fisher 1956).

For him it was only natural to seek to formalize the

skeptic’s view with an exact probabilistic model of how the

data arose and then ponder how tenable such model would

be in the face of the evidence. By so doing, he was

adopting one of the logic tricks that mathematicians use

while writing proofs: contradiction of an initial premise.

Applied to this case, and given that MLT had correctly

classified 44 out 48 eggs, the trick goes as follows: first we

suppose that the skeptic is correct and that the researcher

has no discrimination ability whatsoever, and that his

choices are done purely at random, independently of each

other. Then, because the seed-beetle experimental data is a

series of classification trials with one of two outcomes

(success or failure), we naturally model the skeptic’s

hypothesis using a binomial distribution X counting the

number of successfully classified eggs, with a probability

of success p = 0.50. Next we ask, under this model, what

are the chances of the researcher being correct as often as

44 times out of 48 (the observed count) or even more?

According to the binomial model, that probability is about

8 9 10-10. That is, if the skeptic is correct, a result as good

as or better than the one actually recorded would be

observed only about 0.000008 % of the time under the

same circumstances. Hence, either the null hypothesis is

false, or an extremely improbable event has occurred.

The proximity to 0 of the number 0.000008 % (the

P value) is commonly taken as a measure of the strength of

the evidence against the null hypothesis. Such an

1 A ‘‘model form’’ is synonymous with what Taper (2004) and Taper

et al. (2008) have called a ‘‘model structure’’. We are changing our

vocabulary to avoid collision with the literature use of ‘‘model

structure’’ as a broader term implying on a topological relationship

among model elements without specifying either functional form of

relationships or parameter values.
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interpretation is fraught with difficulty, and we would

advise against it.

A sketch of error statistics

Error statistics (Mayo 1996) is the branch of statistics most

familiar to ecologists. All of the methods in this category

share the organizing principle that control of error is a

paramount inferential goal. These procedures are designed

so that an analyst using them will make an error in infer-

ence no more often than a pre specified proportion of the

time.

Instead of focusing on testing a single assertion like

Fisher, Neyman and Pearson (1933) showed that it was

possible to assess one statistical model (called the null

hypothesis) against another statistical model (called the

‘‘alternative hypothesis’’). A function of potential data,

T(X), is devised as a test statistic to indicate parameter

similarity to either the null hypothesis or the alternate. A

critical value or threshold for T is calculated so that if the

null is true, the alternate will be indicated by T no more

than a pre-designated a proportion of the time a. The

Neyman and Pearson hypothesis test (NP-test) is designed

so that the null hypothesis will be incorrectly rejected no

more than a proportion a of the time. The NP-test appears

to be a straight ahead model comparison.

Fisher, however, unraveled the NP-test unexpected

connections with the Fisherian P value. Neyman and

Pearson’s model-choice strategy could indeed deal with

vague hypotheses (both alternative and null), such as ‘‘the

researcher has indeed some discrimination ability’’. Ney-

man and Pearson termed these ‘‘composite hypotheses’’, as

opposed to fully defined ‘‘simple’’ statistical models.

In Neyman and Pearson’s approach the researcher con-

cedes that the null hypothesis could be true. In that case,

the probability distribution of the test statistic is com-

putable because the test statistic, being a function of the

potential outcomes, inherits randomness from sample space

probabilities. The difference between Neyman and Pearson

and Fisher resides in what questions they would seek to

answer with this distribution.

Fisher would ask here: if the null hypothesis is true,

what is the probability of observing a value of the test

statistic as extreme or more extreme than the test statistic

actually observed? Fisher maintained that if such proba-

bility (the P value) is very small, then the null model

should be deemed untenable.

Neyman and Pearson would ask what is the probability

under the null of observing a value of the test statistic as

extreme as or more extreme than the observed statistic in

the direction of the alternative? If a skeptic is willing to

assume a fixed threshold for such probability, then a

decision between a null and as alternative hypotheses can

be made. If, say, the probability of observing a value of the

test statistic as large or larger than the one recorded is

smaller than 1 %, then that would be enough to convince

the skeptic to decide against her/his model.

Adopting such threshold comes with the recognition that

whichever decision is made, two possible errors arise: first,

the null hypothesis could be true, but it is rejected. The

probability of such rejection is controlled by the value of

the threshold. That error, for lack of a better name, was

called an ‘‘error of the first type’’, or ‘‘Type I error’’, and

the probability of this kind of error is denoted as a. Second,
it may be possible that we fail to reject the null, even if it is

false. This type of error is called ‘‘Type II’’ error. The

probability of this error is usually denoted by b and can be

computed from the probabilistic definition of the alterna-

tive hypothesis via its complement, 1 - b. This is the

probability of rejecting the null when it is indeed false.

Thus, by considering these two errors, Neyman and Pear-

son tied the testing of the tenability of a null hypothesis to

an alternative hypothesis.

Returning to our seed-beetle egg classification problem,

the null hypothesis is that the counts X, are binomially

distributed with an n = 48 and p = 0.5. Suppose that

before starting the test, professor Toquenaga (our skeptic)

would have stated that he would only have conceded if

MLT correctly classified 85 % or more of the eggs. That is,

a number of successful classification events greater or

equal to 41/48 would represent a rejection of the null.

Under such null the skeptic’s threshold a is

a ¼ PrðX� 41Þ

¼
Xx¼48

x¼41

48

x

� �
0:5xð1� 0:5Þ48�x ¼ 3:12� 10�07:

If in fact, MLT’s probability of success is, say, p = 0.90,

then the power of the test is computed by calculating the

probability that the observed count will be greater than or

equal to 41/48 under the true model is

1� b ¼ PrðX� 41Þ

¼
Xx¼48

x¼41

48

x

� �
0:9xð1� 0:9Þ48�x � 0:89:

In closing this account, note that an ideal test would of

course have a pre-defined a = b = 0 but this cannot be

achieved in practical cases. Because of the way these error

probability calculations are set up, decreasing the proba-

bility of one type of error entails increasing the probability

of the other. In practice, before the experiment starts, the

researcher fixes the value of a in advance and then changes

the sampling space probabilities by increasing the sample

size and thus adjusts b to a desired level. Although Neyman

and Pearson require setting the Type I error in advance, the

Popul Ecol (2016) 58:9–29 13
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magnitude of acceptable Type I error is left to the

researcher.

Thus, Neyman and Pearson took Fisher’s logic to test

assertions and formalized the scenario where a data-driven

choice between two tentative explanations of the data

needed to be made. Neyman and Pearson’s approach

resulted in a well-defined rule of action that quickly

became the workhorse of scientific inquiry. But, as Fisher

quickly pointed out the Neyman and Pearson paradigm had

lost track of the strength of the evidence and also, that the

possibility existed that such evidence would, with further

experimentation, very well become stronger or even

weaker.

The NP-test requires a prespecification of hypotheses

(i.e., parameter values). However, data are often collected

before knowledge of parameter values is in hand. An error

statistical approach to inference is still feasible. Confidence

intervals, do not prespecify the hypotheses, data are col-

lected, a parameter value estimated, and an interval con-

structed around the estimate to represent plausible values

of the parameter in such a fashion that under repeated

sampling, the true parameter will be outside of the interval

no more than a pre-specified a proportion of the time.

Despite the lack of prespecification, the connection

between hypothesis tests and confidence intervals is very

close. Confidence intervals can be conceived of, and cal-

culated as, inverted hypothesis tests.

Fisher’s P value wears many hats in statistics. But, one

of its interpretations lands it squarely in the Error Statistics

category. The Fisherian significance test does not compare

multiple models as do the NP-test and confidence intervals.

A single null hypothesis is assumed, and a test statistic is

devised to be sensitive to deviations from the hypothesis. If

data are observed and the calculated test statistic is more

dissimilar to the null hypothesis than a prespecified P value

proportion of data randomly generated from the null, then

the null hypothesis is rejected, otherwise one fails to reject

it. However, if the P value is not pre-specified, but only

observed post-sampling then it does not control error in the

same fashion the NP-test and confidence interval do.

Nevertheless, it is regarded by many as a quantitative

measure of the evidence for or against the null hypothesis.

Mathematical theory concerning the distribution of

likelihood ratios connected likelihood with hypotheses

tests. Sample space probabilities pass on randomness not

only to the test statistic, but also, to the likelihood profile

and of course, likelihood ratios, and thus give rise to many

of the tests that are nowadays the workhorse of statistical

testing in science (Rice 1995). The idea of evaluating the

likelihood of one set of parameters vis-à-vis the maximum

likelihood gave rise not only to confidence intervals, but to

relative profile likelihoods where the likelihood of every

value of the parameter of interest is divided by the

maximum of this curve. This idea, in turn, motivated the

use of likelihood ratio tests for model selection.

A sketch of Bayesian statistics

Formally, Bayesian probabilities are measures of belief by

an agent in a model or parameter value. The agent learns by

adjusting her beliefs. Personal beliefs are adjusted by

mixing belief in the model with the probability of the data

under the model. This is done with an application of a

formula from conditional probability known as Bayes’

rule: if A and C are two events and their joint probability is

defined, then

PrðAjCÞ ¼ PrðA andCÞ
PrðCÞ ¼ PrðCjAÞ PrðAÞ

PrðCÞ

The application of Bayes’ rule in Bayesian statistics runs as

follows. Given the conditional probability of observing the

data x under the model Mi written as f ðxjMiÞ,2 and if our

prior opinion about such model is quantified with a prior

probability distribution, fprior(Mi), then the updated, con-

ditional probability of a model given the observed data

becomes:

fpostðMijxÞ ¼
f ðxjMiÞfpriorðMiÞP
f ðxjMjÞfpriorðMjÞ

In English this equation reads that your belief in a model

Mi after you have collected data x (that is your posterior

probability) is a conditional probability, given by the pro-

duct of the probability of the data under the model of

interest and the prior probability of the model of interest,

normalized so that the resulting ratios (posterior probabil-

ities) of all of the models under consideration sum to one.

This is a pretty important constraint. If they do not sum to

one, then they are not probabilities and you cannot employ

Bayes’ rule. If the models lie in a continuum, that is the

models are indexed by a continuous parameter, then the

sum in the denominator is replaced by an integral.

While the notation in Bayes’ rule treats all the proba-

bilities as the same, they are not the same. The prior dis-

tribution, fprior(Mi), quantifies the degree of belief, a

personal opinion, in model i. The model or parameter of

interest is then seen as a random variable. By so doing, a

key inferential change has been introduced: probability has

been defined as a measure of beliefs. Let’s call, for the time

being, these probabilities ‘‘b-probabilities’’. Now the term

f ðxjMiÞ is taken as a conditional measure of the frequency

2 Statistics uses two different symbols (; and |) to indicate

conditioning: Pr x;Að Þ indicates that the probability of x is being

conditioned on a fixed value, while Pr xjBð Þ indicates that the

probability of x is being conditioned on a random variable. In casual

use, these symbols are sometimes used interchangeably, or omitted.

14 Popul Ecol (2016) 58:9–29

123



with which data like the observed data x would be gener-

ated by the model Mi should Mi occur. It is taken to be

equal to the likelihood function (aside from the constant

‘c’, which cancels out with the same constant appearing in

the denominator of the posterior probability). This is not a

belief based probability, it is the same probability used to

define likelihood ratios and carry out frequentist inference.

Let’s call it an ‘‘f-probability’’ to distinguish it from the

beliefs-derived probabilities. In the application of Bayes

formula above, probability of the data appears as multi-

plying the prior beliefs in the numerator. The resulting

product, after proper normalization becomes the posterior

probability of the model at hand, given the observations. It

is true that both, f-probabilities and b-probabilities are true

probabilities because they both satisfy Kolmogorov’s

axioms (Kolmogorov 1933), but to think that they are the

same is to think that cats and dogs are the same because

they are both mammals: one is a sample space probability

whereas the other one is beliefs probability. It is important

to note that when you mix an f-probability with a b-prob-

ability using Bayes Theorem, one ends up with an updated

b-probability.

We return to our binomial classification problem using

Bayesian statistics. Our model of how the data arises is

given by the binomial formula with n trials, x successes and

a probability p of success. Changing p in such formula

changes the hypothesized model of how the data arises.

Because binomial formula accepts for p any value between

0 and 1, changing p amounts to changing models along a

continuum. Let our prior beliefs about this parameter be

quantified with the prior probability distribution g(p). The

beta distribution with parameters a and b is a convenient

distribution for g(p). The posterior distribution of p given

the data x is proportional to:

fpostðpjxÞ / f ðxjpÞgðpÞ ¼
n

x

� �
pxð1� pÞn�x

pa�1ð1� pÞb�1

/ paþx�1ð1� pÞnþb�x�1

Note that the resulting posterior distribution is, after proper

normalization, another beta distribution with parameters

a ? x and b ? n-x. Because the mean of a beta distribu-

tion is a/(a ? b), the mean of the posterior distribution is:

aþ x

ðaþ xÞ þ bþ n� x
¼ aþ b

aþ bþ n

a

aþ b

� �
þ n

aþ bþ n
�x;

where �x ¼ x=n is the sample mean. Therefore, the posterior

mean is seen to be a weighted average of the prior mean

and the sample mean. In a very real sense, the posterior

mean is a mixture of the data and the prior beliefs. As the

sample size gets large, however, the weight of the first term

in this sum goes to 0 while the weight of the second one

converges to 1. In that case, the influence of the prior

beliefs gets ‘‘swamped’’ by the information in the data.

Dorazio (2015) claims that the Bayesian posterior is valid

at any sample size, but he also recognizes that does not

necessarily mean that anything useful has been learned

from the data. The Bayesian posterior may well be domi-

nated by the prior at low sample sizes.

The posterior distribution becomes the instrument for

inference: if the parameter of interest is assumed to be a

random variable, then the posterior distribution instantly

gives the b-probability that such value lies between any

two limits, say plow and phigh. Although either the posterior

mean or mode is generally given as an estimate of the

unknown parameter, the entire distribution can be used for

statistical inference.

The Bayes factor (Kass and Raftery 1995; Raftery 1995)

is used Bayesian statistics to measure the evidence in the

data for one model over another. Written as

PrðDjM1Þ= PrðDjM2Þ

where D denotes the data and Mi the ith model, the Bayes

factor looks very similar to the ratio of likelihoods evalu-

ated under the two different models, and in fact serves a

similar function. For models with specified parameter

values, the two are the same. But, for the more common

situation where the parameter values are to be determined

by the analysis, the likelihood ratio and the Bayes factor

are not the same. In this latter case, the Bayes factor is

computed as the ratio of two averaged likelihoods, each

averaged (integrated) over the prior b-probability of the

parameters, whereas the likelihood ratio is calculated as the

ratio of the two likelihood functions evaluated at the ML

estimates (Raftery 1995). Consequently, the Bayes factor is

not a measure of evidence independent of prior belief.

The above paragraphs in this section perhaps give the

impression that Bayesianism is a monolithic school. It is

not. For brevity we will speak of only three Bayesian

schools that each focus on different interpretation of the

prior. In subjective Bayesianism the prior is a quantitative

representation of your personal beliefs. This makes sense

as a statistics of personal learning. Although the subjec-

tivity involved has made many scientists uncomfortable,

subjective Bayesians posit that it is the prior distribution

that conveys initial information and thus provides the

starting point for Bayesian learning, which occurs when

this process is iterated making the posterior the prior for the

analysis of new data. (Lindley 2000; Rannala 2002). One

justification for the Bayesian approach is the ability to

bring into the analysis external, prior information con-

cerning the parameters of interest (Rannala 2002).

Objective Bayesianism responded to the discomfort

introduced by subjective priors by making the prior dis-

tribution a quantitative representation of a declaration of

ignorance about the parameters of interest. Prior
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probabilities are assigned to alternative models/parameter

values so as to favor one individual model over another as

little as possible given mathematical constraints, either by

making the priors uniform or by making them diffuse.

These priors are called non-informative. Royle and Dorazio

(2008) present an ecologically oriented introduction to

statistical analysis emphasizing objective priors.

Empirical Bayesians estimate the prior from external

empirical information. Clearly this is a different beast from

either form of belief based Bayesianism described above.

Although not always made clear, empirical Bayes is just a

computational device for conducting likelihood based

inference in hierarchical models. The critiques of

Bayesianism found below are not directed at empirical

Bayes. An excellent introduction to empirical Bayes can be

found in Efron (2010).

A sketch of evidential statistics

Richard Royall (1997) begins his book Statistical Evi-

dence: A likelihood paradigm with 3 questions:

1. What do I believe, now that I have this observation?

2. What should I do, now that I have this observation?

3. What does this observation tell me about model/

hypothesis A versus B? (How should I interpret this

observation as evidence regarding A versus B?).

This third question is not clearly addressed by error

statistics. Nor is it addressed by Bayesian statistics,

because belief and confirmation are actually quite distinct

from evidence (Bandyopadhyay et al. 2016).

Following Hacking (1965) and Edwards (1992), Royall

axiomatically took the likelihood ratio as his measure of

evidence and proceeded to develop a very powerful infer-

ential framework. Royall divided the result space of an

experiment differently than the Neyman–Pearson para-

digm. The NP-test has two regions: one where you accept

A, and another region where you accept B. For Royall,

there are 3 regions (Fig. 1): one where evidence is strong

for A over B, another where evidence is strong for B over

A, and a region between where evidence is weak (whether

leaning towards A or towards B). The advantages of this in

the actual interpretation of scientific results are obvious.

First, no decision is made pro forma, only the strength of

evidence is determined. Second, there is a region of inde-

terminacy, where the primary conclusion is that not enough

data have been obtained.

Neyman–Pearson hypothesis tests have two important

error rates, the probability of type I error, a, and the

probability of type II error, b. With evidential statistics you

never actually make an error, because you are not making a

decision, only determining the strength of evidence. Nev-

ertheless, evidence even properly interpreted can be mis-

leading—one may find strong evidence for one model

when in fact the data was generated by the other. This

allows for two interesting probabilities reminiscent (but

superior) to a and b. These are: the probability of mis-

leading evidence, M, and the probability of weak evidence,

W. This distinction will be discussed further later.

This approach combines strengths from NP-tests, and

from Fisherian pure significance tests. Requiring evidence

to pass an a priori threshold gives control of error. Royall

(1997) shows that if the threshold for strong evidence is k,

the probability of misleading evidence is M B 1/k. The

basis for such conclusion stems from the frequency inter-

pretation of Royall’s measure of evidence: the likelihood

ratio between any two models. This ratio can be interpreted

as a random variable, which on average (over hypothetical

repeated sampling) equals 1 if the two models (parameter

values in our example) explain the data equally well. If we

deem there is strong evidence for the first model only when

the likelihood ratio exceeds a value k, then, a direct

application of Markov’s Theorem allows us to write that

Pr
‘ðp1Þ
‘ðp2)

� k

� �

Therefore, the chance of observing a misleading likelihood

ratio greater than the cut-off for strong evidence k, is less

than or equal to 1/k.

The strong evidence threshold is a pre-data control of

error, very much like Neyman and Pearson’s Type I error

rate. Post data the actually observed evidence (likelihood

ratio for Royall) is a fine grained measure. Thus, evidential

statistics allows researchers to simultaneously make pre

and post data inferences in a coherent framework, as so

long craved by practitioners (see Taper and Lele 2011).

The mathematical treatment in Royall (1997) makes a

true model assumption (i.e., one of the models in the evi-

dential comparison is true). For the most honest and

effective inference, the true model assumption needs to be

relaxed. Lele (2004a) eliminates this assumption when he

generalizes the likelihood ratio to evidence functions which

are conceptualized as the relative generalized discrepancy

between two models and reality. Relaxing the true model

assumption creates a great philosophical advantage for the

Fig. 1 A graphical representation of evidence in the likelihood ratio

for one model over another. The numbers reflect Royall’s treatment of

evidence as a ratio, while the actual scale of the figure reflects our

preference for representing evidence by a log of the likelihood ratio
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evidential approach, but because the focus of this essay is

practical, we direct interested readers to Bandyopadhyay

et al. (2016) for a fuller discussion.

Desiderata for evidence

Rather than presenting a single monolithic evidence func-

tion, Lele sets out a structure for constructing evidence

functions. Lele (2004a) and Taper and Lele (2011) discuss

desirable features for evidence functions. These desiderata

include:

D1. Evidence should be a data based estimate of the

relative distance between two models and reality.

D2. Evidence should be a continuous function of data.

This means that there is no threshold that must be

passed before something is counted as evidence.

D3. The reliability of evidential statements should be

quantifiable.

D4. Evidence should be public not private or personal.

D5. Evidence should be portable, that is it should be

transferable from person to person.

D6. Evidence should be accumulable: If two data sets

relate the same pair of models, then the evidence

should be combinable in some fashion, and any

evidence collected should bear on any future infer-

ences regarding the models in question.

D7. Evidence should not depend on the personal idiosyn-

crasies of model formulation. By this we mean that

evidence functions should be both scale and trans-

formation invariant.

D8. Consistency, that is as M ? W ? 0 as n ? ?. Or

stated verbally, evidence for the true model/param-

eter is maximized at the true value only if the true

model is in the model set, or at the best projection

into the model set if it is not.

Likelihood ratios and information criteria

as evidence functions

Although the formal structure of evidence functions is

relatively new, a number of evidence functions have long

been proving their utility. Likelihood ratio and log likeli-

hood ratios, for instance, are evidence functions. Other

evidence functions include order consistent information

criteria, such as Schwarz’s (1978) Information Criterion,

SIC also known as the BIC (Bayesian Information Crite-

rion), the consistent AIC, CAIC, (see Bozdogan 1987), and

the Information Criterion of Hannan and Quinn (1979),

ICHQ. These information criteria are all functions of the

log-likelihood maximized under the model at hand plus a

penalty term. As a result, the difference in the values of a

given information criteria between two models is always a

function of the likelihood ratio. A basic introduction to

information criteria can be found in Burnham and Ander-

son (2002) and a more technical treatment in Konishi and

Kitagawa (2008).

Because the likelihood ratio is an evidence function,

maximum likelihood parameter estimation is an evidential

procedure. Furthermore, likelihood ratio based confidence

intervals can also be interpreted as evidential support

intervals.

Not all information criteria are sensu stricto evidence

functions (Lele 2004a). There is a class of information

criteria, strongly advocated by Burnham and Anderson

(2002) that are not. These forms can be designated Mini-

mum Total Discrepancy (MTD) forms (Taper 2004). They

meet desiderata D1)-D7), but not D8). The very commonly

employed Akaike (1974) information criterion, the biased

corrected AIC (AICc, Hurvich and Tsai 1989) are MTD

criteria. That these forms are not strict evidence functions

is not to say that these forms are wrong per se, or that they

should not be used evidentially, but that these criteria are

evaluating models with a slightly different goal than are

evidence functions. The design goal of these forms is to

select models so as to minimize prediction error, while the

design goal for evidence functions is to understand

underlying causal structure (Bozdogan 1987; Taper 2004;

and Aho et al. 2014). The consequence of this is that

asymptotically, all MTD forms will over fit the data by

tending to include variables with no real association with

the response. But at smaller sample sizes the differences

between the classes is not clear cut. The AIC tends to over

fit at all sample sizes, while the AICc can actually have a

stronger complexity penalty than the order consistent

forms.

A small conceptual leap that needs to be made to rec-

ognize information criteria as evidence functions is the

change of scale involved. Royall uses the likelihood ratio

as his evidence measure while the difference of informa-

tion criterion values can be thought of as a log likelihood

ratio with bias corrections. Take for instance the difference

in the score given by an Information Criterion (IC)3

between a model deemed as best among a set of models

and any other model i within that set, and denote it as

DICi = ICi - ICbest. Note that because the IC of the best

model is the smallest, by necessity this difference is posi-

tive. Because all information criteria can be written as

twice the negative log-likelihood maximized under the

model at hand plus a complexity penalty that can be a

function of both, the sample size and the number of

parameters in the model, we can write a general equation

3 When the abbreviation IC refers to an information criterion as a

procedure or algorithm it will be given in Roman typeface. When IC

refers to a value calculated from data, it will be set in italic.
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for the difference in any IC score. Denote the complexity

penalty for model i as cp(di, n), where di is the dimension

(number of estimated parameters) under model i and n is

the sample size. For example, in the case of AIC, cp(di,

n) = 2di whereas for SIC, cp(di, n) = di ln(n).

Accordingly,

DICi ¼ �2 ln ‘̂i + cpðdi; nÞ � �2 ln ‘̂best + cpðdbest; nÞ
� �

¼ �2 ln
‘̂i

‘̂best

 !
+ Dcp;

where ‘̂i
‘̂best

is the ratio of maximized likelihoods under each

model, and Dcp = cp(di, n) - cp(dbest, n) denotes the

difference in the complexity penalties from model i and the

best model. For instance, in the case of the SIC,

Dcp = ln(n)(di - dbest), and in the case of the AIC,

Dcp = 2(di - dbest). Writing the difference in this fashion

makes it clear that a DIC is indeed a log-likelihood ratio

plus a bias correction constant that depends on the sample

size and the difference in the number of parameters

between the two models.

A priori control of error in evidential statistics

If the two models explain the data equally well, finding the

probability of misleading evidence given a strong evidence

threshold k amounts to finding Pr(DICi C k), which is

equal to 1 - Pr(DICi B k). This quantity is readily rec-

ognized as one minus the cumulative density function (cdf)

of the DICi evaluated at k. And yes, talking about the

difference in IC having an associated cdf implies that one

should be able to say something about the long-run dis-

tribution of such difference. Indeed, because DICi is writ-

ten as the log likelihood ratio plus a constant, we can use

the frequency interpretation of likelihood ratios, We can

find the probability distribution of K ¼ �2ln ‘̂i
‘̂best

� �
under

hypothetical repeated sampling and then express the dis-

tribution of the DICi as that of K shifted by the constant

Dcp. The pre-data control of error is achieved by fixing first
the size of the probability of misleading evidence, M, and

then solving for the value of the threshold k that leads to

Pr(DICi C k) = M. Upon substituting the expression for

DICi in this equation we get that

PrðKþ Dcp� kÞ ¼ M , PrðK� k� DcpÞ ¼ M

or 1� PrðK� k� DcpÞ ¼ M. From this calculation, it is

readily seen that the pre-data control of the probability of

misleading evidence strongly depends on the form of the

complexity penalty.

We now turn to an example, one where we give a closer

look to the assumptions behind the now ubiquitous cut-off of

two points in DICi. The cut-off of two points of difference in

IC is readily derived from the calculations above, yet it

implies that the user is facing a rather stringent model

selection scenario. To see why, it is important to know first

that the long-run distribution of the log-likelihood ratio is in

general very difficult to approximate analytically. Wilks

(1938) provided for the first time the approximate distribu-

tion ofK for various statistical models. If model i is true, as it

is assumed when testing a null hypothesis vs. an alternative,

and if the model deemed as best is the most parameter rich,

then Wilks found that K has an approximate Chi square

distribution with degrees of freedom equal to dbest - di. In

this case, the expression 1� PrðK� k� DcpÞ ¼ M can be

readily computed. In the case of AIC, this expression

becomes 1� PrðK� k� 2ðdi � dbestÞÞ and in the case of the
SIC, it is 1� PrðK� k� lnðnÞðdi � dbestÞÞ. Using the now

‘‘classic’’ k = 2, di - dbest = -1 gives 1� PrðK� k�
2ðdi � dbestÞÞ ¼ 0:0455 for the AIC. In the case of the SIC,

assuming a sample size of n = 7 we get

1� PrðK� k� lnðnÞðdi � dbestÞÞ ¼ 0:0470. This example

shows that underWilks model setting (where the twomodels

are nested and the simple model is the truth) a cut off of 2

does give an error control of about the conventional 0.05 size.

Also, note that for the AIC and the SIC (unless sample size is

tiny) an increase in difference in the number of parameters

between the models results in an even stronger control of

error. Finally, note that the strength of the error control does

not vary when sample size is increased in the AIC but does so

in the SIC. For the SIC,M decrease as sample size increases.

This decrease is what makes the SIC an order consistent

form.

Exact values of M will vary with criterion, sample size,

functional form of the models, nestedness of models, and

the nearness of the best model to the generating process. If

you are acting in a regulatory setting, or in an experimental

design setting, then the precise value of M may matter. In

these cases M should be explicitly calculated a priori. But,

in the general prosecution of science, it really matters very

little whether M is bounded at 0.07 or 0.03; both give

moderately strong control of error. Adopting an a priori cut

off of say 2 for moderately strong control of error or of 4

for strong control of error gives the scientist and the sci-

entific community the protection from wishful thinking that

it needs without the fiction that control of error is known

more precisely than it is.

Increasingly, ecological statistics has shifted its focus

from point and interval estimation for parameters in models

that magically seemed to appear from nowhere and whose

connection to hypotheses of real scientific interest were

often somewhat tenuous, to trying to incorporate theories

of ecological processes directly in models to be statistically

probed.
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Evidential statistics as a statistical modern synthesis

Chatfield (1995) asserted that the major source of error in

all statistical analysis is due to using the wrong model, and

traditional statistics did not adequately address model

uncertainty. Since then, Royall’s (1997) reconstruction of

traditional statistics, and Lele’s (2004a) extension of the

likelihood ratio to evidence functions have allowed a sta-

tistical modern synthesis that smoothly incorporates model

identification, model uncertainty, parameter estimation,

parameter uncertainty, pre-data error control, and post-data

strength of evidence into a single coherent framework. We

believe that that evidential statistics is currently the most

effective statistical paradigm for promoting progress in

science.

For completeness, we need to draw attention to another

recent statistical paradigm called ‘‘severe testing’’ (e.g.,

Mayo and Cox 2006; Mayo and Spanos 2006). Similar to

evidential statistics, severe testing combines pre-data con-

trol of error with a post data measure of the strength of

inference. Despite very different surface presentations,

there is considerable similarity in the underlying mathe-

matics between evidence and severe testing. We find the

evidential approach more useful for us for several reasons:

first, in evidence the primary object of inference is the

model, while the primary object of inference in severe

testing is the parameter value. Second, we find the direct

comparison involved in evidence clearer than the coun-

terfactual arguments required for testing.

An example evidential application using information

criteria

To illustrate the evidential use of information criteria, we

revisit an example from Lele and Taper (2012). That is the

single-species population growth data from Gause’s (1934)

laboratory experiments with Paramecium aurelia with

interest in the scientific questions of: (1) Does the popu-

lation exhibit density dependent population growth? And,

(2) If so what is the form of density dependence?

The observed growth rate for a population is calculated

as rt = ln(Nt?1/Nt). By definition the growth rate of a

population with density dependence is a function of pop-

ulation size, Nt (Fig. 2). Consequently, we model the

population’s dynamics by rt ¼ gðNt; hÞ þ vtðrÞ, where g is

a deterministic growth function, h is a vector of parameters,

vt(r) is an independent random normally distributed envi-

ronmental shock to the growth rate with mean 0 and

standard deviation r representing the effects of unpre-

dictable fluctuations in the quality of the environment.

We use a suite of common population growth models:

Ricker, ðgðNt; hÞ ¼ rið1� Nt=KÞÞ, generalized Ricker,

ðgðNt; hÞ ¼ rið1� ðNt=KÞcÞÞ, Beverton–Holt, ðgðNt; hÞ ¼
riK=K þ riNt � NtÞ, Gompertz, ðgðNt; hÞ ¼ að1
� lnðNt=KÞÞÞ, and the density independent exponential

growth model ðgðNt; hÞ ¼ riÞ. These models have been

parameterized in as similar a fashion as possible. K repre-

sents the equilibrium population size, and ri is the intrinsic

growth rate, or limit to growth rate as Nt approaches 0. In

the Gompertz model the parameter ‘a’ also scales growth

rate, but is not quite the same thing as ri because in this

model growth rate is mathematically undefined at 0.

The log-likelihood function for all of these models is:

ln‘ðrt;Nt;h;rÞ ¼
PT�2

t¼0 ðgðNt;hÞ� rtÞ
2r2

�ðT � 1Þ lnð2pr2Þ
2

;

where T is the total number of population sizes observed.

For the construction of information criteria, the number of

parameters, p, is the length of the vector hþ 1; the addition

of 1 for the parameter r.
Table 1 is typical of the tables produced in informa-

tion criteria analysis. It contains the log-likelihoods, the

number of parameters, and for several common criteria,

the IC and DIC values. To have a priori control of error,

we need to specify a threshold for strong evidence. As

Fig. 2 Observed population growth rate plotted population size. The

lines are expected growth rates for five fitted growth models. The data

are the first of 3 replicate time series for Paramecium aurelia given in

The Struggle for Existence (Figure after Fig. 1 Lele and Taper 2012)
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with a, the size of the NP-test, this threshold depends on

the researchers needs. To match with scientific conven-

tions, we set this threshold at a DIC value of 2. This

translates roughly to a bound on misleading evidence of

M\ 0.05. From Table 1, one can make a number of

observations that are very useful in framing our thinking

about our driving questions. (1) For the exponential

model, the DIC values for all criteria are all[14, con-

firming quantitatively what is visually obvious from the

figure that it is essentially impossible that P. aurelia is

growing in a density independent fashion under the

conditions of Gause’s experiment. (2) All of the infor-

mation criteria give strong evidence against the Gom-

pertz as a potential best model given our threshold for

strong evidence. (3) Because the Ricker model is nested

within the generalized Ricker, and the exponential within

the Ricker, the generalized Ricker has the highest log-

likelihood among these three models, as dictated by

theory, but it is not the best model according to the

information criteria. (4) Different information criteria

favor different models with different degrees of strength.

Both the SIC and the AICc indicate moderately strong

evidence that the generalized Ricker is not the best

model. The evidence from the AIC is more equivocal.

This may be an example of the tendency of the AIC to

over fit. Although not the case in this example, the rank

order for some models can change between different

criteria. (5) The Ricker model has the lowest IC value,

indicating that it is the ‘‘best model,’’ but the difference

with the Beverton–Holt model is small, thus the evidence

that the Ricker model is superior to the Beverton–Holt is

very weak, and both models should be considered for

prediction and interpretation, as should the generalized

Ricker and Gompertz to considerably lesser degrees. (6)

There are three classes of non-nestable models in this

problem. Classical likelihood ratio tests do not compare

across model families, thus an information criterion

based analysis allows a richer probing of nature. In this

case we see that the Beverton–Holt model is essentially

indistinguishable in merit from the Ricker, at least for

this population on the basis of this data. We also see that

there is strong evidence that the Gompetz is not the best

model.

Common confusions about the three paradigms

What is the frequency in frequentism?

Frequentism is an overloaded term within the field of

statistics referring both to a definition of probability and to

a style of inference. Sensu stricto, a frequentist is someone

who adheres to a frequency definition of probability, under

which an event’s probability is the long run limit of the

event’s relative frequency in a series of trials. Another

common use of the term frequentist is to describe a person

who uses the frequency of error in a decision rule as their

principle warrant for inference. Sometimes this branch of

statistics is called ‘‘Classical Statistics’’. We have followed

Deborah Mayo (e.g., Mayo 1996) in referring to this style

of inference as ‘‘error statistics’’.

Do hierarchical models require a Bayesian analysis?

Hierarchical models are not Bayesian per se. Hierarchical

models are probabilistic models including two or more

layers of uncertainty in the statistical model of how the

data arises. This includes latent variable and missing data

problems (Dennis et al. 2006; Dennis and Ponciano 2014).

Inference on hierarchical models can in principle be made

under all three approaches. However, maximum likelihood

estimation of hierarchical models can be very difficult.

Generally accessible computer implementations of Markov

Chain Monte Carlo (MCMC) algorithms made Bayesian

estimation and inference broadly accessible in the 1990s.

The ease with which Bayesian methods yielded inferential

conclusions to difficult problems of interest to managers

and practitioners quickly triggered a ‘‘Bayesian revolu-

tion’’ (Beaumont and Rannala 2004). Topics of inference,

such as stochastic population dynamics modeling, once

deemed inaccessible for practitioners, have experienced

marked growth (Newman et al. 2014).

The drive to improve inference using Bayesian statistics

has generated a plethora of technical novelties to sample

from posterior distributions (like Approximate Bayesian

Computation, see https://approximatebayesiancomputa

tional.wordpress.com/), and even motivated novel approa-

ches to ML estimation.

Table 1 Population dynamic model identification for Gause’s P. aurelia using information criteria

Model LogLikelihood Number of parameters AIC AICc SIC DAIC DAICc DSIC

Ricker 4.90 3 -3.80 -1.96 -1.30 0.00 0.00 0.00

Beverton–Holt 4.82 3 -3.63 -1.79 -1.13 0.17 0.17 0.17

Generalized Ricker 4.91 4 -1.81 1.52 1.52 1.99 3.48 2.83

Gompertz 2.66 3 0.68 2.53 3.18 4.48 4.48 4.48

Exponential -3.72 2 11.40 12.30 13.10 15.20 14.20 14.40
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Data Cloning (Lele et al. 2007, 2010) for instance, is a

recent algorithmic device inspired by Bayesian statistics

that allows likelihood estimation by a simple algorithmic

trick. It has long been known (Walker 1969) that in

Bayesian analysis as the amount of data increases the

posterior distribution converges to a normal distribution

with the same mean and variance as the sampling distri-

bution of the maximum likelihood estimate. Lele et al.

(2007, 2010) show that this same effect can be achieved

simply by creating large data sets from multiple (say k)

copies of an original data set (preserving data dependen-

cies). The mean of the resulting posterior distribution

approximates the maximum likelihood estimate, but the

variance is too low. An estimate of the asymptotic variance

is recovered by multiplying the variance of the posterior by

k. These estimates can be made arbitrarily accurate by

increasing k and the MCMC run length.

As presented above, inference is available through t tests

and Wald intervals, Ponciano et al. (2009) extend the data

cloning inference tools to include information criterion

based model selection, likelihood ratio tests and profile

likelihood computations for hierarchical models relevant in

Ecology. Using data cloning a full likelihood solution can

be achieved for any hierarchical model.

The R package dclone (Solymos 2010) provides easy

access to data cloning to anyone who can write a Bayesian

model in WinBUGS, OpenBUGS, or JAGS. Gimenez et al.

(2014) attribute the rise of Bayesian applications in ecology

to the ease of software applications, and wonder what will

be the consequence of readily available data cloning soft-

ware. We would like to point out that Yamamura (2015) in

this symposium introduces ‘‘empirical Jeffreys’ priors’’,

another computational device for achieving maximum

likelihood inference for complex hierarchical models.

Are likelihood and probability the same thing?

This is a point that often confuses students making their

first foray into mathematical statistics. The difficulty arises

from omitting the proportionality constant and defining

likelihood as ‘(Mi; x) = f(x; Mi). The left hand side of this

equality is the likelihood while the right hand side is the

probability, so they must be the same thing. Not at all, the

likelihood is to be understood as a function of the model

(parameter) given the data, while probability is a function

of the data given the model. This probability can be

thought of as the long run frequency with which a mech-

anism would generate all the possible observable events,

while the likelihood, or rather the relative likelihood, is the

support in the data for certain value(s) of the parame-

ter(s) of interest vis-à-vis other values.

The examples shown in this paper deal mostly with

discrete probability models (the binomial distribution). In

the case of continuous probability models, writing the

likelihood function as the joint probability density function

of the data evaluated at the observations at hand is not the

exact likelihood function (i.e., it is not the joint probability

of the observations evaluated at the data at hand). The joint

probability density function is only an approximation

introduced for mathematical convenience (Barnard 1967;

Sprott 2000; Montoya 2008; Montoya et al. 2009), one that

works most of the time and hence advocated as the true

likelihood function of continuous models in standard

mathematical statistics books (e.g., Rice 1995). This

approximation sometimes leads to strange behavior and

singularities. However, the likelihood is proportional to

probabilities and thus cannot have singularities. When

these issues arise, Montoya et al. (2009) show how

returning to the original definition of the likelihood func-

tion, not the approximation, solves the problems.

Are confidence intervals and credible intervals

really the same thing?

The error statistical confidence interval is constructed so

that under repeated sampling of data confidence intervals

constructed with the same method will contain the true

value a specified f-probability of the time. The Bayesian

credible interval is constructed so that in this instance the

true value is believed to be within the interval with a

specified b-probability. Thus, confidence intervals are

really about the reliability of the method, while credible

intervals are about the distribution of belief given the

current instance.

However, a confidence interval do also inform about the

instance. A measurement made by a reliable method should

be reliable. The width of a confidence interval is a function

of the variance of the ML estimator of the parameter of

interest (Rice 1995). If the data-gathering process is reli-

able and generates observations with high information

content, then repeated instances of this sampling process

will result in very similar estimators of the parameter of

interest. In other words, the variance of this estimator over

hypothetical repeated sampling will be small and the

confidence interval will be narrow. The ‘‘confidence’’ then

would stem from the reliability and repeatability of the

conclusions.

A confidence interval informs that there is evidence that

the instance is within the confidence interval (see Bandy-

opadhyay et al. 2016 appendix chapter 2). Many flavors of

confidence intervals exist, but one most relevant to scien-

tists is the one derived from profile likelihoods, or relative

profile likelihoods (Royall 2000; Sprott 2004). Profile

likelihoods allow one to evaluate the verisimilitude of a set

of values of the parameter of interest vis-à-vis the likeli-

hood of the ML estimate. Intuitively, there is no reason
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why parameter values to the left or right of the ML esti-

mate that are say, 85 % as likely as the ML estimate should

not be considered. The evidential support built in the

profile likelihood interval gives a continuous measure of

the likelihood of nearness to the central value, which serves

much of the function of a credible interval without crossing

the philosophical divide between frequentist and Bayesian

definitions of probability.

A common criticism of the confidence interval relative

to the credible interval is that they can include impossible

values such as population sizes below the number of

observed values. But these problems only occur in

approximate confidence intervals. It is important to realize

that this criticism does not apply to confidence intervals

based on relative likelihoods or relative profile likelihoods

(see Sprott 2000 page 16).

Is Bayesianism the only paradigm that can use

expert opinion?

The ability to incorporate expert opinion into the statistical

analysis of ecological problems is often cited as one of

strengths of the Bayesian approach (Kuhnert et al. 2010).

Lele (2004b) and Lele and Allen (2006) show how to elicit

pseudo data not priors from experts and to treat these as

measurements with observation error. This approach is

easier for experts than supplying priors. Further, the reli-

ability of the experts can be probed in ways not available

with elicited priors.

Is Bayesianism the only paradigm that allows

updating?

The ability to ‘‘update’’ on the basis of new data has been

stated (e.g., Ellison 2004) as a major advantage of Baye-

sian analysis. However, as pointed out by van der Tweel

(2005) all three paradigms allow updating. What is updated

differs, but in each case relates to the paradigms core

inferential process. A sequential Bayesian analysis updates

belief, a sequential evidential analysis updates evidence,

and a sequential error statistical analysis updates both the

test statistic and critical values. Desiderata 6 in the sketch

of evidential statistics given above indicates that updating

is one of the defining characteristics of the evidential

approach.

Does model choice inherently make frequentist

statistics subjective?

There is some truth, but little sting to this criticism of

frequentist statistics often raised by Bayesian scientists.

Certainly, if we understand the world through the use of

models; the models we actually use limit our

understanding. Thus model choice does add a subjective

element to science, which can influence the rate of gain of

knowledge. However, what knowledge is gained is objec-

tive. For the evidential statistician, this is most clear. The

evidential statistician makes no claim to the truth of any of

the models that investigated. This statistician only claims

that given the data in hand one model is estimated to be

closer to truth than another. This claim is entirely objec-

tive. Further, the subjective choice of models act as a

challenge to other scientists to subjectively choose other

models that may themselves objectively prove closer to

truth. We return to these important points in our

conclusions.

Error statistics also maintains objectivity, although in a

more cumbersome fashion. The carefully wrought and

strict definitions of NP-test and significance testing make it

clear both that the evidence is conditional on the models

considered, and that the tests make no claims as to the truth

of any hypotheses. Neyman and Pearson (1933) thought

that operational and temporary decisions should be made

between models based on the data and objective criteria

‘‘[w]ithout hoping to know whether each separate

hypothesis is true or false’’. Similarly, Fisher’s significance

tests only indicate when a model is inadequate and make no

exhortation to belief in the model when it is not rejected.

However, the claim to objectivity for error statistics is

slightly weaker than that of evidential statistics because

error probabilities are the primary evidential measure, and

error probabilities are calculated assuming one of the

models is true.

Problems in the use of the paradigms

Difficulties in the relationships among P values,

error probabilities and evidence

The bulk of science has been done using as statistical tools

NP-tests and Fisherian significance tests of P values. Much

of this science has been solid, which is amazing because

both methods are seldom used the way they were intended.

The NP-test does not present output which can be inter-

preted as evidence. Neyman and Pearson were clear on this

in labeling it a decision procedure. The size of the test, a,
which is an a priori error rate, could be taken as a crude

measure of evidence under the rubric of realiablism, but it

is almost never reported. What is reported as a ‘‘P value’’ is

the minimum a that would have led to rejection with the

observed data. This value is not the size of the test, it is not

really evidence, and it is not a post hoc type I error rate

(Blume and Peipert 2003). The persistence of this treatment

of the NP-test in the face of all statistical education and

literature is informative. Scientists very much want to be
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able to design experiments and studies with modest a priori

control of error rates, and they want a post hoc interpre-

tation of evidence which is something more than accept/

reject. The NP-test does not give them both but evidential

statistics does.

Another problem with the dominant error statistical

procedures is that the evidence for or against a single

model, H0, represented by a Fisherian significance test is

not commensurate with the evidence for or against that

hypothesis when it is contrasted with an alternative model,

H1. This is known as the Lindley paradox. Lindley (1957)

originally contrasted a significance test with a Bayesian

comparison of two models. As might be expected, how

often the contradiction occurs depends on the priors placed

on the models.

The Lindley paradox is not restricted to Bayesian

analysis. The problem can be reconstructed comparing a

P value with a Neyman–Pearson test. The problem is that

the significance test may indicate a rejection of H0 when a

comparison of the two models indicates that there is more

evidence for H0 than for H1. The converse can also be true,

a significance test can fail to reject H0 whereas a model

comparison indicates that there is more evidence for H1

than there is for H0. For the general prosecution of science,

this is a flaw, although in certain contexts, such as drug

trials, which require a conservative ‘‘first do no harm’’

attitude, it is a design feature.

Having discarded the ‘‘true model’’ assumption, an

evidentialist statistician has trouble thinking in terms of

evidence for a single model. For the evidentialist, these

attempts are better described as model adequacy measures

(Lindsay 2004). Basu et al. (2011) have recently published

a technical treatment on the development and use of gen-

eralized distance measures for statistical inference. As

pointed out by Taper and Lele (2004) evidence functions

are the difference (or possibly ratio) of 2 model adequacies.

Thus, the Basu et al. book can provide rich material for the

construction of future evidence functions. Further, the

model adequacy of the best model in a model set represents

a limit on how much better a perfect model could do in

representing the data.

Problems with error statistical inference and sample

size

It is a long standing joke that a frequentist, (really an error

statistician) is someone happy to be wrong 5 % of the time.

This is more than just a joke—it is a reality. The way the

control of error is built into error statistical tests implies

that while the type I error does not increase when sample

increase, it also does not decrease. Under the evidential

paradigm, both error probabilities, the probability of strong

misleading evidence, M, and the probability of weak

evidence, W, go to zero as sample size increases (see

Royall 1997, 2000). To illustrate this fact, in Fig. 3 we

present Royall’s example where the setting was as follows:

the null hypothesis (model 1) was that the data is normally

distributed with mean h1 and variance r2. The alternative is
that the data is normally distributed, with the same variance

but with mean h2[ h1. If the null hypothesis is true, then

the sample mean is �X�Nðh1; r2=nÞ and the critical

threshold at a level a = 0.05 for the observed mean above

which we would reject the null is given by

�xcrit ¼ rffiffi
n

p za þ h1 ¼ rffiffi
n

p 1:645þ h1, where za is the per-

centile of a standard normal distribution so that

(1 - a)100 % of the area under the Gaussian curve lies to

the left of it. In that case, the Type II error, or probability of

observing a sample mean that happens to fall within the

‘‘failing to reject’’ region given that the true probability

model is �X�Nðh2; r2=nÞ is computed as Prð �X� �xcritÞ. On
the other hand, the probabilities of misleading evidence

and of weak evidence as a function of n in this case are

computed respectively as

MðnÞ ¼ Pr
1
ð‘2=‘1 [ kÞ ¼ Pr

2
ð‘1=‘2 [ kÞ;

WðnÞ ¼ Pr
1ð2Þ

ð1=k\‘2=‘1\kÞ:

These probabilities can be readily computed for various

sample sizes, and a given cut-off k for the strength of

evidence (see Royall 2000 and Fig. 3).

Fisherian significance also has sample size difficulties.

In this case, it is with the interpretation of a P value as the

strength of evidence against a model. The common practice

of science implicitly assumes that a P value from one study

implies more or less the same degree of evidence against

the null hypothesis that the same P value from another

study would even if the two studies have different sample

Fig. 3 A comparison of the behavior with increasing sample size of

Neyman–Pearson error rates (Type I and Type II) with evidential

error rates (M and W). The critical distinction is that Neyman and

Pearson type I error remains constant regardless of sample size while

both evidential error rates go to zero as sample size increases

(Figure re-drawn after Royall (2000) Fig. 2 using

h2 � h1j j ¼ r ¼ 15; h1 ¼ 100; k ¼ 8; a ¼ 0:05:)
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sizes. Unfortunately this is not true. But, how the evidence

varies with sample depends on subtleties of the scientist’s

interpretation of the procedure. If you impose a signifi-

cance level and treat every P value greater than the level

simply as exceeding the level then there is greater evidence

against the null in small samples than in large. If on the

other hand, the scientist is directly comparing P values

without an a priori cut off, then there is greater evidence in

large samples than small samples for a given P values. In

either case the evidence depends on sample size making a

hash of interpretation of published work (see Royall 1986

for further details).

Bayesian difficulties with detecting non-

identifiability

A model is said to be non-estimable if the maximum value

of the likelihood function evaluated at the data occurs for

more than one set of parameters. That is to say that the data

can not be used to distinguish between multiple possible

estimates. If this failure is not due to a quirk of sampling,

but is instead determined by the way the model is config-

ured, then a model is said to non-identifiable if it is non-

estimable for all possible data sets (Ponciano et al. 2012).

Non-estimability may cause programs that calculate

maximum likelihood estimates through numerical opti-

mization to return an error. This is an important indication

that something is wrong with the way you are modeling

your data.

A Bayesian estimation on the other hand will be com-

pletely oblivious to the non-estimability. Bayesian esti-

mates are a combination of information from the data and

information from the prior beliefs. The hope is that infor-

mation from the data will swamp that in the prior:

Specification of the prior distribution can be viewed

as the ‘price’ paid for the exactness of inferences

computed using Bayes Theorem. When the sample

size is low, the price of an exact inference may be

high. As the size of a sample increases the price of an

exact inference declines because the information in

the data eventually exceeds the information in the

prior (Royle and Dorazio 2008, Hierarchical Model-

ing and Inference in Ecology. Page 55)

However, this is not always true. In the case of non-

estimability/non-identifiability there is no information in

the data to distinguish between alternative estimates, and

the decision is made entirely on the basis of the prior. Often

with complex hierarchical models where non-estimability/

non-identifiability might occur is not obvious.

As mentioned above, data-cloning is a method of

transforming a Bayesian analysis into a likelihood analysis.

In situations where non-estimability/non-identifiability is

suspected, this is particularly useful. A data cloned esti-

mation will return estimates of estimable parameters and

diagnostics indicating that non-identifiability exists in the

remainder (Lele et al. 2010; Ponciano et al. 2012).

Informative, non-informative or mis-informative

priors?

As our sketch of Bayesian inference indicates, a specified

prior is mandatory for Bayesian calculations. To avoid

‘‘subjectivity’’ many Bayesian scientists prefer to employ

‘‘non-informative’’ priors.

To compute the posterior distribution, the Bayesian

has to prescribe a prior distribution for h, and this is a

model choice. Fortunately, in practice, this is usually

not so difficult to do in a reasonably objective fash-

ion. As such, we view this as a minor cost for being

able to exploit probability calculus to yield a coherent

framework for modeling and inference in any

situation.

(Royle and Dorazio 2008, Hierarchical Modeling and

Inference in Ecology. Page 21)

The problem, is that what constitutes a non-informative

prior depends on how the model is parameterized (Fisher

1922; see also Dorazio 2015). Lele (2015) analyses 2

important ecological problems with simulated and real data

sets. Each problem has multiple equivalent and commonly

used parameterizations. Lele analyses population persis-

tence projections for the San Joaquin kit fox using a Ricker

equation parameterized in terms of growth rate and density

dependence (a, b) or in terms of growth rate and carrying

capacity (a, K).4 The two forms are mathematically

equivalent. However, Bayesian estimation using ‘‘non-in-

formative’’ priors yield very different parameters estimates

and very different predictions of population persistence.

Similarly occupancy models for the American toad can be

parameterized either in terms of probabilities of occupancy

and detection, or in terms of the logits of those quantities.

Both formulizations are commonly used in studying

occupancy. Again parameter estimates and posterior dis-

tributions from Bayesian estimates using non-informative

priors are substantially different. Lele (2015) further

demonstrates that the maximum likelihood estimates for

these problems achieved through data cloning are trans-

formation invariant.

While many statistical ecologists (e.g., Clark, 2005)

agree with Royle and Dorazio (2008) that non-informative

priors are benign, other eminent statisticians are much

more cautious. Bradley Efron, a major proponent of

empirical Bayes, closes a recent article (Efron 2013) with

4 Note Lele’s parameter a is equivalent to our ri used above.
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the statement: ‘‘be cautious when invoking uninformative

priors. In the last case, Bayesian calculations cannot be

uncritically accepted and should be checked by other

methods, which usually means frequentistically.’’ Gelman

and Shalizi (2013) also strongly argue for frequentist/fal-

sificationist checking of Bayesian solutions, and go as far

as saying that

the idea of Bayesian inference as inductive, culmi-

nating in the computation of the posterior probabil-

ity…has had malign effects on statistical practice. At

best, the inductivist view has encouraged researchers

to fit and compare models without checking them; at

worst, theorists have actively discouraged practi-

tioners from performing model checking because it

does not fit into their framework

(Gelman and Shalizi 2013).

We recommend that, while doing Bayesian statistics,

practitioners should run frequentist checks on the validity

of the inferences, despite the computational cost of so

doing. By frequentist checks here we mean running a large

number of simulations under the model (i.e., a parametric

bootstrap) or a more complex setting where truth is known

(i.e., a model structure adequacy analysis sensu Taper et al.

2008) so that the reliability of the inferences with the

posterior distribution can be assessed (see also Dorazio

2015).

The true model assumption and the difficulty

of using probability as a measure of evidence

A cryptic but fundamental assumption of Bayesian analysis

is that the true model is in the model set. This is obvious

because probabilities sum to 1. But, this flies in the face of

our experience as scientists, modelers and statisticians. To

quote George Box (1976) ‘‘All models are wrong.’’ If all

models are wrong, what sense does it make to believe in

any of them? If you do not believe in models, what sense

does it make to depend on a statistical system predicated on

belief in models? However, doubt about belief is not shared

uniformly by scientists as evidenced by this quote from an

unpublished manuscript by an ecologist.

Frequentists never explicitly state how their metrics

such as P values and confidence intervals should be

translated into belief about the strength of evidence,

although such translation is clearly being done

(otherwise data analysis is pointless if it is not

informing belief). This is why I view the frequentist

approach as subjective; there is no theory for how

frequentist metrics should be translated into belief, so

clearly the interpretation of frequentist metrics in

terms of strength of evidence and belief must be

subjective. (Anonymous, personal communication)

This ecologist believes in belief so strongly as to

essentially accuse frequentists of lying when they say they

do not.

Interestingly, some Bayesian statisticians concur with

us. Gelman and Shalizi (2013) state: ‘‘It is hard to claim

that the prior distributions used in applied work represent

statisticians’ states of knowledge and belief before exam-

ining their data, if only because most statisticians do not

believe their models are true, so their prior degree of belief

in all of H is not 1 but 0.’’ Clearly, for these statisticians

Bayesian statistics simply represents a very convenient

calculation engine.

G.A. Barnard made a more psychological point when he

said:

To speak of the probability of a hypothesis implies

the possibility of an exhaustive enumeration of all

possible hypotheses, which implies a degree of

rigidity foreign to the true scientific spirit. We should

always admit the possibility that our experimental

results may be best accounted for by a hypothesis

which never entered our own heads.

(Barnard 1949)

What does it do to us as scientists to continually condition

ourselves to believe that our little systems comprehend

reality?

Bayesian aspects of Akaike weights

Akaike weights are very important in so called frequentist

model averaging (Burnham and Anderson 2002). They are

the weights used in averaging models. However, as pointed

out by Burnham and Anderson (2004) Akaike weights are

posterior probabilities based on subjective priors of the

form

qi ¼ C � exp 1

2
Ki lnðnÞ � Ki

� �

where qi is the prior for model i, C is a normalization

constant, Ki is the number of parameters in the model, and

n is the number of observations. This prior is a b-proba-

bility, and as consequence so are Akaike weights. Thus,

Burnham and Anderson’s model averaging depends on a

subjectively chosen prior, and as such inherits all of the

justified criticism of such priors.

Burnham and Anderson like this prior, calling it a savvy

prior (their emphasis). The prior captures the Burnham and

Anderson world-view very well. If you have more than 8

observations this is an ‘‘anti-parsimony’’ prior, where
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models of more parameters are being favored a priori over

models with fewer.

It is important to note that multi-model inference can be

carried out in an evidential framework (Taper and Pon-

ciano 2016). Further, this framework uses the information

from multiple models more effectively than does model

averaging by computing projections in model space. Such

projections are an extension of Akaike’s (1973) original

AIC definition.

Priors as practical regularization devices

A class of intractable estimation problems using likelihood

inference can be rendered tractable using subjective

Bayesian statistics. Suppose we were wishing to estimate

both, the probability of success p in a binomial trial whose

total number of trials is unknown. In such cases, and

depending on the values of p, the profile likelihood for the

total number of trials N may not be well behaved and result

in confidence limits with an infinite upper bound (Montoya

2008). In that case, as in similar species richness estimation

problems, subjective prior elicitation results in reliable

inferences that have found applications in planning of

biodiversity studies (Christen and Nakamura 2000).

This is not to say the only way to control a badly

behaving likelihood is through a prior. Moreno and Lele

(2010) were able to greatly improve the performance of site

occupancy estimation using penalized likelihood. Some

statisticians claim that penalized likelihood is equivalent to

using some prior (Wang and Lindsay 2005). In Moreno and

Lele’s (2010) case, they penalized to an alternative esti-

mator based on the same data so no belief or prior infor-

mation was involved.

Using the paradigms

Statistics as a means to clarify arguments

There is a strong impulse among ecologists to seek a sta-

tistical paradigm that is true and exact and will make all

their analyses beautiful. No such paradigm exists. No

paradigm is bullet proof, and no paradigm applies to all

situations. Science works by making demonstrations

through evidence based arguments (Gelman and Hennig

2015). Statistics functions in science to quantify and clarify

those arguments. Different statistical paradigms can be

applied to different scientific arguments.

Scientists are not used to thinking about the merits of

statistical paradigms usefully. Scientists judge scientific

theories by how well they match an external reality. But,

all statistical methods exist in the mind only, there is no

external reality against which to judge them. Statistical

methodologies are to be judged as tools. Are they useful in

the construction of sound scientific arguments or are they

not?

The central task of science

We hold the view that models carry the meaning in science

(Frigg 2006; Giere 2004, 2008). Less radical views, of

models such as that they represent reality (Giere 1988,

2004; Hughes 1997; Suppe 1989; van Fraassen 2002) or

serve as tools for learning about reality (Giere 1999;

Morgan 1999) all still give a very central place to models

in science.

Consequently, the job of scientists is to replace old

(possibly good) models with new better models. When we

have taught courses in both ecological modeling and sta-

tistical modeling our primary instruction is always: ‘‘Never

fall in love with your model—it should not be a long

relationship.’’ Even if a scientist’s interest is primarily in

parameter values, model identification is paramount.

Without a good model, parameter estimation will be faulty.

Evidential statistics gives the scientist tools to choose

among the models he has and motivation to formulate new

ones. Evidential statistics is a complete framework. It

encompasses: the design of experiments and surveys, pre-

data control of error, post data assessment of the strength of

inference, model identification, comparison of models,

assessment of model uncertainty, parameter estimation,

and assessment of estimate uncertainty.

Communicating about models: public

versus personal epistemology

Science knows much more than any individual scientist.

This knowledge has accumulated over thousands of years

through a complex web of transmission, colleague to col-

league and teacher to student. Science is a public

epistemology.

Belief is personal and difficult to transfer. Belief also

depends strongly on such individual things as cultural

background and present mood. Evidence, on the other

hand, is independent of the individual, transferable, and can

accumulate. As such it is much better suited to form the

basis of a public epistemology than is belief. Personal

belief, although critically important for conducting first-

person epistemology, needs to be strengthened with

incorporation of data and information gathered from

objectively grounded research to meet the demand of ever-

growing science. Scientific epistemology, on the other

hand is public, and is based on the transferrable and the

accumulation of information from many people and over

great periods of time (See Strevens 2010). However, the

growth of scientific knowledge is not divorced from
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personal beliefs. Scientists are people, and create their

research programs informed by their personal beliefs.

The character and contributions of statistical

paradigms

Each of the statistical paradigms discussed has its own

character and can make contributions to science. Error

statistics, for instance, has been the backbone of science for

a hundred years. Undoubtedly, it will continue to make

major contributions in the 21st century. There are inherent

conservative biases in error statistics generated by the

focus on the null hypotheses and the pre-specification of

error rates. This conservative bias makes error statistics

well suited for application in regulatory situations, medical

science, and legal testimony, all fields that ethically man-

date a similar bias.

Evidential statistics, while still retaining control of error,

places all models on equal footing. These properties and its

focus on models make us feel that the evidential paradigm

is best suited for the prosecution of general science. Nev-

ertheless, when we are consulting for people answering to

regulatory agencies, all of our evidential statistics get

packed away, and out comes an error statistical tool kit.

Although we personally find the belief based philosoph-

ical foundations of Bayesian statistics unsound to support

science as a public epistemology (this includes both sub-

jective and objective Bayesian approaches), a lot of good

work has been done with Bayesian statistics. A Bayesian

analysis unchecked by frequentist methods runs the risk of

undetected catastrophic failure, but in practice, much of the

time it will be fine. Even if one seeks to avoid the use of a

belief-based probability definition, an understanding of

Bayesian methods in the analysis of hierarchical models is

absolutely necessary. Most of the alternative methods for

solving complex problems in science, empirical Bayes, data

cloning, and empirical Jeffreys’ priors all require a solid

grounding in Bayesian methods.

It is our opinion that the epistemological high ground is

now held by evidential statistics. We look forward to

developments that will further evidential statistics, and

someday lead to something that supplants it. Currently,

most of the purported advantages of both error statistics

and Bayesian statistics are now held by evidential statistics.

This is by design; the framers of evidential statistics have

ruthlessly borrowed what was good and rejected what was

faulty. Many of the key ideas in evidential statistics were

pioneered by its predecessors.

The central theme of this essay is that there is no magic

wand for scientists in statistics. If one wants to use statistics

effectively in science, then one needs to learn how to

clarify scientific arguments with statistical arguments. To

do that one needs to understand how the statistical

arguments work. In many ways, this is a much harder task

than mastering statistical methods. There are a number of

excellent sources to help with this task. As a beginning, we

suggest: Royall (1997), Barnett (1999), Sprott (2000),

Taper and Lele (2004), Thompson (2007), Bandyopadhyay

et al. (2016).
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