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Abstract Since the work of Robert May in 1972, the local

asymptotic stability of large ecological systems has been a

focus of theoretical ecology. Here we review May’s work in

the light of random matrix theory, the field of mathematics

devoted to the study of large matrices whose coefficients are

randomly sampled from distributions with given character-

istics. We show how May’s celebrated ‘‘stability criterion’’

can be derived using random matrix theory, and how

extensions of the so-called circular law for the limiting dis-

tribution of the eigenvalues of large random matrix can

further our understanding of ecological systems. Our goal is

to present the more technical material in an accessible way,

and to provide pointers to the primary mathematical litera-

ture on this subject. We conclude by enumerating a number

of challenges, whose solution is going to greatly improve our

ability to predict the stability of large ecological networks.

Keywords Complexity � Eigenvalue � Food web �
Random matrix � Stability

Introduction

More than 40 years ago, Robert May, working on a prob-

lem posed by Gardner and Ashby (1970), showed that a

sufficiently large ecological network resting at a feasible

equilibrium point would invariably be unstable: arbitrarily

small perturbations of the population densities would drive

the system away from equilibrium (May 1972). May’s

article and subsequent book (May 2001) had an immense

influence on ecological theory, leading to hundreds of

published works investigating which particular features of

natural systems would violate May’s simple assumptions—

and how these violations would translate into stabilizing or

destabilizing mechanisms (Roberts 1974; Pimm 1984;

Pimm et al. 1991; McCann et al. 1998; Moore and Hunt

1988; Kondoh 2003; Neutel et al. 2007; Allesina and

Pascual 2008).

Until recently, however, May’s work had never been

extended to more complex cases than the simple random

matrix he proposed. We did so (Allesina and Tang 2012;

Tang et al. 2014) by introducing to ecology some basic

tools of Random Matrix Theory (RMT) (Bai and Silver-

stein 2009; Anderson et al. 2010). The idea of RMT is to

study the properties of large matrices whose coefficients

are sampled from specific random distributions. The birth

of modern RMT is due to the work of Eugene Wigner in

physics (Wigner 1958). Since the fifties, the field has come

a long way, and is now one of the fastest growing areas of

mathematics (Bai and Silverstein 2009). This is excellent

news for biology, as biological systems are typically very

large, and inherently ‘‘random’’: the basic parameters

regulating the growth and decay of cells, individuals,

populations, and ecosystems, are all influenced by envi-

ronmental and demographic stochasticity, and present

variation across space and time. Therefore, RMT is ideally

suited to study the fundamental behavior of large biological

systems with network structure.

The goal of this work is to review May’s contribution

and subsequent extensions in the light of RMT, and to

outline a research program that will lead to a better
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understanding of the behavior of large ecological systems.

Our hope is that most of the extensions and refinements we

outline here will be completed by the time May’s paper

turns 50.

Throughout the article, we keep the presentation of the

material very informal, to make it accessible to a wide

audience of ecologists interested in the theory of local

asymptotic stability. We provide references to the primary

mathematical literature for a formal treatment of these

ideas.

Local asymptotic stability

We start with some preliminaries on local asymptotic sta-

bility (henceforth, stability). We model an ecological

community composed of S populations as a continuous-

time dynamical system, described by a set of S autonomous

(i.e., which do not explicitly contain the time variable)

ordinary differential equations, where each equation

describes the growth rate of a population:

dXiðtÞ
dt
¼ fiðXðtÞÞ ði ¼ 1; . . .; SÞ: ð1Þ

Here, XiðtÞ represents the density of population i at time t,

the vector XðtÞ is the vector of all population densities, and

fi is a function relating the growth rate of population i to the

density of the S populations. We say that the system is at an

equilibrium point X� whenever

dXiðtÞ
dt

�
�
�
�
X�
¼ fiðX�Þ ¼ 0 ð2Þ

for all i. Hence, if it is not perturbed, the system will

remain at the equilibrium point indefinitely. In ecology, we

are interested in feasible equilibria, for which X�[ 0.

Stability analysis assesses whether infinitesimal pertur-

bations of the equilibrium can be buffered by the system.

The equilibrium is said to be locally stable if all infini-

tesimal perturbations die out eventually, and locally

unstable if there exists an infinitesimal perturbation after

which the system never goes back to the equilibrium. The

analysis is carried out by linearization of the system at the

equilibrium point. First, one builds the Jacobian matrix J,

whose elements Jij are defined as:

JijðXÞ ¼
ofiðXðtÞÞ

oXj

: ð3Þ

Therefore, the coefficients of the Jacobian matrix are

functions of the densities of the populations (X). Then, one

can substitute into the Jacobian (which is uniquely defined

for each system), the equilibrium point whose stability one

wants to evaluate (there could be many feasible equilibria).

This produces the so-called ‘‘community-matrix’’ M

(Levins 1968), defined as:

Mij ¼ Jij

�
�
X�
¼ ofiðXðtÞÞ

oXj

�
�
�
�
X�
: ð4Þ

Each equilibrium corresponds to a community matrix (note

that infinitely many systems at equilibrium can yield

exactly the same community matrix). The coefficient Mij

measures the effect of a slight increase in the population j

on the growth rate of population i. The eigenvalues of M,

which have units of time�1 and therefore measure rates,

determine the stability of the underlying equilibrium point:

if all eigenvalues have negative real parts, then the equi-

librium is stable, while if any eigenvalue has positive real

part, the equilibrium is unstable, as there is at least one

direction in which infinitesimal perturbations would drive

the system away from the equilibrium.

Local asymptotic stability is limited in scope because it

is based on linearization. First, the results hold only locally,

and in the simple case outlined here, can be applied only to

equilibria. Thus, local stability analysis has limited bearing

for populations operating out-of-equilibrium. Second,

instability does not necessarily imply lack of persistence:

populations could coexist thanks to limit cycles or chaotic

attractors, which typically originate from unstable equi-

librium points. Third, the basin of attraction of a stable

equilibrium point is difficult to measure analytically, so

that local stability holds with certainty only for infinitesi-

mal perturbations.

Given that the community matrix of an ecological sys-

tem is composed of real numbers, its eigenvalues are either

real (of the form k ¼ a), or complex forming conjugate

pairs (of the form k ¼ a� ib, where a and b are real

numbers, and i is
ffiffiffiffiffiffiffi

�1
p

). Thus, if we plot the eigenvalues

on a complex plane where the horizontal axis is to the real

axis, and the vertical the imaginary axis, the eigenvalues

are always symmetric about the real axis. The stability of

the equilibrium is exclusively determined by the real part

of the ‘‘rightmost’’ eigenvalue(s). We order the eigenvalues

according to their real part, and we denote the rightmost

eigenvalue by k1 and its corresponding real part by Rðk1Þ,
so that the equilibrium is stable whenever Rðk1Þ\0. Note

that the rightmost eigenvalue could in fact be several

eigenvalues with the same real part.

Will a large complex system be stable?

To evaluate the stability of an equilibrium, we need to

calculate Rðk1Þ, which in turn requires knowledge of the

community matrix. Then, we would need to know the exact

form of the functions fiðXðtÞÞ as well as to calculate
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precisely the equilibrium X�, both of which are required to

construct M. This means that any different set of equations,

and each equilibrium of the same set of equations, would

lead to a different community matrix.

May’s insight (May 1972) was to skip the Jacobian

matrix altogether, to consider directly the community

matrix, modeled as a large random matrix, and to attempt

estimating Rðk1Þ based on the characteristics of the ran-

dom matrix. Here we briefly review the construction of

such random matrices, and state May’s stability criterion.

In the next section, we will show how May’s result can be

derived using RMT.

For a species to be self-regulating, we need Mii\0.

This self-regulation is equivalent to setting a carrying

capacity (or other similar density-dependent mechanism)

for the population. May set all the diagonal elements

Mii ¼ �1. He then set the off-diagonal elements to 0 with

probability 1� C, and with probability C, he drew them

independently from a distribution with mean 0 and vari-

ance r2. Note that, although in the subsequent literature

this distribution is often assumed to be normal, May did

not specify a shape for the distribution (May 1972). In the

next section, we will see that this was an excellent idea, as

the actual details of the distribution do not matter in the

limit of S large (Tao et al. 2010). The only important

quantities in this case are the mean and the variance of the

distribution.

For such matrices, May claimed that the eigenvalues all

have negative real parts with very high probability

whenever:

r
ffiffiffiffiffiffi

SC
p

\1 ð5Þ

and therefore, the equilibrium is very likely to be stable

whenever the inequality is met. On the other hand, when

the inequality is not met, then the equilibrium is unstable

with high probability (Fig. 1). The 1 on the right-hand side

of the inequality descends from having �1 on the diagonal.

For matrices with �d\0 on the diagonal, the inequality

has d on the righ-hand side.

This inequality set into motion the so-called ‘‘stability–

complexity’’ debate (McCann 2000) (also known as

‘‘May’s paradox’’), given that in order to satisfy the

inequality Eq. 5 a system cannot be too large (S large), too

connected (large C), or with a large variance of the inter-

actions (large r).

Circular law and stability

May was inspired by Wigner’s work (Wigner 1958) on

symmetric matrices (for which all eigenvalues are real),

even though the matrices he studied are not symmetric. In

his article, May (1972) signaled that he was aware of the

contemporary work on the non-Hermitian (non-symmetric)

case: he stated in a footnote that the work of Metha (1967)

and Ginibre (1965) were ‘‘indirectly relevant’’.

The analog of Wigner’s ‘‘semicircle law’’ in the case of

non-symmetric matrices is known as the ‘‘circular law’’.

The circular law has a long and complicated history. It was

possibly first put forward by Ginibre (1965), studied

extensively by Girko (1985), proved by Metha (1967) for

the normal case, extended considerably by Bai (1997), and

finally proved in the most general case by Tao et al. (2010).

In its latest and more general incarnation, the circular law

can be stated as follows. Take an S� S matrix M, whose

entries are independent and identically distributed (i.i.d.)

random variables with mean zero and variance one. Then,

the empirical spectral distribution (i.e., the distribution

putting 1=S probability mass on each eigenvalue) of M=
ffiffiffi

S
p

converges to the uniform distribution on the unit disk as

S!1 (Theorem 1.10 of Tao et al. 2010).

Note that the statement does not contain any specifics on

the distribution of the coefficients: as long as the mean is

zero and the variance is one, the empirical spectral distri-

bution of the rescaled matrix M=
ffiffiffi

S
p

is expected to con-

verge to the uniform distribution on the unit disk as S gets

sufficiently large. This property is known as ‘‘universality’’

(Tao et al. 2010). To demonstrate this point numerically, in

Fig. 2 we show the eigenvalue distribution of a 1000 �

Fig. 1 Probability of stability (y-axis) as a function of r (x-axis) for

random S� S matrices whose off-diagonal coefficients are sampled

independently from the uniform distribution U½�
ffiffiffi

3
p

r;
ffiffiffi

3
p

r� with

probability C ¼ 0:5 and are set to 0 otherwise. The diagonal elements

are set to �
ffiffiffiffiffiffi

SC
p

, so that in this case the stability criterion reduces to

r\1, i.e., the transition from stability to instability should happen at

r � 1. We varied r from 0:8 to 1:2 in steps of 0:01 (points). The point

shapes indicate the size of the random matrices, with S ¼ 100 for

circles, 250 for triangles, and 500 for squares. The solid lines are the

best-fitting logistic curves. The probability of stability is estimated

using 200 randomizations for each combination of r and S. When S

increases, the transition becomes sharper, and for S very large it

would approach a step function
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1000 matrix whose entries are sampled from a normal

distribution Nð0; 1Þ (Fig. 2a) and from a uniform distri-

bution U½�
ffiffiffi

3
p

;
ffiffiffi

3
p
� (Fig. 2b), so that both distributions

have mean zero and variance 1. We plot the eigenvalues of

M=
ffiffiffi

S
p

, and show that in both cases the eigenvalues are

about uniformly distributed on the unit disk of the complex

plane.

One subtle point to consider is that the circular law only

describes the behavior of the ‘‘bulk’’ of the eigenvalues of

the rescaled matrix M=
ffiffiffi

S
p

in the limit S!1. As such,

given that in the empirical spectral distribution each eigen-

value only contributes 1=S to the density—which becomes

negligible as S!1—, the fact that the bulk converges to

the unit disk does not necessarily mean that all eigenvalues

are contained in the disk. This could greatly limit our ability

to predict the position of any single eigenvalue, including k1.

Fortunately, it has been shown (Bai and Silverstein 2009)

that if the distribution of the coefficients of M has mean

zero, variance one, and bounded (i.e., not infinite) fourth

moment, then all the eigenvalues, as S!1, are contained

in the disk. Because in biology we are always confronted

with distributions with finite moments, then we can confi-

dently assume that all the eigenvalues, for S sufficiently

large, are contained in the disk.

Hence, for sufficiently large S, all the eigenvalues of M

are approximately uniformly distributed in the disk in the

complex plane centered at ð0; 0Þ and with radius rx ¼
ffiffiffi

S
p

,

so that Rðk1Þ �
ffiffiffi

S
p

. Next, we relax the assumptions of the

(a) (c)(b)

(d) (f)(e)

Fig. 2 Circular law. a Eigenvalues of the matrix M=
ffiffiffi

S
p

, with S =

1000. The x-axis represents the real part, and the y-axis the imaginary

part of the eigenvalues (points). The coefficients of M are sampled

independently from a normal distribution Nð0; 1Þ. The eigenvalues

are approximately uniformly distributed in a disk of radius 1. b As a,

but with entries sampled from the uniform distribution U½�
ffiffiffi

3
p

;
ffiffiffi

3
p
�

(which has variance 1). c Eigenvalues of the matrix M=
ffiffiffiffiffiffi

SC
p

, where

the entries are sampled as in a with probability C ¼ 0:25, and are set

to 0 otherwise. Normalizing the matrix using
ffiffiffiffiffiffi

SC
p

yields eigenvalues

falling in the unit disk. d As c, but with non-zero coefficients sampled

with probability C ¼ 0:15 from the uniform distribution U½�
ffiffiffi

3
p

;
ffiffiffi

3
p
�.

e Eigenvalues of M, where the matrix is constructed as in c, but all the

diagonal elements are set to �d ¼ �10. When the matrix is not

normalized and has a non-zero diagonal, the eigenvalues are

approximately uniform in a disk centered at �d, and with radius

r
ffiffiffiffiffiffi

SC
p

. f) As e, but with non-zero coefficients sampled from the

uniform distribution U½�
ffiffiffi

3
p

;
ffiffiffi

3
p
�, and diagonal entries set to �5

66 Popul Ecol (2015) 57:63–75

123



circular law to derive May’s result. We start by analyzing

the case in which the variance of the entries of M is not

one.

When the variance of the i.i.d. entries is r2 [ 0, not

necessarily one, we can rescale the matrix to achieve a unit

variance by simply dividing each entry by r. Combining

this fact with the circular law, we estimate Rðk1Þ � r
ffiffiffi

S
p

when S is sufficiently large. Generally speaking, the vari-

ance of the entries, denoted by V ¼ VarðMijÞ, acts as a

scaling factor for the radius of the disk formed by the

eigenvalues of M: the radius is multiplied by an additional

factor of
ffiffiffiffi

V
p

, compared to the unit variance case.

Ecological systems are typically only sparsely con-

nected: most of the coefficients in the community matrix

are zero, and only few are non-zero. In this case, the uni-

versality of the circular law turns out to be key: we can

think of sampling the coefficients from a ‘‘zero-inflated’’

distribution, such that the coefficients are zero with prob-

ability 1� C, and with probability C are taken from a

given distribution with mean zero and variance r2. While

the mean of Mij sampled from such ‘‘zero-inflated’’ dis-

tribution is still zero, the variance is reduced to Cr2.

Consequently, the entries of M=
ffiffiffiffiffiffiffiffi

Cr2
p

have unit variance,

and thus Rðk1Þ � r
ffiffiffiffiffiffi

SC
p

, as shown in Fig. 2c–f. This

intuitive argument based on universality is confirmed by

the rigorous study of sparse matrices (Wood 2012), where

it is shown that the circular law holds if there exists some

a 2 ð0; 1� such that C is ‘‘behaving like’’ a constant mul-

tiplication of S�1þa.

We next want to consider the effect of the diagonal

entries of M on its eigenvalue distribution. As we stated

above, the diagonal elements of the community matrix M

model self-effects, and in the case of negative diagonal

coefficients, we typically refer to ‘‘self-regulation’’. Most

models for consumer–resource interactions would predict

the diagonal elements of the community matrix to be

non-positive. The diagonal of a matrix determines the

mean of the eigenvalues, due to the relation TrðMÞ ¼
PS

i¼1 Mii ¼
PS

i¼1 ki. Hence, the eigenvalues have the same

mean as that of the diagonal elements, which we denote by

�d. In May’s case, we have d ¼ 1, whereas for the circular

law, since the diagonal entries of M are also assumed to be

drawn from the same distribution as the off-diagonal

entries, the mean of the diagonal is zero.

The fact that subtracting a constant from the diagonal

elements shifts the distribution of the eigenvalue can be

easily proved by the following argument. Take a matrix A:

its eigenvalues can be obtained setting DetðkI� AÞ ¼ 0,

where I is the identity matrix, and Detð�Þ is the determi-

nant. Denote the eigenvalues of A as kðAÞi . Now take

B ¼ A� dI, i.e., a matrix that is identical to A, but with

diagonal elements Bii ¼ Aii � d. The eigenvalues of B can

be found setting to zero DetðkI� BÞ ¼ DetðkI� Aþ dIÞ
¼ Detððkþ dÞI� AÞ. As such kðAÞi ¼ kðBÞi þ d, and thus

kðBÞi ¼ kðAÞi � d: all the eigenvalues of B are equal to those

of A shifted by �d. The shape of the eigenvalue distribu-

tion is completely unaffected, but its position is shifted

horizontally.

The circular law has been studied for the case in which

all the entries (including the diagonal ones) are sampled

from the same distribution. However, numerical simula-

tions show that sampling all the off-diagonal elements from

one distribution, and all the diagonal entries from some

other distribution with mean zero and variance r2
d\1

does not qualitatively alter the results: the circular law still

holds in the S!1 limit. For finite S, we recover the same

result as long as the variance of the diagonal coefficients rd

is relatively small. When diagonal coefficients have very

large variance, we have to assess the matrices numerically,

as the result depends on the exact arrangement of the

coefficients along the diagonal (Tang et al. 2014). For

simplicity, we may set the diagonal entries of M to be

identically zero (in which case rd ¼ 0), and the eigenvalue

distribution does not deviate appreciably from the circular

law, when S is sufficiently large.

These considerations are sufficient to recover May’s

result. The off-diagonal coefficients are zero with proba-

bility 1� C, and are sampled independently from a dis-

tribution with mean 0 and variance r2 with probability C.

The diagonal coefficients are all set to �d. Then, for S

large, the eigenvalues are about uniformly distributed in a

disk centered at �d, and with radius r
ffiffiffiffiffiffi

SC
p

. For stability,

we need the rightmost eigenvalue to have negative real

part, Rðk1Þ\0. Substituting the approximation from the

circular law, we obtain Rðk1Þ �
ffiffiffiffiffiffiffiffiffiffiffi

SCr2
p

� d\0, which

becomes r
ffiffiffiffiffiffi

SC
p

\d.

Having considered the effects stemming from the vari-

ance of the off-diagonal entries, and from the distribution

of the diagonal entries, we want to assess the effect of

having a nonzero mean for the off-diagonal entries on the

eigenvalue distribution of M. This case is especially

important, since in natural systems we do not expect the

positive effects of resources on consumers to exactly offset

the negatives of consumers on resources. The setting is as

follows: with probability C, the off-diagonal coefficients

are sampled independently from a distribution of mean l
and variance r2, and they are set to zero otherwise.

Therefore, we have E ¼ E½Mij� ¼ Cl. The diagonal entries

are all �d.

Note that any matrix with constant row sum has 1 as its

eigenvector and the row sum as the corresponding eigen-

value. When M is randomly constructed with i.i.d. off-
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diagonal entries and identical diagonal entries, although the

row sum is not a constant, they have the same expectation,

i.e.,

E

X

j

Mij

" #

¼ �d þ ðS� 1ÞE½Mij� ¼ �d þ ðS� 1ÞE

ð6Þ

for any row i. When M is large, its row averages are

approximately the same due to the law of large numbers.

Thus, for sufficiently large S, one of the eigenvalues of M

will be close to the expectation of the row sum given in

Eq. 6, as confirmed by numerical simulations. Regarding

the other ðS� 1Þ eigenvalues, numerical simulations also

show that they are still closely approximated by a uniform

distribution on a disk. However, the disk has slightly shifted

to account for the fact that the mean of all eigenvalues must

still be �d. The center of the shifted disk is given by the

mean of the S� 1 values, and it can be computed sub-

tracting �d þ ðS� 1ÞE from the sum of all the eigenvalues

�dS and dividing by S� 1. We also need to recompute the

variance of the off-diagonal elements of M, which becomes

V ¼ Var½Mij� ¼ E½M2
ij� � E2 ¼ Cðr2 þ ð1� CÞl2Þ. This

means that the rightmost eigenvalue on the disk is located

approximately at �ðd þ EÞ þ
ffiffiffiffiffiffi

SV
p

, where �ðd þ EÞ is the

center of the disk and
ffiffiffiffiffiffi

SV
p

estimates its radius.

We then estimate Rðk1Þ for the nonzero mean case, when

S is sufficiently large. If l is negative (thus E\0), then

�d þ ðS� 1ÞE\0. The rightmost eigenvalue of M corre-

sponds to the rightmost point of the disk (Fig. 3a), and in

this case, we estimate Rðk1Þ � �d � E þ
ffiffiffiffiffiffi

SV
p

. If l is

positive, on the other hand, we can have two situations:

either the row sum is large enough to send an eigenvalue to

the right of the disk (Fig. 3b), or it is weak enough such that

the corresponding eigenvalue falls inside the disk (Fig. 3c).

In the first case, Rðk1Þ � �d þ ðS� 1ÞE, whereas in the

second case Rðk1Þ � �d � E þ
ffiffiffiffiffiffi

SV
p

. To consider all three

scenarios, one can write a criterion for stability that takes

into account both the eigenvalue corresponding to the row

sum and the rightmost eigenvalue on the disk.

max
ffiffiffiffiffiffi

SV
p

� E; ðS� 1ÞE
n o

\d ð7Þ

which, when writing the mean E and the variance V in

terms of C, l, and r becomes

max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SCðr2 þ ð1� CÞl2Þ
p

� Cl; ðS� 1ÞCl
n o

\d: ð8Þ

Elliptic law and stability

In the matrices above, the coefficients Mij and Mji—

expressing the effects of species i on j, and that of j on i—

are i.i.d. In ecological networks, we often want to model

pairwise interactions such as consumer–resource, mutual-

ism, and competition, in which cases Mij is not independent

from Mji. Take consumer–resource interactions: then, for

any Mij\0, representing the negative effect of the con-

sumer j on the resource i, we would expect a Mji [ 0,

measuring the positive effect of the resource on the con-

sumer. For this reason, we would like to sample directly the

coefficients in pairs, rather than each coefficient separately.

Doing so leads to the ‘‘elliptic law’’.

The elliptic law is a generalization of the circular law to

the case in which the pairs of coefficients ðMij;MjiÞ are

sampled from a bivariate distribution. A simplified state-

ment of this law is as follows. Take an S� S matrix M,

whose off-diagonal coefficients are independently sampled

in pairs from a bivariate distribution with zero marginal

means, unit marginal variances, and correlation q (i.e.,

q ¼ E½MijMji�). Then, as S!1, the eigenvalue distribu-

tion of M=
ffiffiffi

S
p

converges to the uniform distribution on an

ellipse centered at ð0; 0Þ with horizontal semi-axis of

length 1þ q and vertical semi-axis of length 1� q.

Similar to the circular law, the elliptic law has a long

history. Again, this law was conjectured early on and was

investigated by Girko (1986). This phenomenon was also

independently discovered in the physics literature (Som-

mers et al. 1988). Recently (Naumov 2012; Nguyen and

O’Rourke 2012), proofs of the universality of the elliptic

law started appearing in the mathematical literature. The

elliptic law is illustrated in Fig. 4a.

Just as for the circular law, the elliptic law can be

extended to more general cases accounting for (1) partially

connected matrices, (2) diagonal elements different from

zero, (3) off-diagonal coefficients sampled from a bivariate

distribution with non-zero marginal means, and (4) matri-

ces with diagonal �d. Suppose we are setting the off-

diagonal pair ðMij;MjiÞ to ð0; 0Þ with probability 1� C,

and with probability C we are sampling the pair from a

bivariate distribution of mean l and covariance matrix R:

l ¼
l

l

� �

; R ¼ r2 ~qr2

~qr2 r2

� �

: ð9Þ

The diagonal elements are set to �d. As before, we need to

track two eigenvalues: the one corresponding to the row

sum, and the rightmost eigenvalue on the ellipse.

To this end, we compute the relevant statistics for the

off-diagonal coefficients. The mean of the off-diagonal

coefficients is E ¼ E½Mij� ¼ Cl, their variance is

V ¼ Var½Mij� ¼ Cðr2 þ ð1� CÞl2Þ, and, finally, the cor-

relation between the pairs of coefficients is

q ¼ E½MijMji� � E
2½Mij�

Var½Mij�
¼ ~qr2 þ ð1� CÞl2

r2 þ ð1� CÞl2
: ð10Þ

68 Popul Ecol (2015) 57:63–75

123



Since each off-diagonal coefficient is equally likely to

come from either component of the bivariate distribution,

the expected row sum is �d þ ðS� 1ÞE (as for the circular

case). Again, using the same strategy illustrated above, we

find that the ellipse is centered at �d � E, and has hori-

zontal semi-axis
ffiffiffiffiffiffi

SV
p

ð1þ qÞ. Using this notation, the

criterion for stability becomes (Tang et al. 2014):

max
ffiffiffiffiffiffi

SV
p

ð1þ qÞ � E; ðS� 1ÞE
n o

\d: ð11Þ

In the first application of the elliptic law to the stability of

ecological networks (Allesina and Tang 2012), we showed

that when we model a food web in which the elements of

the non-zero pairs have opposite signs [ðþ;�Þ], then this

necessarily yields a negative correlation q, which in turn is

highly stabilizing. For example, in Fig. 4b we show the

spectrum of a matrix in which, for each non-zero pair, one

coefficient is taken from the half-normal distribution

jN ð0; 1Þj, and the other is taken from the negative half-

normal �jN ð0; 1Þj. As such, E ¼ 0, V ¼ 1 and q ¼ �2=p:

the sign-pairing produces a negative correlation, which in

turn is stabilizing. Moreover, thanks to the universality

property, any bivariate distribution with the same covari-

ance matrix would lead to identical results, as shown in

Fig. 4.

A research program

Having reviewed the contribution of May in the light of the

circular law, and having shown how his results can be

extended to the case of correlated pairs of interaction

strengths, we now turn to the work that needs to be done in

order to considerably extend the reach of these methods.

We present several semi-independent problems, which

we hope will all be solved by the time May’s article turns

50. Our goal is to circumscribe precisely enough each

problem, in order to make it ‘‘solvable’’: too often in

0

0

0

(a)

(b)

(c)

Fig. 3 a The eigenvalue distribution of a 1000� 1000 matrix M
whose off-diagonal coefficients are 0 with probability 1� C, and with

probability C are sampled from a normal distribution of mean l and

variance r2. The diagonal elements are all set to �d. In this case,

C ¼ 0:75, d ¼ 0, r2 ¼ 1=2, and l ¼ �0:1. The negative mean results

in a slight shift of the disk towards the right, and the appearance of an

eigenvalue on the left of the disk, in correspondence of the expected

row sum (small circle). The disk centered at �d þ Cl and with radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SCðr2 þ ð1� CÞl2Þ
p

, containing all other eigenvalues, is also

drawn. b As a, but with l ¼ 0:1. In this plot, the eigenvalue

determining stability is the one on the right of the disk. c As a, but

with l ¼ 0:01. In this case, the eigenvalue corresponding to the

expected row sum is contained in the disk
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ecology we are confronted with very vague questions,

whose answer is invariably ‘‘it depends’’.

Non-equilibrium dynamics

The methods above rely heavily on the linearization

around a feasible equilibrium point. However, natural

systems are believed to operate out-of-equilibrium, with

persistence of populations being achieved through more

complex dynamics, such as limit cycles or chaotic

attractors (McCann et al. 1998).

The stability criteria provide a natural bound for the

complexity that can be achieved by a system resting at

an equilibrium before reaching a bifurcation point. The

question is then whether the same guidelines would

apply to the persistence of species when it is governed

by out-of-equilibrium dynamics. This is for example

what found by Sinha and Sinha (2005) when using the

0

   Half Normal    Uniform   Bivariate Normal

(a) (b) (c)

(a) (b) (c)

Fig. 4 Elliptic law. a Top eigenvalues of M, a 1000� 1000 matrix

with zero on the diagonal and off-diagonal coefficients ðMij;MjiÞ are

sampled in pairs from the bivariate normal distribution illustrated

below, so that the marginals have mean zero, variance one and

correlation q ¼ �2=p. b As (a), but, for each pair, sampling one of

the coefficients from the half-normal distribution jN ð0; 1Þj, and the

other from a negative half-normal. Because this leads to the same

covariance matrix found in case (a), the eigenvalues have

approximately the same distribution (top), even though the coeffi-

cients have very different distributions (bottom, lighter shade for

higher density). c As (a–b), where, however for each pair ðMij;MjiÞ,
we sample one coefficient from the uniform distribution U½0; 2x�, and

the other from U½�y� x; y� x�. Setting x ¼
ffiffiffiffiffiffiffiffi

2=p
p

and

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 14=p
p

, we obtain a covariance matrix identical to cases

a–b, and thus the same ellipse

70 Popul Ecol (2015) 57:63–75

123



exponential map to model the interaction between

species.

Ultimately, this is a question about the nature of bifur-

cations in ecological systems. Much of the controversy

about ‘‘May’s paradox’’ descends from viewing instability

as being followed by a catastrophic change in species

composition. When an equilibrium point becomes unstable,

however, the system could respond in different manners: it

could start cycling, move towards another attractor, lose a

few species through a transcritical bifurcation, or experi-

ence more dramatic changes—such as in the case of a

‘‘fold’’ bifurcation. May’s results would be more of a

paradox if bifurcations were invariably to lead to large

effects on biodiversity. On the other hand, if most bifur-

cations were to have small effects on the number of spe-

cies, we could have systems persisting at the stability/

instability boundary, as hypothesized by Solé et al. (2002).

The immigration of new species would trigger limited

extinctions, setting the system again close to the bifurca-

tion. In this scenario, the stability criteria would accurately

predict the number of extant species.

The first challenge, could then be formulated as ‘‘Can

we predict the out-of-equilibrium persistence of large

ecological systems using the methods developed for local

stability? Under which conditions?’’

Clearly, a positive answer to these questions would have

strong impact on our understanding of what makes eco-

systems persistent, and on the nature of critical points in

ecological systems. Moreover, much of the work on com-

plex dynamics such as chaotic attractors and limit cycles is

largely based on numerical simulations of small- to med-

ium-sized systems, while a positive outcome of this chal-

lenge would open the door for analytic methods.

Effect of species-abundance distribution

Many authors (e.g., Kondoh 2003) considered this simple

generalized Lotka–Volterra system of equations:

dXiðtÞ
dt
¼ XiðtÞ ri þ aiiXiðtÞ þ

X

j6¼i

aijXjðtÞ
 !

ð12Þ

where the ri is the intrinsic growth (death) rate of population

i, the term aii\0 provides self-regulation, and aij models

the effect of j on the growth rate of i (including attack rates,

efficiency, etc.). This system yields a particularly simple

community matrix: Mii ¼ aiiX
�
i , and Mij ¼ aijX

�
i . Moreover,

we can choose any feasible X� and interaction matrix A, and

then solve for the ri which would make the system be at

equilibrium (ri ¼ �aiiX
�
i �

P
aijX

�
j ).

This community matrix M has a particular feature: each

element in the row i is obtained by multiplying the

corresponding element in A by X�i . Using matrix notation,

we have M ¼ diagðX�Þ � A.

Thus, this is by far the simplest case in which one can

probe the effect of species-abundance distribution on sta-

bility. The distribution of species abundances, typically

showing a large number of rare species (Magurran 2003),

remains an important problem in ecology, and this gen-

eralized Lotka–Volterra model shows that the particular

shape of the distribution is going to affect the stability of

the ecological community.

Suppose that A is a random matrix, and that the ele-

ments of X� are sampled independently from a distribution.

What is the spectrum of M? In Fig. 5, we sample the pairs

in A from a bivariate normal distribution, and then test the

effect of sampling X� from a uniform, log-normal, or log-

series distribution. In all cases, the eigenvalues of M are a

‘‘distorted’’ version of those of A. The distortion is more

marked in the log-normal and log-series cases, but the

general shapes of the spectra are quite similar. In these

cases, the elliptic law fails to predict the location of the

leading eigenvalue.

This leads to the formulation of the second challenge:

‘‘Can the eigenvalue distribution of M ¼ diagðX�Þ � A be

studied analytically? What is the effect of the distribution

of X� on stability?’’

Solving this challenge would directly connect two eco-

logical problems that are now quite separate, and could

even illuminate a causal relationship between abundance

distributions and stability.

Probably, the best tool to address this problem is rep-

resented by free probability (Hiai and Petz 2000). This

mathematical theory is concerned with non-commutative

random variables (e.g., random matrices): ‘‘free indepen-

dence’’ is the analogue of independence in classical ran-

dom variables, and many results have been derived for the

sum and product of random matrices, or the product of a

deterministic matrix and a random matrix.

Network structure

For the circular (elliptic) law to hold, the matrices must

represent a random network (i.e., if we were to connect any

two species for which Mij 6¼ 0, we would obtain an Erd}os-

Rényi random directed graph). To put it bluntly, the lion is

as likely to eat the gazelle as the gazelle is to eat the lion.

This is not what we observe in natural systems, which are

believed to be quite different from random graphs. First, in

random graphs we find that the number of connections per

species has a very concentrated distribution around the

mean, while in empirical food webs, this is not the case

(Dunne et al. 2002). Second, empirical food webs are

almost acyclic and almost interval (Williams and Martinez
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2000; Stouffer et al. 2006), two features that are not typical

in random graphs. Third, we expect natural food webs to

display modules (i.e., the species can be divided into

subsets such that within-subset connections are much more

frequent than between-subset connections—confusingly,

these subsets are called ‘‘communities’’ in the complex-

network literature) (Stouffer and Bascompte 2011), and

groups of similar species (Allesina and Pascual 2009).

Finally, it would be natural to conjecture that species

cannot interact with an infinite number of other species (the

connectance of an hypothetical ‘‘world-wide food web’’

would be much lower than that measured in local ecosys-

tems). However, for the circular law to hold (Wood 2012),

we need that SC !1 as S!1, but what if there was a

cap on the maximum number of interactions, such that

SC ! k as S!1?

We start by illustrating this latter point. Take a small

number of interactions per species (e.g., k ¼ 7), and S large

(e.g., S ¼ 1000). Then, distribute the connections to each

species in different ways. For example, in Fig. 6a, b we

build a matrix in which each species has exactly the same

number of connections (regular graph), or a very broad

degree distribution (in which few species have many in-

teractors, while many have few, such as in a power-law

distribution). In both cases, the circular law would fail to

describe the shape of the eigenvalue distribution. In the

regular graph case, the distribution is still approximately

uniform, but over a shape that looks like an astroid. In the

power-law case, although an astroid-like pattern is still

visible, the distribution is far from being uniform. These

simple simulations show that there has to be a way to

generalize the circular/elliptical law even further. Doing so

will lead to better approximations of matrices possessing a

structure similar to that of food webs.

If species live in different habitats, we expect the species

in the same habitat to preferentially interact with those

located in the same habitat, giving rise to ‘‘modules’’

(sometimes called ‘‘compartments’’). The presence of

modules must leave a mark in the eigenvalue distribution.

For example, in Fig. 6c, we plot the eigenvalue distribution

of a matrix in which there are two modules of 500 species

each. The species in the first module have a probability 0:5

of interacting with the species in their module, while

interactions with species in the other module are rare (with

probability 0:05). Similarly, the species in the second

module have probability 0:3 of interacting within-module

and 0:05 between-module. When two species interact, the

pair of interaction strengths is sampled from a bivariate

(a) (b) (c) (d)

Fig. 5 a Eigenvalue distribution of A, a random 1000� 1000 matrix

with connectance C ¼ 0:25 and non-zero pairs sampled from a

bivariate normal distribution with means zero, r ¼ 0:5 and q ¼ �0:5.

The eigenvalue distribution of M ¼ diagðX�Þ � A, where the ele-

ments of X� are sampled from different distributions, all having mean

1= logð2Þ for ease of comparison. b X� sampled from uniform

U½0; 2= logð2Þ�. c Log-normal lnNð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� logðlogð2ÞÞ
p

Þ. d Log-series

(or logarithmic series distribution) with parameter p ¼ 1=2. In all

cases, the spectrum is obtained by a ‘‘distortion’’ of the spectrum of

A. The eigenvalues are not uniformly distributed over a shape, and the

elliptic law grossly overestimates the value of Rðk1Þ
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normal with l ¼ ½0:1; 0:1�T , variance 1=4 and correlation

0. Instead of having a single eigenvalue on the right of the

ellipse, we find two, one at about the expected row mean

for the first module, and the other at the row mean of the

second module (Fig. 6c). The other eigenvalues are about

uniform in an ellipse.

Finally, several models for food web structure have been

developed (Williams and Martinez 2000; Stouffer et al.

2006; Allesina et al. 2008; Allesina and Pascual 2009). For

example, the niche model (Williams and Martinez 2000)

produces networks that are almost acyclic and interval (i.e.,

species can be arranged such that each predator consumes

adjacent prey). The niche model can reproduce most of the

characteristics observed in natural food webs. In Fig. 6d we

plot the eigenvalues of a consumer–resource matrix whose

network structure is generated by the niche model. In this

case, we observe a few complex roots with large modulus

and negative real part coming out of the ellipse predicted

by the elliptic law.

Summarizing, we can divide this third challenge in three

parts. First, ‘‘Can the circular/elliptic law be extended to

the case of very sparse matrices, for which, as S!1,

SC ! k?’’ This is going to be mathematically much chal-

lenging, especially because the ‘‘universality’’ property,

which holds for the circular law and the elliptic law, is not

going to be fulfilled in this case. However, results can

probably be obtained for particular distributions of the

coefficients, and for particular network structures.

Solving this challenge would have consequences

extending well beyond biology. Take for example Face-

bookr: in 2008 there were 56 million users, and the

average number of friends was about 76, while in 2011 the

number of users increased tenfold, while the average

number of friends grew merely to 169 (Backstrom et al.

2012): if all people in the world were to join the social

network, what would be the average number of friends? In

this case, extending the elliptic law to the case of very

sparse and structured matrices could for example be used to

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 6 Effect of network structure on eigenvalue distribution. Top

eigenvalue distribution for a 1000� 1000 matrix. Bottom the network

structure is illustrated by plotting the 50� 50 adjacency matrix

(where a black square denotes interaction) built in the same way as in

the corresponding top panel. a Regular graph structure. The

interactions are assigned such that each column and row contains

exactly k ¼ 7 interactions. The non-zero coefficients are sampled in

pairs from a bivariate normal distribution with means zero, variances

1=4 and correlation 0. b As a), but with the adjacency matrix

generated such that the degree distribution follows a power-law (in

which few species have many interactions, and many have few). c A

matrix in which the species are partitioned into two modules, and

interactions are more frequent within module than between modules.

The non-zero coefficients are sampled from a bivariate normal

distribution with means 0:1, variances 1=4 and correlation 0. d Matrix

constructed according to the niche model. For each non-zero element

Kij of the adjacency matrix, the coefficients ðMij;MjiÞ are sampled

from the bivariate normal distribution with means ð�0:2; 0:1Þ,
variances 1=4 and correlation �0:5
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model the spread of rumors (or malicious software) on the

social network (Wang et al. 2003).

The second part of the challenge deals with groups of

similar species (species groups) or spatial/temporal clusters

of species (modules): ‘‘What is the effect of modules and

groups on stability?’’ The supposedly stabilizing effect of

modules was put forward early on (Pimm 1979), but it is

now time to revisit it exploiting the new tools provided by

RMT.

The third and last part of the challenge deals directly

with models for food web structure: ‘‘Can we write sta-

bility criteria for consumer–resource matrices (i.e., where if

Mij [ 0, then Mji\0) whose network structure (i.e., the

position of the negative/positive coefficients) is determined

by a popular model for food web structure?’’ This third

part, although mathematically quite challenging, would

have the most direct application to food web theory.

Beyond stability

RMT could have many other applications in ecology.

For example, recently ecologists recognized the impor-

tant role of the transient dynamics displayed by ecological

communities after disturbance (Hastings 2001). Neubert

and Caswell (1997) showed that stable equilibria could be

classified as reactive or nonreactive depending on whether

small perturbations can (reactive) or cannot (non reactive)

be amplified before decaying. Interestingly, while stability

(will perturbations eventually subside?) is determined by

the eigenvalues of M, reactivity (are perturbations initially

amplified?) is controlled by that of the ‘‘Hermitian (sym-

metric) part’’ of the community matrix M, defined as

H ¼ ðMþMTÞ=2. Because also H is a random matrix, it is

a matter of simple algebra to derive ‘‘reactivity criteria’’

(Tang and Allesina 2014). Transient dynamics can be

described by other quantities related to matrices derived

from M. For example, the maximum amplification of

perturbations is controlled by the matrix exponential eM ¼
P1

0 Mk=k! (Neubert and Caswell 1997), which could also

be attacked using RMT.

Besides transient dynamics of ecological communities,

random matrices could play an important role in providing

null models for other ecological disciplines. For example,

take metacommunities. We have a landscape, and habitable

patches are scattered in the landscape. These patches are

connected by dispersal, forming a dispersal matrix, whose

coefficients are typically functions of the distance between

patches. Hanski and Ovaskainen (2000) have shown that

the relationship between the leading eigenvalue of the

dispersal matrix (dubbed the ‘‘metapopulation capacity’’)

and the extinction rate for the population determine

persistence. As such, one could use RMT to generate the

expected persistence of the metapopulation when patches

are randomly scattered in the landscape.

These ‘‘occupancy models’’ for metapopulations, in

which the quantity being modeled is the presence/absence

of a species in a patch, share many similarities with sus-

ceptible-infective-susceptible (SIS) models for infectious

diseases. Take an SIS model unfolding on a network:

individuals are connected by infection rates (bij), forming a

‘‘contact matrix’’: again, the ratio between the leading

eigenvalue of the contact matrix and the recovery rate

strongly influence the occurrence and the size of epidemics

(Van Mieghem and Cator 2012). Also in this case, RMT

could help understanding which are the drivers of epi-

demics occurring on networks.

Conclusions

After more than 40 years, two of the main intuitions of

May’s original article are still highly relevant for theoret-

ical biology. First, biological systems are large: the gene-

regulatory network of yeast is composed of about 6,000

genes, the richest ecosystems contain more than 10,000

species, and the contact network for the spread of influenza

in the Chicago area would count millions of nodes. Second,

the interactions between the genes/organisms/populations

vary in time and space, and are highly dependent on

environmental conditions. As such, there is not ‘‘a net-

work’’ we can measure, but rather a statistical ensemble of

networks sharing similar characteristics.

RMT is ideally suited to deal with this problem. We

can introduce relevant rules for the construction of the

random matrix and analytically probe the consequences

of each constraint. Clearly, there are a number of

important limitations that need to be overcome in order

to make this approach more biologically relevant, and

we have listed the more pressing issues in the preceding

sections. For each obstacle we can overcome, we can

incorporate into our matrices more and more biological

realism, and thus construct better and more cogent null-

models.
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