
ORIGINAL ARTICLE

Combining data from 43 standardized surveys to estimate
densities of female American black bears by spatially
explicit capture–recapture

Eric J. Howe • Martyn E. Obbard •

Christopher J. Kyle

Received: 18 October 2012 / Accepted: 30 May 2013 / Published online: 28 June 2013

� The Society of Population Ecology and Springer Japan 2013

Abstract Spatially explicit capture–recapture (SECR)

models are gaining popularity for estimating densities of

mammalian carnivores. They use spatially explicit

encounter histories of individual animals to estimate a

detection probability function described by two parame-

ters: magnitude (g0), and spatial scale (r). Carnivores

exhibit heterogeneous detection probabilities and home

range sizes, and exist at low densities, so g0 and r likely

vary, but field surveys often yield inadequate data to detect

and model the variation. We sampled American black

bears (Ursus americanus) on 43 study areas in ON, Can-

ada, 2006–2009. We detected 713 animals 1810 times;

however, study area-specific samples were sometimes

small (6–34 individuals detected 13–93 times). We com-

pared AICc values from SECR models fit to the complete

data set to evaluate support for various forms of variation

in g0 and r, and to identify a parsimonious model for

aggregating data among study areas to estimate detection

parameters more precisely. Models that aggregated data

within broad habitat classes and years were supported over

those with study area-specific g0 and r (DAICc C 30), and

precision was enhanced. Several other forms of variation in

g0 and r, including individual heterogeneity, were also

supported and affected density estimates. If study design

cannot eliminate detection heterogeneity, it should ensure

that samples are sufficient to detect and model it. Where

this is not feasible, combing sparse data across multiple

surveys could allow for improved inference.

Keywords Carnivore � Density estimation � Individual

heterogeneity � Noninvasive sampling � Ontario � Ursus

americanus

Introduction

Reliable information about population size is fundamental

to the study of ecology and is necessary for effective

conservation and management of wildlife populations.

Bears and other large and medium-sized mammalian car-

nivores are notoriously difficult to enumerate because they

range widely, occur at low densities, exhibit heterogeneous

probabilities of detection and movement rates, and are

often secretive or elusive (Garshelis 1992; Karanth 1995;

Boulanger et al. 2004; MacKenzie et al. 2005; Kéry et al.

2011; Boitani and Powell 2012). Nevertheless, many car-

nivore populations are managed intensively because they

pose conservation concerns, come into conflict with

humans, or are subject to sport harvest. The potential to

identify individuals from photographic or genetic detec-

tions has enabled researchers to collect sufficient capture–

recapture (C–R) data to estimate population size from data

collected over days or weeks, whereas multiple years of

live-capture data were required previously (Karanth 1995;

Woods et al. 1999). Estimates of population density are

often preferred over estimates of population size because

the former is independent of scale and comparable across
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studies. However, where occupied habitat extends beyond

the study area, population size cannot be reliably converted

to density because the area sampled is unknown (Dice

1938; White et al. 1982; Efford 2004). This is particularly

problematic in studies of wide-ranging species including

most mammalian carnivores (White et al. 1982; Garshelis

1992; Boulanger et al. 2002; Foster and Harmsen 2012).

Spatially explicit capture–recapture (SECR) is a

recently-developed modeling framework for estimating

animal density directly from spatially explicit C–R data

collected on geographically open study areas, without

estimating the area sampled (Efford 2004; Borchers and

Efford 2008; Gardner et al. 2009). Density is estimated as

the intensity of a spatial point process where the points are

the unobserved central locations of home ranges, or

‘‘activity centers’’ (Efford 2004; Borchers and Efford 2008;

Gardner et al. 2009). The models can accommodate dif-

ferent types of traps including live-traps, camera traps, and

passive DNA sampling devices (Efford et al. 2009). They

assume demographic closure, independence of captures or

detections, and that individuals occupy home ranges, the

central locations of which are independent and fixed during

sampling (Efford 2004; Gardner et al. 2009). Probability of

detection is modeled as a decreasing function of the dis-

tance between traps and the unobserved activity centers

(Efford 2004; Gardner et al. 2009). The simplest model has

two parameters: the magnitude (g0) and spatial scale (r) of

a half-normal spatial detection probability function; g0 may

be thought of as the probability of detection where a trap is

placed at an individual’s activity center (i.e., at distance

zero), and r and the shape of the detection probability

function describe how detection probability declines with

increasing distance between home range center locations

and traps (Efford 2004). By treating spatially variable

exposure to traps explicitly, SECR models account for a

major source of individual heterogeneity in the detection

process (Garshelis 1992; Boulanger et al. 2004; Efford

2004; Royle et al. 2009). Furthermore, both g0 and r may

be described as functions of covariates.

Several researchers recently concluded that SECR esti-

mates of carnivore density were preferable to those

obtained by dividing estimates of population size by esti-

mates of the area sampled (Gardner et al. 2009; Royle et al.

2009, 2011; Obbard et al. 2010; Sollmann et al. 2011;

Gerber et al. 2012; Noss et al. 2012). However, due to both

the above-described characteristics of carnivores, and the

fact that many factors and constraints influence study

design, sample sizes and detection probabilities obtained

from surveys of mammalian carnivores are frequently

insufficient to detect and model variation in detection

probabilities (McKelvey and Pearson 2001; Boulanger

et al. 2002; Proctor et al. 2010; Doherty et al. 2012; Foster

and Harmsen 2012; Gervasi et al. 2012; Sollmann et al.

2012). Consequently, most SECR studies published to date

presented results from only one or a few simple models,

often fit to sparse data (Gardner et al. 2009, 2010; Royle

et al. 2009, 2011; Kéry et al. 2011; Kalle et al. 2011;

O’Brien and Kinnaird 2011; Sollmann et al. 2011; Gray

and Prum 2012; Noss et al. 2012). Therefore, the sensitivity

of SECR density estimates to variation in the parameters of

the detection probability function has not been adequately

assessed using empirical data. This is problematic because

large carnivores frequently exhibit heterogeneous detection

probabilities, including among individuals, beyond what

can be explained by variable exposure to traps (Noyce et al.

2001; Boulanger et al. 2004; Ebert et al. 2010; Gardner

et al. 2010; Obbard et al. 2010; Sollmann et al. 2011).

Furthermore, densities estimated from sparse data may not

be sufficiently precise to inform management (Ebert et al.

2010; Foster and Harmsen 2012).

One approach to improving estimator performance

where data from individual surveys are inadequate to esti-

mate detection probabilities, but data from multiple surveys

are available, is to combine the data and estimate those

probabilities from all surveys simultaneously (Boulanger

et al. 2002; MacKenzie et al. 2005; White 2005). This

provides more power to detect and model variation among

individuals and sampling occasions. Rather than assuming

common detection probabilities across surveys, support for

models representing different levels of aggregation may be

compared using model selection criteria. One goal of model

selection becomes the identification of a model of variation

among surveys that describes the data reasonably well, but

allows some aggregation to improve precision (Boulanger

et al. 2002; MacKenzie et al. 2005; White 2005; Conn et al.

2006). With more aggregation, precision is enhanced at the

expense of possible bias (White 2005).

We sampled female American black bears (Ursus

americanus) on 43 study areas across ON, Canada

(2006–2009), with the aim of providing local density

estimates for management purposes. The main objective of

the current study was to evaluate support for various forms

of variation in the spatial detection probability function,

and assess the effect of modeling them on density esti-

mates. In particular, we sought a parsimonious model of

variation among study areas that would allow us to esti-

mate local densities more precisely by aggregating the

data. We compared AICc values among candidate SECR

models that allowed g0 and r to vary among study areas,

individuals, sampling occasions, and in response to initial

detection, to parameter-reduced models, including models

which combined data across all study areas, or subsets of

study areas in similar habitat, to estimate detection

parameters. We expect these results to be of interest to

those attempting to enumerate large carnivores because

reliable estimates are required to inform management, but
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obtaining sample sizes necessary to detect and model het-

erogeneity in the detection function and yet estimate den-

sity with reasonable precision from individual C–R surveys

of large carnivores is challenging, and not always feasible.

Methods

Field sampling

We conducted standardized noninvasive capture–recapture

surveys of black bears on 43 study areas in the Boreal and

Great Lakes-St. Lawrence (GLSL) forest regions (Rowe

1972) of ON, Canada (Fig. 1) during 2006–2009. Different

study areas were sampled each year. During spring and

early summer, black bears typically occupy stable home

ranges and focus their activities within a smaller home

range ‘‘core area’’; however, they frequently make long-

distance excursions from their breeding range when energy

rich foods such as berries and nuts become available,

typically beginning in mid-July (Rogers 1987; Powell et al.

1997; Schenk et al. 1998; Noyce and Garshelis 2011). We

therefore sampled from late May through June (the latest

any samples were collected was 06 July) in order to meet

the SECR assumptions of demographic closure and static

home range center locations (Efford 2004). Most study

areas had been established previously for population

monitoring by bait-station index lines in habitat represen-

tative of the respective management unit (McLaren et al.

2005). On each study area, we snagged bear hair at 20–25

barbed wire hair corrals (Woods et al. 1999), except on

three study areas where 15, 17, and 18 corrals were used.

Corrals were spaced approximately 2 km apart in curvi-

linear arrays along secondary roads, 20–200 m from the

road itself. We baited corrals with 3 partially-opened tins

of sardines in oil suspended from a board nailed 2.5 m high

on a tree [2 m from any point along the wire. We col-

lected samples and re-baited corrals one week later, and

repeated this for a total of 5 sampling occasions on 36

study areas; bears were sampled on only 4 occasions on 4

study areas, and on six occasions on 3 other study areas.

We air dried hair samples in paper envelopes and stored

them at room temperature until DNA extraction.

DNA analysis

We did not attempt to extract DNA from samples with

fewer than 5 guard hairs with visible roots; [90 % of

samples were processed using 10–15 hairs to minimize

technical artifacts from low template DNA. When the

number of samples exceeded what we could analyze with

available resources, we excluded samples collected from

adjacent barbs at the same trap on the same occasion.

Individuals were identified from their microsatellite geno-

types at 10–15 polymorphic loci (Paetkau and Strobeck

1994; Paetkau et al. 1995; Taberlet et al. 1997; Kitahara

et al. 2000), and sex was determined from amplification of

a region of the Amelogenin gene (Ennis and Gallagher

1994). For more detailed DNA extraction, amplification,

and profiling methods and criteria for ascribing samples to

individuals see Obbard et al. (2010) and Pelletier et al.

(2012).

Fig. 1 Map of the greater study area in ON, Canada. The Great Lakes

are shaded dark grey. Trap locations are marked with black dots; at

this scale traps arrays appear as thick black lines surrounded by gray

shading which depicts 10 km buffers around all traps within each

study area. Rowe’s (1972) Forest region boundary between Boreal

and Great Lakes-St. Lawrence Forests is depicted as a 20 km-thick

light grey line. Thinner, darker grey lines show Ecoprovince

boundaries between the Mid-Boreal Shield in the north, and each of

the Lake of the Woods and Southern Boreal Shield to the south

(Marshall et al. 1998)
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Data analysis

We excluded males from statistical analyses because we

were concerned that our study areas might be too small to

estimate densities of male bears reliably as the size of their

home ranges could approach or exceed that of our study

areas (Alt et al. 1980; Koehler and Pierce 2003; Efford

2011; Marques et al. 2011). We assumed that the height of

the barbed wire strand (*50 cm) would exclude cubs and

yearlings from the sample (Woods et al. 1999).

We generated study area-specific integration meshes

(see Borchers and Efford 2008, Efford et al. 2009) that

extended 10 km around all traps on each study area and

excluded points that would have fallen in lakes. Mesh

points were spaced 0.8–1.0 km apart. We verified that the

extent and resolution of our integration meshes were suf-

ficient to avoid bias by fitting SECR models to data from

two study areas with [25 recaptures and movement rate

estimates near the minimum and maximum across study

areas, while varying the extent of the mask and the spacing

of mask points. Extents ranged from 5–15 km in incre-

ments of 2.5 km; the spacing of points ranged from

0.4–1.2 km in increments of 0.2 km. Density estimates and

their coefficients of variation were insensitive to increases

in the extent of the mesh beyond 10 km, or with reductions

in point spacing below 1.0 km.

We analyzed data from all study areas simultaneously.

In cases where study areas were\20 km apart, we verified

that no individuals were detected on [1 study area. Study

areas were modeled as groups or ‘‘sessions’’ in a multi-

session analysis that allowed data to be pooled across study

areas to estimate g0 and r (Efford et al. 2009). We assumed

the total number of individuals was binomially-distributed

on each study area. We estimated g0 and r by maximizing

the conditional likelihood for proximity detectors, and

estimated density as a derived parameter using a Horvitz–

Thompson-like estimator (see Borchers and Efford 2008;

Efford et al. 2009). We used the half-normal form of the

detection function, which we suspected would reasonably

approximate the above-described home range characteris-

tics of female black bears.

We defined a set of candidate models of variation in g0 and

r based on previously published information about the

probabilities of detection, home ranges, and movements of

black bears (Garshelis and Pelton 1980; Rogers 1987; Powell

et al. 1997; Noyce et al. 2001; Koehler and Pierce 2003;

Mowat et al. 2005; Obbard et al. 2010). We used the small-

sample corrected version of Akaike’s Information Criterion

(AICc; Hurvitch and Tsai 1989) to identify the most parsi-

monious models in the candidate set. We assessed support

for general and trap-specific responses to prior detection

affecting g0, (hereafter denoted b and bk, respectively) and

differences in g0 among individuals (h), years, and study

areas. For r, we considered differences among individuals,

sampling occasions (t), years, study areas, and 4 different

patterns of variation among habitat types. Individual heter-

ogeneity was modeled using two-point finite mixture dis-

tributions (Pledger 2000; Borchers and Efford 2008). Three

of the habitat type covariates used Rowe’s (1972) Forest

Regions to ascribe study areas to different habitat types; the

fourth used Ecoprovince boundaries (‘‘ECOP’’; Marshall

et al. 1998; see Fig. 1). Habitat productivity for black bears is

superior in eastern GLSL than Boreal Forests (Rowe 1972;

Kolenosky 1990; Obbard and Howe 2008). We hypothesized

that r would be smaller in GLSL than Boreal Forest Regions,

and might also vary between eastern and western GLSL

Forests, and that bears in the Lake of the Woods and Southern

Boreal Shield Ecoprovinces might have lower r than those

in the Mid-Boreal Shield. The simplest habitat covariate

(FR2) had two levels, and discriminated only between Boreal

and GLSL Forests. FR3 further separated eastern from

western GLSL forests. FR3I combined eastern and western

GLSL forests, but included a separate ‘‘intermediate’’ level

for study areas that fell within 10 km of the Forest Region

boundary. We fit a total of 76 models. The most constrained

models in the candidate set were the null model and models

with each form of variation in isolation. The most general

model had 173 parameters and allowed for study area-spe-

cific g0 and r, and study area-specific differences among

individuals (equivalent to fitting a model with h affecting g0

and r to each study area-specific data set). The most general

additive model included differences in g0 among individuals,

after initial detection, and among study areas, and differ-

ences in r among sampling occasions, individuals and study

areas. Model fitting was prohibitively time-consuming on a

stand-alone desktop computer. To reduce the total number of

models, we initially emphasized the simplest habitat covar-

iate, and later crossed other habitat covariates with the best-

supported models of variation among individuals, years,

sampling occasions, and in response to initial detection. We

used the facilities of the high performance computing net-

work ‘‘SHARCNET’’ (http://www.sharcnet.ca) to fit many

models simultaneously. Integration meshes were generated

using program DENSITY (version 4.4.5.1; Efford et al.

2004; Efford 2010); all other analyses were performed in the

R programming environment version 2.15 (R Development

Core Team 2012) using the ‘‘secr’’ package version 2.4.0

(Efford 2012).

Results

Field sampling and DNA analysis

The number of hair samples collected on each study area

ranged from 104 to 860, from which we obtained 38 to 352
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genetic detections (including multiple detections of the

same individual at the same trap and occasion; Table 1).

The number of unique females detected on each study area

ranged from 6 to 34, and the total number of detections of

females included in spatially explicit encounter histories

(i.e., excluding multiple detections of the same individual

at the same trap and occasion) ranged from 13 to 93

(Table 1). The mean of maximum distances moved among

traps ranged from 881 to 5459 m, and the mean distance

between successive detection locations ranged from 352 to

2677 m (Table 1).

Data analysis

Models of detection heterogeneity that minimized AICc

included a trap-specific response to initial detection and

differences among individuals and years affecting g0, and

differences in r among individuals, years, sampling

occasions, and habitat types (Table 2). Model selection

uncertainty was limited to whether r differed among years,

and which habitat type covariate best approximated vari-

ation in r among study areas (Table 2). Models with study

area specific g0 and r were not supported (Table 2). The

top-ranked model that excluded h in either parameter

(DAICc = 108) had the same structure otherwise as the

top-ranked model. The most general model, with study

area-specific g0, r, and effects of h, had DAICc = 409.

Variance calculation failed when this model was fit, and

parameter estimates for some study areas were not identi-

fiable or were at a boundary. The null model ranked last

(DAICc = 439).

Densities estimated from the top 8 AICc-ranked models

(Rwi = 1.00) were similar in magnitude (mean D̂ across

study areas estimated from 1st–8th ranked models,

respectively = 11.9, 12.2, 11.2, 11.0, 9.8, 9.4, 12.1, and

11.3), precision (mean CV across study areas = 0.27 from

all 4 models that included differences in r among years,

and = 0.26 from models that did not), and the pattern of

variation among study areas (Spearman’s rank correlation

coefficients from pairwise comparisons of D̂ ranged from

0.903 to 0.986). Correlations among estimates from dif-

ferent models were strongest, ranging from 0.976 to 0.986,

for the top 4 AICc-ranked models (Rwi = 0.94). D̂ from

supported models ranged from 3 to 30 females aged

[1 year/100 km2 and was generally higher in more pro-

ductive habitat, but variable in eastern GLSL forests

(Fig. 2).

Densities estimated from high-ranking models were

similar because these models all had a similar structure.

However, D̂ varied when different forms of variation in g0

and r were modeled (Table 3). Individual heterogeneity

increased D̂ and reduced its precision, but the effect size

was smaller where other forms of variation were also

included in the estimating model (Table 3). Forest region

and year effects altered the pattern of variation in D̂ among

study areas. For example, lower r in GLSL Forests than in

Boreal Forests was associated with higher D̂ in the former

(Tables 3, 4). Differences in g0 among years reduced D̂ on

study areas sampled in all years other than 2006, and dif-

ferences in r among years increased D̂ in 2006 relative to

estimates from models without year effects (Table 3).

Models with study area effects yielded density estimates

which differed considerably from estimates from supported

models in some cases (Table 3), and were relatively

imprecise (mean CV across study areas from the highest-

ranking model with study area effects on either parame-

ter = 0.39). Effects of initial detection on g0, and variation

in r among sampling occasions had little effect on D̂ here

(Table 3).

Parameter estimates from high-ranking models showed

that g0 increased in response to initial detection at the same

trap (Table 4). Animals traveled farther to encounter traps

in Boreal than GLSL forests; bears on study areas within

10 km of the forest region boundary had intermediate r
(Table 4). Parameter estimates from the highest-ranked

models with ECOP and FR3 covariates indicated that r
was lower in the Lake of the Woods Ecoprovince than in

the Southern Boreal Shield, and in Western than Eastern

GLSL Forests (b SBS = 0.089, SE 0.061, b MBS = 0.335,

SE 0.086; b GLSL E = -0.069, SE 0.063, b GLSL

W = -0.187, SE 0.078). Bears also traveled farther on

successive sampling occasions during the first 5 weeks of

sampling (the estimate of r on occasion 6 was based on

data from only 3 study areas and was imprecisely esti-

mated; Table 4). Models with differences in r among years

indicated that bears did not travel as far to encounter traps

in 2006 as in other years (Table 4) Year effects indicated

and that g0 was highest in 2008 and lowest in 2006

(Table 3). Year effects were imprecise except in the case of

lower g0 in 2006 (Table 4).

Approximately 13 % of individuals were assigned to the

2nd mixture of individuals with higher g0 and r than other

individuals (Table 4). Point estimates of g0 from the top

AICc-ranked model for the first mixture of individuals were

0.29 in 2008 and 0.10 in 2006, but increased to 0.52 and

0.23 respectively after initial detection (Table 4). Estimates

of the same parameters for the second mixture of individ-

uals were 0.64 in 2008 and 0.34 in 2006, and 0.82 and 0.56

after initial detection. Point estimates of r on occasion 5 in

2008 for the first mixture of individuals were 1395 m in

GLSL forests, 1876 m in Boreal forests, and 1539 m on

study areas within 10 km of the Forest Region boundary;

concurrent estimates for the second mixture were 2040,

2743, and 2250 m (Table 3).
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Table 1 Summary of field sampling and DNA profiling of black

bears in ON, Canada, 2006–2009, ordered by forest region and year

of sampling, showing the number of barbed wire hair corrals (traps)

set, the number of hair samples collected, the number of reliable

individual genotypes obtained, the number of unique females

detected, total detections (excluding multiple detections of the same

individual at the same trap and occasion), the mean of the maximum

distances moved by each individual (MMDM), and the mean

distance between successive detection locations, pooled over

individuals (�d)

Study area Years Forest region Ecoprovince Traps Samples Genotypes Females Detections MMDM �d

2 2006 Boreal MBS 25 461 185 19 38 2149 1138

29 2006 Boreal MBS 20 370 151 25 38 2887 769

18(1) 2006 Boreal MBS 25 289 119 9 24 2297 1468

30 2007 Boreal MBS 20 178 119 8 13 3298 1861

19 2008 Boreal MBS 25 680 216 18 66 1493 1149

16C(1) 2008 Boreal MBS 20 633 262 21 67 1357 1357

21A 2008 Boreal MBS 25 413 142 11 35 2810 1041

28(1) 2008 Boreal MBS 22 221 87 12 29 2343 916

28(2) 2008 Boreal SBS 21 280 96 13 35 985 657

22 2009 Boreal MBS 20 516 280 11 19 3232 743

23 2009 Boreal MBS 20 293 143 15 31 2990 1495

33 2009 Boreal MBS 23 495 192 15 43 1625 587

16B 2009 Boreal MBS 17 329 176 13 46 1999 937

16C(2) 2009 Boreal MBS 20 448 155 12 27 2187 1640

18(2) 2009 Boreal MBS 25 366 183 19 43 2124 735

21B 2009 Boreal MBS 20 530 311 29 93 1056 493

38 2006 Boreal* SBS 20 235 92 10 20 3128 2677

12B 2006 Boreal* LW 25 483 231 26 60 4001 1051

12A 2008 Boreal* LW 25 636 243 22 57 2602 1293

28(3) 2008 Boreal* SBS 23 383 131 20 50 2648 851

35(2) 2008 Boreal* SBS 20 514 352 12 58 2647 894

13(2) 2009 Boreal* MBS 20 457 268 34 84 2625 745

39 2006 GLSL E* SBS 20 104 47 9 17 1997 880

40 2006 GLSL E SBS 25 454 173 20 48 2792 1091

42 2006 GLSL E SBS 20 124 53 15 23 3096 1098

47 2006 GLSL E SBS 25 337 173 26 75 1723 559

49 2006 GLSL E SBS 25 238 115 21 34 2984 1030

60 2006 GLSL E SBS 20 192 94 14 30 2135 686

61 2006 GLSL E SBS 18 320 146 17 41 3972 1173

52(1) 2006 GLSL E SBS 20 167 83 12 27 3656 833

52(2) 2006 GLSL E SBS 20 269 114 14 29 3477 1043

36 2007 GLSL E SBS 23 227 157 16 50 4072 1372

37 2007 GLSL E SBS 25 403 316 23 38 2362 1083

41 2007 GLSL E SBS 22 399 235 21 55 5459 1608

56 2007 GLSL E SBS 20 278 199 8 35 3192 761

54 2008 GLSL E SBS 20 118 70 6 14 2539 1096

35(1) 2008 GLSL E SBS 25 150 113 12 27 1916 877

52(3) 2008 GLSL E SBS 15 242 161 13 43 1811 798

58 2009 GLSL E SBS 20 143 38 7 16 2278 979

11B 2006 GLSL W LW 20 410 199 23 49 4800 885

11A 2007 GLSL W LW 25 213 151 9 22 1217 568

13(1) 2007 GLSL W LW 20 543 260 29 84 881 352

9B 2008 GLSL W LW 25 591 327 24 77 2921 1164
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Discussion

Capture–recapture surveys of mammalian carnivores fre-

quently yield samples that provide insufficient information

to select among candidate models or to estimate abundance

precisely from models that allow for important forms of

variation (Norris and Pollock 1995; Boulanger et al. 2002,

2004; Link 2004; Royle et al. 2009; Ebert et al. 2010; Kéry

et al. 2011; Marucco et al. 2011; O’Brien and Kinnaird

2011; Sollmann et al. 2011; Doherty et al. 2012; Foster and

Harmsen 2012; Gray and Prum 2012). Small samples are a

consequence of both the biological characteristics of

carnivores, and the fact that study designs and their ability

to provide moderate to large samples are frequently con-

strained by factors such as habitat fragmentation, small

population size, limited knowledge of the population under

study, the need to place traps in specific habitats or along

known travel corridors to maximize detection probabilities,

conflicting research priorities, or limited funding (Boitani

and Powell 2012). Sharing information across surveys

increases power to detect heterogeneity and improves

precision at the possible expense of bias (White 2005;

Anderson 2008). Our results demonstrate empirically that

by combining sparse data from multiple standardized

Table 2 AICc model selection criteria among the top 21-ranked models of variation in the spatial detection function for female black bears aged

[1 year sampled on 43 study areas in ON, Canada, 2006–2009

Model Parameters LL AICc DAICc wi

g0(bk ? h ? yr)r(t ? h ? yr ? FR3I) 19 -4962.1 9963.3 0.0 0.45

g0(bk ? h ? yr)r(t ? h ? yr ? ECOP) 19 -4962.7 9964.5 1.1 0.25

g0(bk ? h ? yr)r(t ? h ? FR3I) 16 -4966.0 9964.9 1.5 0.21

g0(bk ? h ? yr)r(t ? h ? ECOP) 16 -4968.1 9969.1 5.7 0.03

g0(bk ? h ? yr)r(t ? h ? yr ? FR2) 18 -4966.2 9969.3 6.0 0.02

g0(bk ? h ? yr)r(t ? h ? FR2) 15 -4969.4 9969.5 6.2 0.02

g0(bk ? h ? yr)r(t ? h ? yr ? FR3) 19 -4965.6 9970.4 7.1 0.01

g0(bk ? h ? yr)r(t ? h ? FR3) 16 -4969.4 9971.5 8.2 0.01

g0(bk ? h)r(t ? h ? yr ? FR2) 15 -4976.0 9982.6 19.3 0.00

g0(bk ? h)r(t ? h ? FR2) 12 -4981.9 9988.2 24.9 0.00

g0(bk ? h ? yr)r(t ? h ? SA) 56 -4935.7 9993.1 29.8 0.00

g0(bk ? h)r(t ? h ? SA) 53 -4940.6 9995.9 32.5 0.00

g0(bk ? h)r(t ? h) 11 -4988.2 9998.7 35.4 0.00

g0(bk ? h ? SA)r(t ? h ? FR2) 54 -4942.4 10001.7 38.4 0.00

g0(bk ? h ? SA)r(t ? h ? yr ? FR2) 57 -4941.1 10006.4 43.0 0.00

g0(b ? h ? yr)r(t ? h ? yr ? FR2) 18 -4989.3 10015.6 52.3 0.00

g0(h ? yr)r(t ? h ? yr ? FR2) 17 -4990.6 10016.0 52.7 0.00

g0(bk ? yr)r(t ? h ? yr ? FR2) 17 -4992.6 10020.0 56.7 0.00

g0(bk ? yr)r(t ? h ? yr ? FR2) 17 -4992.6 10020.0 56.7 0.00

g0(bk ? h)r(h ? FR2) 7 -5004.6 10023.4 60.1 0.00

g0(bk ? h ? SA)r(t ? h ? SA) 95 -4903.3 10026.1 62.8 0.00

ECOP, FR2, FR3, and FR3I are categorical habitat covariates (see ‘‘Methods’’ and Fig. 1 for details)

LL log likelihood, wi AICc weight. In model names, bk a response to initial detection at the same trap, h individual heterogeneity, yr year of

sampling, t differences among sampling occasions

Table 1 continued

Study area Years Forest region Ecoprovince Traps Samples Genotypes Females Detections MMDM �d

Mean 352 171 17 42 2599 1033

SD 154 79 6.8 20 983 413

Study areas are designated by Wildlife Management Unit; numbers in parentheses appear where bears were sampled on more than one study area

within a Unit. Forest regions were Boreal Forests and Great Lakes-St. Lawrence Forests in each of eastern and western ON (GLSL E and GLSL

W) based on Rowe (1972). Ecoprovinces follow Marshall et al. (1998)

MBS mid-boreal shield, SBS southern-boreal shield, LW lake of the woods

* The study area was within 10 km of the Forest region boundary

Popul Ecol (2013) 55:595–607 601

123



surveys, researchers may be able to detect and model forms

of variation in SECR model parameters that are likely to be

present in C–R data from carnivores, and yet estimate

densities with reasonable precision.

Snagging hairs of American black bears on 5 occasions

on our curvilinear arrays of 15–25 traps yielded samples

that were insufficient to model heterogeneity or estimate

density precisely enough to inform management on some

study areas. Furthermore, we sometimes obtained few

repeat detections of the same individuals at different traps,

particularly nonadjacent traps, which may have rendered

our estimates of r prone to sampling error. The use of

habitat and year covariates to describe variation in detec-

tion among study areas, and model selection using AICc,

allowed us to identify a model that allowed for variation

among study areas but also improved the precision of D̂ by

aggregating data to estimate some of the parameters of the

detection function. Of course, there remains the potential

for bias introduced by pooling the data across study areas.

Different models of variation in detection probabilities

among study areas, or more general combinations of the

covariates we considered (e.g., including interactions)

might have been supported had we considered them.

SECR represents an improvement over boundary strip

methods for estimating carnivore density, especially where

a conservation concerns exists because the latter are prone

to overestimation (Gardner et al. 2009; Obbard et al. 2010;

Sollmann et al. 2011; Gerber et al. 2012; Noss et al. 2012).

However, considerable variation in D̂ estimated from dif-

ferent models fit to the same data in our study demonstrates

the potential to obtain biased density estimates by fitting an

inappropriate SECR model. In particular, individual het-

erogeneity poses one of the greatest challenges to

researchers attempting to estimate animal abundance from

C–R data (Davis et al. 2003; Link 2004; Lukacs and

Burnham 2005; Ebert et al. 2010; Marucco et al. 2011).

SECR models represent an improvement in this regard

because they treat heterogeneity associated with variable

exposure to traps explicitly (Efford 2004; Royle et al.

2009). In our study, individual heterogeneity was still

unambiguously supported even though we used a spatial

detection model and limited the data set to females. Innate

a

c d

b

Fig. 2 Densities of female black bears aged [1 year (per 100 km2)

on 43 study areas in ON, Canada, 2006–2009, estimated from the top

AICc-ranked spatially explicit capture–recapture model, within

different habitat types (see Fig. 1). Study area-specific estimates

were grouped into habitat types four ways (see Fig. 1): (1) Boreal and

Great Lakes-St. Lawrence (GLSL) forests (a), (2) Boreal forests and

GLSL forests in eastern and western ON (b), Boreal Forests, GLSL

Forests, and study areas within 10 km of the Forest region boundary

(c), and Southern Boreal Shield, Mid-Boreal Shield, and Lake of the

Woods Ecoprovinces (d)
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differences in cautious behavior (DeBruyn 1999; Noyce

et al. 2001) or differences among bears of different ages or

social classes (Miller et al. 1997; Woods et al. 1999; Noyce

et al. 2001; Boulanger et al. 2006) could have caused g0 to

vary among individuals independently of spatial effects.

Home range sizes of female black bears also vary with age

and social status (Alt et al. 1980; Rogers 1987; Wooding

and Hardisky 1994; Costello 2008). Most previous SECR

analyses of carnivore data did not attempt to model indi-

vidual heterogeneity, except, in some cases, for differences

between sexes (Gardner et al. 2009, 2010; Royle et al.

2009, 2011; Kalle et al. 2011; Kéry et al. 2011; Sollmann

et al. 2011, 2012; Gray and Prum 2012; Noss et al. 2012).

However, carnivores other than black bears also typically

exhibit individual heterogeneity in detection probabilities

and movement rates beyond what can be explained by

spatial effects and sex, including differences among age

and social classes (Boulanger et al. 2002, 2004, 2006;

Cubaynes et al. 2010; Ebert et al. 2010; Marucco et al.

2011; Sollmann et al. 2012). O’Brien and Kinnaird (2011)

attributed lack of support for individual heterogeneity in

SECR data from four species of African carnivores to small

sample size rather than a lack of differences among indi-

viduals, and Sollmann et al. (2012), in an SECR analysis of

black bear data, noted that there was much residual vari-

ation in sex-specific SECR model parameters that may

have been attributable to individual heterogeneity.

As age and social status cannot be inferred from genetic

samples, we must rely on statistical approaches to correct

for the associated variation. This requires larger samples to

achieve similar precision (Pledger 2000; Dorazio and Ro-

yle 2003) and raises concerns about the sensitivity of

density estimates to how individual heterogeneity is mod-

eled (Dorazio and Royle 2003; Link 2004). These problems

should not lead us to abandon models that correct for

heterogeneity, because if it is present in the data, such

models will generally yield more accurate estimates with

better confidence interval coverage (Pledger 2000, 2005;

Dorazio and Royle 2003; Boulanger et al. 2004; Link 2004;

Cubaynes et al. 2010; Proctor et al. 2010). If a reduced-

parameter model is selected a priori or because the power

to detect variation is low, associated density estimates are

not only potentially inaccurate, but also overstate precision

(White et al. 1982; Boulanger et al. 2004). Proctor et al.

(2010) and Ebert et al. (2010) recommended considering

models that allow for individual heterogeneity for estima-

tion purposes even when tests or model selection criteria do

not detect it, because it is likely present in noninvasive data

sets but power to detect it is often low. Statisticians might

question the validity of such an approach, and in any case

the parameters of SECR models that allow for individual

heterogeneity may be inestimable when data are sparse

(O’Brien and Kinnaird 2011; Sollmann et al. 2012; this

study). Among the forms of variation we considered,

individual heterogeneity had the greatest effect on D̂ when

modeled. Furthermore, variation among individuals was

apparently overestimated, leading to even higher D̂, when

other forms of variation present in the data were not

Table 3 Densities (per 100 km2) of female black bears aged[1 year

on eight study areas in ON, Canada, with coefficients of variation in

parentheses, estimated from spatially explicit capture–recapture

models with different combinations of covariates of variation in the

parameters of the spatial detection probability function

Model Study area

Boreal GLSL

2006 2007 2008 2009 2006 2007 2008 2009

2 30 19 21B 49 13(1) 9B 58

g0(bk ? h ? yr)r(t ? h ?

yr ? FR3I)

11.6 (0.25) 3.4 (0.35) 5.7 (0.21) 15.8 (0.21) 20.2 (0.24) 21.5 (0.21) 12.1 (0.20) 5.9 (0.39)

g0(bk ? h ? yr)r(t ? h ? FR3I) 10.4 (0.24) 3.6 (0.34) 6.1 (0.21) 14.6 (0.20) 17.4 (0.23) 21.9 (0.20) 12.6 (0.20) 5.3 (0.37)

g0(bk ? h ? yr)r(t ? h ? SA) 18.5 (0.37) 14.0 (0.68) 8.3 (0.31) 22.2 (0.27) 29.3 (0.42) 24.6 (0.28) 21.3 (0.29) 5.7 (0.49)

g0(h ? yr)r(h ? yr ? FR3I) 11.1 (0.24) 3.5 (0.34) 5.9 (0.21) 16.7 (0.20) 19.2 (0.23) 21.7 (0.20) 12.3 (0.20) 6.2 (0.38)

g0(bk ? h) r(t ? h) 13.6 (0.27) 4.3 (0.36) 13.2 (0.27) 16.9 (0.21) 14.8 (0.26) 17.0 (0.21) 18.7 (0.25) 3.9 (0.37)

g0(h)r(h) 13.5 (0.24) 4.3 (0.35) 13.3 (0.24) 17.1 (0.19) 15.1 (0.23) 17.1 (0.19) 19.1 (0.22) 4.0 (0.37)

g0(bk ? yr)r(t ? yr ? FR3I) 7.6 (0.22) 2.4 (0.32) 5.1 (0.20) 10.4 (0.17) 10.5 (0.21) 12.3 (0.18) 9.0 (0.19) 3.1 (0.35)

g0(SA)r(SA) 7.7 (0.25) 6.3 (0.51) 4.4 (0.22) 9.9 (0.19) 14.5 (0.32) 10.7 (0.18) 10.0 (0.20) 2.8 (0.43)

g0(.)r(t) 6.2 (0.20) 2.8 (0.31) 6.3 (0.20) 11.9 (0.16) 6.9 (0.19) 11.7 (0.16) 9.0 (0.17) 2.8 (0.33)

g0(bk)r(.) 6.6 (0.20) 3.0 (0.31) 6.6 (0.21) 12.3 (0.16) 7.3 (0.19) 12.2 (0.16) 9.3 (0.18) 3.0 (0.33)

g0(.)r(.) 6.3 (0.20) 2.9 (0.31) 6.4 (0.20) 12.0 (0.16) 7.0 (0.19) 11.8 (0.16) 9.1 (0.17) 2.9 (0.33)

All models used the half-normal form of the function. In model names ‘‘.’’ indicates that the parameter was held constant

bk a response to initial detection at the same trap, h individual heterogeneity, yr year of sampling, t differences among sampling occasions, FR3I

3-level habitat type covariate, SA differences among study areas
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modeled explicitly. We agree with those who argued that if

individual heterogeneity cannot be eliminated by study

design or explained using covariates, then it is key to

obtain sample sizes and detection probabilities sufficient to

detect and model it (Boulanger et al. 2002; Lukacs and

Burnham 2005; Marucco et al. 2011). More generally, we

recommend treating variation in SECR model parameters

as thoroughly as has become standard practice in conven-

tional C–R studies. Where only sparse data from a single

survey are available, SECR models that ignore individual

heterogeneity could still be used to generate conservative

estimates for management purposes because correcting for

individual heterogeneity increases D̂.

Although estimating abundance is the main goal of most

C–R studies, identifying models of variation in g0 and r that

minimize AICc allows researchers to evaluate support for

competing hypotheses about animal behavior (Kéry et al.

2011; Sollmann et al. 2011). For instance, comparisons of

home range sizes of a species in different parts of its range

or at different densities are of interest, but are often con-

founded by small samples of instrumented animals and

differences in home range estimation methods among

studies (Powell et al. 1997). In the case of American black

bears, abundant prior research allows us to verify that our

model selection results are consistent with independent

information. For example, positive effects of initial detec-

tion were common where trap sites were baited (Boersen

et al. 2003; Dreher et al. 2007; Immell and Anthony 2008;

Gardner et al. 2010). The presence and magnitude of

behavioral responses to detection at hair corrals may be

related to the reliability and quantity of the food reward.

Our baits (3 tins of sardines) provided a small food reward,

were sometimes consumed by non-target species, and

otherwise were likely consumed by the first bear to visit the

trap; nevertheless, g0 approximately doubled after initial

detection. Responses to initial detection were not supported

Table 4 Parameter estimates (b) and their standard errors (SE), from spatially explicit capture–recapture models fit to data from female black

bears on 43 study areas in ON, Canada, 2006–2009

Effect Model

g0(bk ? h ? yr)r(t ? h ? yr ? FR3I) g0(bk ? h ? yr)r(t ? h ? FR3I)

b SE b SE

g0

Intercept -0.877 0.180 -0.904 0.187

Initial detection at the same trap 0.940 0.127 1.009 0.123

Member of 2nd group of individuals 1.470 0.191 1.465 0.195

yr = 2009 -0.763 0.258 -0.784 0.254

yr = 2007 -0.877 0.264 -0.812 0.260

yr = 2006 -1.281 0.240 -1.393 0.247

r

Intercept 7.311 0.077 7.267 0.073

Member of 2nd group of individuals 0.379 0.072 0.334 0.069

Occasion = 2 0.107 0.036 0.108 0.037

Occasion = 3 0.193 0.036 0.194 0.036

Occasion = 4 0.219 0.036 0.216 0.036

Occasion = 5 0.226 0.038 0.223 0.038

Occasion = 6 -0.004 0.121 -0.022 0.123

Forest region = GLSL -0.294 0.074 -0.272 0.061

Forest region = Intermediate -0.198 0.076 -0.178 0.072

yr = 2009 -0.113 0.080 n/a n/a

yr = 2007 0.003 0.083 n/a n/a

yr = 2006 -0.164 0.069 n/a n/a

Probability of belonging to 2nd group of individuals

-1.863 0.197 -1.828 0.214

Estimates from the top AICc-ranked model appear at left, and from the 3rd AICc-ranked model (DAICc = 1.5) at right. In model names, bk = a

response to initial detection at the same trap, h = individual heterogeneity, yr = year sampled, t denotes a 6-level sampling occasion factor, and

FR3I is denotes a 3-level habitat covariate separating Boreal Forests, Great Lakes-St. Lawrence (GLSL) Forests, and ‘‘intermediate’’ habitat

within 10 km of the Forest region boundary. Link functions were the logit for g0 and the probability of belonging to the 2nd group of individuals,

and the log for r
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where the same bait was used but sampling occasions were

separated by week-long intervals with no bait present

(Obbard et al. 2010), or in two studies where a lure that

provided little or no food reward was used (Belant et al.

2005; Sollmann et al. 2012). In one study where baits

provided a larger food reward, the positive response was

even stronger than that observed here (Wegan 2008;

Gardner et al. 2010). A positive response to initial detection

affecting g0 had very slight effects on D̂ here, but other

studies suggest that failure to model such responses could

cause underestimation (Borchers and Efford 2008; Gardner

et al. 2010). We did not test for effects of initial detection on

r because we did not expect the small food reward to cause

female black bears to deviate from their normal spring and

early summer movement patterns, which are strongly

influenced by social factors (Rogers 1987; Costello 2008;

Castle 2010). However, the possibility that bears would

move outside their normal home range in search of, or

following the scent of, a baited trap after encountering one

within it may warrant further investigation.

That r increased during successive sampling occasions

is consistent with telemetry studies that demonstrated

increasing movement rates and home range sizes of black

bears before and during the breeding season in early

summer (Alt et al. 1980; Garshelis and Pelton 1980; Rogers

1987; Castle 2010). Black bears have also been shown to

have smaller home ranges in higher quality habitat (Powell

et al. 1997; Jones and Pelton 2003; Koehler and Pierce

2003). GLSL Forests provide more productive bear habitat

than Boreal Forests (Rowe 1972; Kolenosky 1990; Obbard

and Howe 2008) so higher r in Boreal than GLSL forests

was also expected. Possible explanations for the supported

differences in g0 and r among years include differences in

proportion of females accompanied by cubs if reproduction

was synchronous, differences in food abundance during

sampling or in the previous foraging season, differences in

the timing of the onset of spring and associated bear

behaviors, and effects of weather conditions on the rate of

DNA degradation between the time samples were depos-

ited and collected.

The patterns of variation in female bear density and

home range size across ON described by our estimates are

consistent with prior information indicating that both are

related to habitat quality—the former directly and the latter

inversely (Lindzey et al. 1986; Garshelis 1994; Powell

et al. 1997; Koehler and Pierce 2003), though we note that

our density estimates are partly a function of the way

spatial variation in r was modeled. Reproductive rates of

black bears are generally higher in higher quality habitat

(Garshelis 1994) but may also increase where densities are

reduced by anthropogenic mortality (Czetwertynski et al.

2007; Obbard and Howe 2008); whether these latter

increases are a consequence of increased home range size

due to reduced competition for space or patchily-distrib-

uted food resources is not well-understood. That some of

the lowest densities occurred in more southerly portions of

the greater study area in eastern GLSL forests likely

reflects greater habitat fragmentation and increased

anthropogenic mortality near the southern limit of contig-

uous forests where human population density is higher and

agricultural and urban development are more common. If

black bears increase their home range size where densities

are reduced, anthropogenic effects on bear density in the

southeast may also explain why r was larger on average in

eastern than western GLSL forests.
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