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Abstract Ronald A. Fisher, who is the founder of max-

imum likelihood estimation (ML estimation), criticized the

Bayes estimation of using a uniform prior distribution,

because we can create estimates arbitrarily if we use Bayes

estimation by changing the transformation used before the

analysis. Thus, the Bayes estimates lack the scientific

objectivity, especially when the amount of data is small.

However, we can use the Bayes estimates as an approxi-

mation to the objective ML estimates if we use an appro-

priate transformation that makes the posterior distribution

close to a normal distribution. One-to-one correspondence

exists between a uniform prior distribution under a trans-

formed scale and a non-uniform prior distribution under the

original scale. For this reason, the Bayes estimation of ML

estimates is essentially identical to the estimation using

Jeffreys prior.

Keywords Empirical Jeffreys prior � Posterior
distribution � Sika deer population � Skewness � State-space
model � Transformation

Introduction

Bayesian estimation contains a logical problem that is a

subject of debate between Bayesian and non-Bayesian

scientists. Recent articles on Bayesian inference sometimes

portray the debate as ‘Bayesian versus classical approach’

(e.g., Ellison 2004; Clark 2005, 2007), although Bayesian

inference that originates from Bayes (1763) is historically

older than the classical approach. Fisher (1922) criticized

the logical problem of Bayes estimation, and proposed the

maximum likelihood estimation (ML estimation) that

should replace Bayes estimation. Neyman (1934) later

developed the concept of confidence intervals. The

approach of Neyman-Pearson, which is called ‘frequentist’,

is much different from the approach of Fisher, which is

called ‘Fisherian’ (Efron 1998; Salsburg 2001; Hubbard

and Bayarri 2003; Shibamura 2004). We can use the term

‘non-Bayesian’ to refer to both Fisherian and frequentist.

Although many researchers collectively use the term fre-

quentist to refer to all scientists that use the approach of

Fisher and Neyman-Pearson (e.g., Dennis 2004), I prefer to

use the terminology of Efron (1998) in this paper, because I

will use the approach of Fisher while rejecting the

approach of Neyman-Pearson in defining the confidence

limits later in this paper. Neyman-Pearson proposed the

statistical test to control the frequency of false decisions in

a repeated sampling, but Fisher strongly criticized the

Neyman-Pearson approach (e.g., Fisher 1973, p44, p95,

p104) because such an endless series of repeated sampling

will never take place actually except for industrial sam-

plings and because the strength of the evidence is not to be

measured by such frequency.

We should first strictly define the meanings of Bayes

estimates. Several people call the estimates ‘Bayes esti-

mates’ when they used Bayes theorem in their estimation.
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However, this usage is causing a serious confusion because

Bayes theorem is also commonly used in calculating ML

estimates. The debate between Bayesian and non-Bayesian

scientists mostly lies on the use of uniform prior distribu-

tions for parameters. Such uniform prior distributions were

first used by Bayes (1763). Hence, I call the procedure of

estimation that uses uniform prior distributions (or flat

prior distributions) as ‘Bayes (1763) estimation’ in this

paper to avoid the confusion.

Fisher (1922) criticized the Bayes (1763) estimation of

using uniform prior distributions, because we can create

estimates arbitrarily by changing the transformation before

the analysis. The Bayes (1763) estimation lacks the scientific

objectivity, especially when the amount of data is small.

However, we can utilize the Bayes (1763) estimation as an

approximation to the objective ML estimation if we use an

appropriate transformation that makes the posterior distri-

bution close to a normal distribution. In this paper, I illustrate

it by the example ofMLestimation of sika deer populations. I

show that we can create various estimates by changing the

transformation arbitrarily in theBayes (1763) estimation, but

that only one transformation is appropriate as an approxi-

mation to ML estimation. One-to-one correspondence exists

between a uniform prior distribution under a transformed

scale and a non-uniform prior distribution under the original

scale. I show that the Bayes (1763) estimation for obtaining

approximate ML estimates is essentially identical to the

estimation that uses Jeffreys (1946) prior.

Fisher’s criticism to Bayes (1763) estimates

Bayes (1763) considered a binomial sampling procedure in

which a sample of size n is drawn from an infinite popu-

lation of which a proportion (p) is of a certain kind such as

‘successes’ while the remaining proportion (1-p) is of

another kind such as ‘failures’. Bayes (1763) then calcu-

lated the posterior distribution of p by assuming a uniform

distribution for the prior distribution of p. Fisher (1922,

p325) says ‘‘it is, however, evidently extremely arbitrary’’

because ‘‘it is not even a unique solution.’’ As an example,

Fisher introduced another parameter, h, where h is defined

by h ¼ sin�1ð2p � 1Þ. Fisher (1922, p325) says that ‘‘the
quantity h measures the degree of probability, just as well

as p, and is even, for some purposes, the more suit-

able variable’’. If we assume a uniform distribution for h,
the distribution of p becomes non-uniform. If we assume a

uniform distribution for p, on the other hand, the distri-

bution of h becomes non-uniform. Consequently, the Bayes

(1763) estimate becomes different, depending on whether

we assumed a uniform distribution for p or h. We can

generally create any estimates we like by changing the

transformation before the analysis. In contrast, if we use

ML estimation that was proposed by Fisher (1922), the

estimates are the same; ML estimates are invariant to the

transformation such as h ¼ sin�1ð2p � 1Þ.
It should be noted that Fisher strongly recommended the

use of prior knowledge, although he recommended the use

of fiducial argument in the absence of prior knowledge.

Fisher mentioned that ‘‘my method was appropriate to the

absence of knowledge a priori’’ (Fisher 1973, p105) and

‘‘the application of the fiducial argument can only be made

in the absence of such information a priori’’ (Fisher 1973,

p54).

Example of arbitrary creation of estimates
by Bayes (1763) estimation

I next estimate the abundance of sika deer Cervus nippon

Temminck to illustrate how Bayes (1763) estimation can

correctly create arbitrary estimates. The estimation of the

number of sika deer is one of the major concerns in Hok-

kaido prefecture, Japan (Yamamura et al. 2008); these deer

are causing severe damage to agriculture, forestry and

natural vegetation. I estimate the number of sika deer in

Sorachi subprefecture in Hokkaido by using the data of

spotlight survey from 2007 to 2012; I use this small data set

for the purpose of illustration. Spotlight survey has been

conducted by Hokkaido prefecture annually between late

October and early November, before the start of the

hunting season. (Uno et al. 2006). Each survey route was

about 10 km in length. Two observers holding spotlights

(Q-Beam 160,000 candle-power; Brinkmann, Dallas, TX)

searched for deer on both sides of the survey route from

19:00 to 20:00, riding in a vehicle (at a speed ranging from

20 to 40 km/h). The total number of deer detected along

the routes was recorded.

I perform the harvest-based estimation using a simple

state-space model. I use the univariate model of Yamamura

et al. (2008). Let Nt be the population at t year. I assume

the following state model.

Nt ¼ qNt� 1 � Kt� 1; ð1Þ

where q is the average natural rate of increase per indi-

vidual per year, and Kt is the number of harvested (killed)

at t year. I do not consider the process error in this paper,

because the preliminary analyses by Yamamura et al.

(2008) indicated that the process error is sufficiently small

in these data.

Spotlight survey of sika deer provides only the infor-

mation about the relative abundance of sika deer, and

hence Hokkaido prefecture is using ‘population index’ to

describe the change in abundance. I use the population
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index It defined by Nt=N2007 for t = 2008, 2009,…, 2012.

It is given by a linear form in a logarithmic scale.

loge Itð Þ ¼ loge Ntð Þ � loge N2007ð Þ: ð2Þ

I first estimate the logarithmic population index loge Itð Þ
by a generalized linear mixed model (GLMM) in which the

log link and Poisson errors are used (Yamamura et al.

2008). Let logeðÎtÞ be the vector of the estimates of loga-

rithmic population indices. Let logeðItÞ be the vector of

true logarithmic population indices. I consider the follow-

ing observation model.

logeðÎtÞ ¼ logeðItÞ þ et; et � Nð0; RÞ ; ð3Þ

where et is the vector of observation errors which follow a

multivariate normal distribution with mean 0 and variance–

covariance matrix R. I assume that the observation errors in

loge Ntð Þ are mutually independent. Then, the estimates of

loge Itð Þ have a correlation coefficient of 0.5 mutually,

because the estimate of loge N2007ð Þ is repeatedly used in

estimating loge Itð Þ for t = 2008–2012 by the form of

Eq. 2. Hence, we should use the following variance–co-

variance matrix.

R ¼

2r2 r2 . . . r2

r2 2r2 . . . r2

..

. ..
. . .

. ..
.

r2 r2 . . . 2r2

2
664

3
775: ð4Þ

Estimability is one of the troublesome problems in

constructing a complicated model (Lele et al. 2010). The

parameter q, which is the average natural rate of increase

per individual, is not estimable in this case. The spotlight

survey indicates only the relative abundance of sika deer, It
(¼ Nt=N2007). The state model (Eq. 1) can be expressed by

ðIt=It� 1Þ ¼ q � ðKt� 1=Nt� 1Þ: ð5Þ

For a given set of ðIt=It� 1Þ and Kt� 1, we have an infi-

nite number of combinations of q and Nt� 1 that satisfy

Eq. 5. Hence, we must estimate q beforehand from another

field data. I adopt q = 1.21 that was observed in a popu-

lation in Cape Shiretoko (Kaji et al. 2004).

I use the Box-Cox transformation which has a superior

flexibility in transforming a variable defined in the range of

(0, ?).

f x; kð Þ ¼ xk � 1
� �

=k; ð6Þ

where k is a fixed exponent. The transformation includes

several simpler transformations such as logarithmic

transformation (k ¼ 0), square root transformation

(k ¼ 0:5), inverse transformation (k ¼ �1), and no

transformation (k ¼ 1). The function for back-transfor-

mation is given by

g u; kð Þ ¼ ku þ 1ð Þ 1=kð Þ: ð7Þ

I use various exponents of Box-Cox transformation for

each parameter. The exponent for N2007 is denoted by kN
while the exponent for r is denoted by kr.

I obtain Bayes (1763) estimates of two unknown

parameters, N2007 and r, by using WinBUGS 1.4.3 which is

the standard software for performing estimation using

Markov chain Monte Carlo (MCMC) (Spiegelhalter et al.

2003). I set the possible range of N2007 to a sufficiently

large range: from 1 thousand to 500 thousands. I set the

possible range of r to (0.01, 150). I generate a uniform

random number UN in the range of ½f 1; kNð Þ; f ð500; kNÞ�
for a given exponent kN . The random number is back-

transformed by g UN ; kNð Þ to yield a sample of N2007. I

generate a uniform random number Ur in the range of

½f 0:01; krð Þ; f ð150; krÞ� for a given exponent kr. The

random number is back-transformed by g Ur; krð Þ to yield

a sample of r. Then, I calculate the mean of the posterior

distribution for N2007 and r. I perform 100,000 iterations

with a burn-in period of 10,000. The R-code is listed in

Electronic Supplementary Material (ESM) which is avail-

able at Springer website. The latest version of ESM is

available at http://cse.niaes.affrc.go.jp/yamamura/Empiri

cal_Jeffreys.html.

Figure 1 indicates the influence of exponent kN of Box-

Cox transformation on Bayes (1763) estimates of popula-

tion. The quantity of kN was changed by a 0.5 interval. We

see that the estimate of N2007 increases from 26.2 to

71.5 thousands with changing kN from -3 to 1.5. All these

estimates are valid estimates of N2007 if we permit Bayes

(1763) estimation, and hence we can adopt any estimate of

Fig. 1 Various Bayes (1763) estimates of population (N2007) in

thousands, obtained by modifying the exponent kN of the Box-Cox

transformation for N2007. The exponent kr of the Box-Cox transfor-

mation for r was fixed at -0.5
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N2007. If a researcher wants to obtain a larger estimate of

population, for example, he will correctly create a large

estimate of population by adopting a large kN such as 1.5.

Use of Bayes (1763) estimates as approximate ML
estimates

Bayes (1763) estimation permits an arbitrary creation of

estimates as indicated by the above example. Such a creation

will cause troubles in science. Hence, we should rather fol-

low the recommendation given by R.A. Fisher; if we have no

prior knowledge, we should calculate maximum likelihood

estimates (ML estimates) instead of Bayes (1763) estimates.

ML estimates of parameters are given by the parameter

values that maximize the likelihood. However, we cannot

easily calculate ML estimates if the model is highly com-

plicated, while we can calculate Bayes (1763) estimates

easily in most cases. Hence, we should utilize the Bayes

(1763) estimates as an approximation to ML estimates.

Marginal ML estimate is given by the mode of the posterior

distribution if we use a uniform prior distribution. The

numerical calculation of mode is relatively difficult than that

ofmedian ormean. Several methods are available for finding

the mode. de Valpine (2003, 2004) used Monte Carlo kernel

likelihood method. Lele et al. (2007) proposed data cloning

method. Wood (2010) used quadratic regression for the

sampled likelihood surface. I use another method in this

paper. If we can transform the parameter space so that the

posterior distribution is nearly symmetry, the mode coin-

cides to the mean. Hence, we can use the mean as an

approximate marginal ML estimate, that is, we can use the

Bayes (1763) estimate as an approximate ML estimate.

Furthermore, if we can use an appropriate transformation

that makes the posterior distribution nearly the same sym-

metrical distribution such as a homoscedastic normal dis-

tribution, we can use the quantile of posterior distribution as

the confidence limit. Most of the theory of ML estimation is

based on the asymptotic normality. If we can make the

posterior distribution nearly normal, therefore, we can use

the asymptotic argument even for relatively small samples.

We should explore the procedure to find the appropriate

transformation that makes the posterior distribution nearly

normal. For a parameter that has the range of (0,?), we will

be able tofindanappropriate transformationbychanging the k
of Box-Cox transformation given by Eq. 6. We can use

skewness of the posterior distribution to judge the symmetry;

the distribution will be nearly symmetry if the skewness is

nearly zero.We can further expect that the distributionwill be

nearly normal if the skewness is nearly zero. Figure 2 shows

the influence of exponent kN on the skewness of the posterior

distribution of N2007. The skewness of the posterior distribu-

tion of N2007 became nearly zero if we use kN ¼ �2. Hence,

we can expect that the Bayes (1763) estimate of N2007 calcu-

lated by using kN ¼ �2 is close to themarginalMLestimate.

We should calculate the skewness for all parameters in the

model. The influence of the exponent kr on the skewness of

the posterior distributionofr is shown inFig. 3.The skewness
is nearly zero if we use kr ¼ �0:5. The combination of

transformation, kN ¼ �2 and kr ¼ �0:5, yields the

Fig. 2 Various skewness of the posterior distribution of population

(N2007) obtained by modifying the exponent kN of the Box-Cox

transformation for N2007. The exponent kr of the Box-Cox transfor-

mation for r was fixed at -0.5

Fig. 3 Various skewness of the posterior distribution of the standard

deviation of measurement error (r) obtained by modifying the

exponent kr of the Box-Cox transformation for r. The exponent kN of

the Box-Cox transformation for N2007 was fixed at -2
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approximateML estimates ofN2007 and r in this case. Both of
the mean and median coincide to the mode of distribution if

the distribution is completely symmetry, but themedian is less

influenced by the asymmetric long tail. The median and

quantiles are not influenced by the back-transformation,

although the mean of back-transformed distribution is dif-

ferent from the back-transformed value of mean. Hence, we

should use the median of back-transformed posterior distri-

bution as the approximate ML estimate. The 2.5 and 97.5 %

quantiles of the back-transformedposterior distribution can be

used as the approximate lower 2.5 % confidence limit and

upper 2.5 % confidence limit, respectively, in the definition of

Fisher (1973, p69). In the current example, the estimates and

the confidence limits are as follows: N̂2007 ¼ 26:68 ð22:40
�35:37Þ thousands, r̂ ¼ 0:091 ð0:052�0:218Þ.

Transformation as an empirical Jeffreys prior

In the above example, I used skewness to empirically select

the transformation to achieve the symmetry in the posterior

distribution of parameters. This transformation is closely

related to Jeffreys prior. Figure 4 schematically shows how

the shape of distribution changes with the change of its

mean. Skewness is generally closely related to the

homoscedasticy. Skewness will be generally close to 0 if

the distributions have the same variability irrespective of

the mean as illustrated in Fig. 4a. If the variability of dis-

tribution increases toward right (or toward left), the dis-

tribution will be much skewed as illustrated in Fig. 4b.

Hence, we can find the appropriate transformation by

finding a transformation that yields homoscedasticity.

Let us consider that we are estimating a single parameter

l, and that the variance of posterior distribution LðlÞ is

given by the function gðlÞ. The transformation that makes

the variance constant is generally given by the following

formula (e.g., Beall 1942; Bartlett 1947; Yamamura 1999).

f xð Þ ¼
Z

1ffiffiffiffiffiffiffiffiffi
gðxÞ

p dx: ð8Þ

On the other hand, the variance is roughly given by the

inverse of Fisher information,

g xð Þ ¼ 1

�
�E

o2loge L xð Þð Þ
ox2

� �� 	
: ð9Þ

Then, we obtain the appropriate transformation by

substituting Eq. 9 to Eq. 8.

f xð Þ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�E
o2 loge L xð Þð Þ

ox2

� �s
dx: ð10Þ

As Fisher (1922) discussed, the uniform distribution in a

transformed scale corresponds to a non-uniform distribu-

tion in the original scale. Using a uniform prior distribution

after performing a transformation $h(x)dx is identical to

using a prior distribution h(x). This relation is frequently

used in generating a random number; that is, we can gen-

erate a random number that follows a distribution h(x) by

generating a uniform random number within (0, 1) and

transforming it by the inverse function ($h(x)dx)-1 (see, for

example, Marsaglia 1984). Therefore, the uniform distri-

bution after the transformation by Eq. 10 is given by the

following non-uniform distribution in the original scale.

h xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E

o2 loge L xð Þð Þ
ox2

� �s
: ð11Þ

This is exactly the non-informative prior of Jeffreys

(1946). Thus, the uniform distribution after the transfor-

mation to yield skewness = 0 is nearly identical to Jeffreys

prior in the original scale. Hence, we can call this trans-

formation as ‘empirical Jeffreys prior’. (The name was

given by Dr. Mark Taper.)

Jeffreys (1946, 1961), in response to the criticism from

Fisher, considered that the prior distributions should be

invariant to transformation, implying that Bayesian esti-

mates should be the same even if the parameters are

transformed. Then, he proposed a prior distribution given

by Eq. 11. This estimate is sometimes called ‘objective

Bayes’. The above argument about the empirical Jeffreys

prior indicates that Jeffreys prior yields the invariant esti-

mate simply because the estimate is essentially identical to

the ML estimate which is invariant. Box and Tiao (1973)

derived Eq. 11 from a different point of view. They

(a)

(b)

Fig. 4 Schematic illustration of the relation between skewness and

homoscedasticity: a homoscedastic condition and b heteroscedastic

condition. Under a heteroscedastic condition (panel b), the amount of

dispersion changes along the axis in most cases. Hence, the amount of

dispersion changes also within a distribution. Consequently, the

distribution is inevitably skewed under a heteroscedastic condition as

illustrated in panel b
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considered that uniform prior distributions should be used

for parameters that have the following character called

‘data translated’: data influence only the location of the

likelihood distribution of the parameter without influencing

the curve of the likelihood distribution (Box and Tiao

1973, p26). Then, they derived Eq. 11. The transformation

to yield a condition of ‘data translated’ is identical to the

transformation to yield homoscedasticity, because the

homoscedasticity is a necessary condition for the data

translated condition. I used the homoscedasticity for dif-

ferent reasons; I used homoscedasticity to yield symmet-

rical posterior distributions.

Discussion

I discussed how we can utilize Bayes (1763) estimates as

an approximation to the maximum likelihood estimates

(ML estimates). We cannot directly obtain ML estimates if

the model is so complicated that simulation experiments

are required for calculating the predicted variables. Use of

Bayes (1763) estimates as an approximation to ML esti-

mates will be especially useful in such cases. Bayes (1763)

estimates coincide to ML estimates if the amount of data is

very large (Walker 1969). Hence, we can use Bayes (1763)

estimates as an approximation to ML estimates, without

any modification, if the amount of data is very large.

However, problems arise in most cases, because the

amount of data is usually not so large. I proposed the

empirical Jeffreys prior that should be used in such cases;

we should transform the space of parameters so that the

posterior distribution becomes close to a normal distribu-

tion. We can use the skewness of posterior distribution in

selecting an appropriate transformation. Then, the

approximate ML estimate is given by the median of pos-

terior distribution and the confidence limits are given by

the quantiles of posterior distribution. The argument on the

empirical Jeffreys prior indicates that the objective Baye-

sian estimates in the absence of prior knowledge are

essentially identical to ML estimates, which also suggests

that the Bayesian versus Fisherian debates are potentially

converging.

Appropriate choice of transformation of parameters will

be important also for pure ML estimation. There is a long

tradition of trying to find parameter transformation in

standard ML estimation (especially in nonlinear regres-

sion) so that the distribution of resulting ML estimates are

nearly normal (or log-likelihood nearly paraboloid) and

also nearly orthogonal, in order that (1) the convergence of

estimates is improved and (2) the asymptotic confidence

intervals give more accurate coverage (e.g., Ratkowsky

1983, 1990). In this paper, I considered Fisherian confi-

dence limits instead of frequentist confidence intervals,

because we do not assume a repeated sampling in most

cases, i.e., because we perform the experiment only once.

Fisherian confidence limits (given by the inverse of test

having a fixed probability of erroneous rejection) and fre-

quentist confidence intervals (given by the interval having

a fixed frequency of coverage) are numerically the same if

the distribution is continuous, but the interpretation is very

different (Neyman 1934, 1935; Fisher 1973).

Several other methods are also available for calculating

confidence limits from Bayes (1763) estimation. If we use

data cloning without transformation (by 50 clones) in

estimating the sika deer population of Sorachi subprefec-

ture via dclone package (Sólymos 2010), the estimates

(with the lower 2.5 % and upper 2.5 % confidence limits)

were as follows: N̂2007 ¼ 26:67 ð22:47�30:88Þ thousands,
r̂ ¼ 0:081 ð0:031�0:132Þ. R-code for this calculation and

the comparison of r̂ are shown in ESM. The estimates were

nearly the same as those obtained by using empirical Jef-

freys prior. However, the estimates of confidence limits

obtained by using data cloning were quite different from

those obtained by using empirical Jeffreys prior. In data

cloning method, as well as quadratic regression method,

the estimated confidence limits become unrealistically

symmetrical around ML estimates, because the calculation

of confidence limits is based on the asymptotic normality in

these methods. In contrast, the empirical Jeffreys prior

yields asymmetrical confidence limits that correctly cor-

respond to the inverse of test in the definition of Fisherian

confidence limits (Fisher 1973, p69).

When we use empirical Jeffreys prior for a complicated

model that contains many parameters, the procedure of

estimation may become troublesome because we must find

the appropriate transformation empirically for each of the

parameters, although the computation time will be smaller

than the corresponding data cloning method. If we confine

the class of transformation into Box-Cox transformation,

the exponent (k in Eq. 6) that yields zero skewness may be

automatically searched in each parameter by using some

kind of efficient algorithm. A combination between

empirical Jeffreys prior and data cloning may be also

useful in estimating the parameters of complicated models;

appropriate transformation will reduce the required number

of clones in applying data cloning method. We cannot use

Eq. 6 for binomial parameters such as the probability of

occurrence. Other types of power transformation, that were

indicated by Aranda-Ordaz (1981) and Guerrero and

Johnson (1982), will be available in such cases.

We should reconsider about why most people including

Bayes (1763) are liable to use uniform or flat distributions

as prior distributions when they have no prior knowledge.

Use of uniform distributions will be closely related to the

Laplace definition of probability in which the true

50 Popul Ecol (2016) 58:45–52
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probability is defined as the components that we cannot

predict by a model that includes all knowledge we can use

(Laplace 1825). In the Laplace definition of probability, we

must assign the same probability to several distinct events

if we have no additional knowledge. For example, let us

imagine a field survey of the number of individuals; we

observe a proportion p of the entire field, and record the

observed number of individuals. If we have no knowledge

about the spatial position of individuals, we must assume

that each individual exists at each point of the field by the

same possibility; that is, we must assume a uniform dis-

tribution for the spatial position of each individual. Con-

sequently, the number of observation of each individual

follows a Bernoulli distribution with the probability of

occurrence p. Thus, we already used a uniform distribution

in deriving the Bernoulli distribution or the binomial dis-

tribution. Bayes (1763) considered a binary situation: a

certain proportion (p) of an infinite population is of a

certain kind (e.g., successes) while the remaining propor-

tion (1-p) is of another kind (e.g., failures). Then, he

assumed a uniform distribution for the proportion (p), but

the uniform distribution seems to be used duplicatively in

Bayes (1763); that is, he potentially assumed a uniform

distribution about which individual in the population is

selected and he again assumed a uniform distribution for

p. The former use of uniform distribution is correct in the

Laplace definition of probability, but the latter use of

uniform distribution is incorrect. We must assign equal

probabilities for the components that we cannot predict by

a model that includes all knowledge we can use. On the

other hand, we cannot use uniform or flat distributions for

the parameters that constitute our knowledge itself. We

should not confuse these quite different things. If we use

uniform or flat distributions for unknown parameters, such

a use may have validity only as a convenient procedure to

obtain ML estimates approximately.

Kolmogorov definition of probability (i.e., the mathe-

matical definition of probability by Kolmogorov 1933) is

currently adopted in most of the statistical textbooks, but

Laplace definition of probability should be more reexam-

ined when we discuss several debates on statistical prob-

lems. Yamamura (2014) proposed RD criterion to evaluate

the predictive ability of ecological models by using

Laplace definition of probability. The predictive ability of

models seems to be appropriately defined only if we use

Laplace definition of probability. The R programs and SAS

programs for calculating RD criterion are placed in the

following website with several supplementary materials:

http://cse.niaes.affrc.go.jp/yamamura/RD_criterion_pro

gram.html. The fundamental debates between Bayesian

and non-Bayesian scientists may be also solved to some

extent if we appropriately use the philosophical definition

of Laplace probability.
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