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Abstract To effectively manage rare populations, accu-

rate monitoring data are critical. Yet many monitoring

programs are initiated without careful consideration of

whether chosen sampling designs will provide accurate

estimates of population parameters. Obtaining accurate

estimates is especially difficult when natural variability is

high, or limited budgets determine that only a small frac-

tion of the population can be sampled. The Missouri

bladderpod, Lesquerella filiformis Rollins, is a federally

threatened winter annual that has an aggregated distribu-

tion pattern and exhibits dramatic interannual population

fluctuations. Using the simulation program SAMPLE, we

evaluated five candidate sampling designs appropriate for

rare populations, based on 4 years of field data: (1) simple

random sampling, (2) adaptive simple random sampling,

(3) grid-based systematic sampling, (4) adaptive grid-based

systematic sampling, and (5) GIS-based adaptive sampling.

We compared the designs based on the precision of density

estimates for fixed sample size, cost, and distance traveled.

Sampling fraction and cost were the most important factors

determining precision of density estimates, and relative

design performance changed across the range of sampling

fractions. Adaptive designs did not provide uniformly more

precise estimates than conventional designs, in part

because the spatial distribution of L. filiformis was rela-

tively widespread within the study site. Adaptive designs

tended to perform better as sampling fraction increased and

when sampling costs, particularly distance traveled, were

taken into account. The rate that units occupied by L. fili-

formis were encountered was higher for adaptive than for

conventional designs. Overall, grid-based systematic

designs were more efficient and practically implemented

than the others.

Keywords Adaptive cluster sampling �
GIS-based adaptive sampling � Lesquerella filiformis �
SAMPLE � Systematic sampling

Introduction

Rare species are routinely monitored in conjunction with

conservation efforts to ensure the long-term viability of

populations. Rare species often exhibit high temporal or

spatial variability in population size or distribution

(McDonald 2004). Obtaining accurate estimates of popu-

lation parameters when faced with such high variability can

be difficult, especially when the reality of limited budgets

determines that only a small fraction of the population can

be sampled. Thus, careful consideration of candidate

sampling designs is advisable before the initiation of any

monitoring program.

Conventional sampling methods may be inefficient when

a population is patchily distributed in space, and the relative

efficiencies of sampling methods could change if the overall
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abundance of the population varies over time. In either case,

many sampling units may not contain individuals of the

species of interest, resulting in a relatively high cost for the

information content yielded by the sampling effort. In

recent years, modified sampling designs involving adaptive

selection of sample units (i.e., adaptive cluster sampling)

have been proposed as a way to increase the efficiency of

sampling such populations (e.g., Thompson 1990, 1991a,

1991b, 2002, 2004; Thompson and Seber 1996; Salehi and

Seber 1997; Smith et al. 2004). Because the lack of preci-

sion in conventional methods is greatest when sampling

rare populations with aggregated distribution patterns

(Christman 2000), theory suggests adaptive designs should

be superior to conventional methods in such cases. Yet there

are many factors that may play a role in determining the best

overall sampling strategy.

Evaluating conventional and adaptive sampling designs

may involve pilot surveys or field trials. The variety of

candidate designs that can be tested, however, is limited in

such field efforts. Another approach is to use computer

simulations to evaluate candidate designs. In this approach,

the number and variety of designs is limited only by what

can be readily coded into software. Whether field trials or

computer simulations are involved, the effort is improved

when reliable preliminary information on the population

distribution is available. Yet evaluations preceding sam-

pling are not frequently done, even though such evaluations

could result in a more efficient and effective monitoring

program (e.g., Khaemba et al. 2001; Pooler and Smith

2005). Here we evaluate simulations for five different

sampling designs based on 4 years of field data. The pur-

pose of this study was to identify efficient sampling designs

(i.e., designs that provided precise density estimates, as

measured by variance, for low cost, as measured by sample

size).

Methods

Population and study area

The population of interest was the Missouri bladderpod,

Lesquerella filiformis Rollins, a small (10–20 cm tall)

winter annual in the mustard family (Brassicaceae) (Rollins

1956; Rollins and Shaw 1973). Lesquerella filiformis is

listed as threatened and known only from a few counties in

Missouri and Arkansas. Individual plants usually have

multiple stems arising from a basal rosette, 1–4 cm in

diameter. Lesquerella filiformis grows in open cedar

glades, barrens, limestone outcrops, and rock pastures

(Rollins and Shaw 1973). Yellow flowers and globose

siliques are produced in mid-April to May; the plants die

by late June and seeds lie dormant through the summer.

Those seeds that break dormancy germinate in the late

summer or fall. Rosettes remain green throughout the

winter and bolt in the spring.

Lesquerella filiformis populations may fluctuate dra-

matically from year to year (Thomas 1996, Fig. 1). Factors

that affect population size appear to operate independently

of density, suggesting a combination of edaphic factors,

climate, and disturbance control population size (Thomas

1996). In other winter annuals similar to L. filiformis, a

persistent seed bank allows the population to survive

unfavorable environmental conditions and reestablish very

rapidly under more favorable conditions (Baskin and

Baskin 1985).

Lesquerella filiformis populations may also exhibit rel-

atively large amounts of spatial heterogeneity (Thomas

1996). This aggregated spatial distribution likely results

from an interaction of microhabitat factors including sub-

strate, soil depth, soil moisture, canopy shading,

competition from other plants, and disturbance (Thomas

and Willson 1992; Ware 2002).

This study was conducted on a population of L. filiformis

inhabiting a limestone glade, Bloody Hill Glade (BHG), at

Wilson’s Creek National Battlefield near Republic,

Missouri.

Field surveys

BHG was divided into 963 5 9 5 m cells; the entire array

covered 2.4075 ha. Exhaustive sampling of L. filiformis at

BHG was conducted in each of 4 years (1997, 1998, 2003,

and 2005). Surveys were conducted in mid- to late April,

when most plants were in flower. In each 5 9 5 m cell, the

density of L. filiformis plants was estimated using the fol-

lowing abundance class scale (0 = none, 1 = 1–9 plants,

Fig. 1 Temporal heterogeneity in the Lesquerella filiformis popula-

tion at BHG. Bars indicate 95% confidence intervals. Data from 1998

to 1995 are from Thomas (1996)
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2 = 10–49 plants, 3 = 50–99 plants, 4 = 100–499 plants,

5 = 500–999 plants, 6 = C 1,000 plants) (Kelrick 2001).

Computer simulations

We used the software program SAMPLE (http://www.lsc.

usgs.gov/AEB/davids/acs/), which was developed as a tool

to simulate conventional and adaptive designs. SAMPLE

accepts sample or population data, depending on whether a

simulation or an analysis is desired. Auxiliary data can be

input for designs, such as GIS-based adaptive sampling,

that incorporate such information in the probability of

selection. SAMPLE can also be used to generate spatially

clustered populations for simulation, graph scatterplots,

and analyze existing data from adaptive and conventional

surveys.

Five sampling designs were evaluated by simulation,

based on the L. filiformis population densities and distri-

butions documented in the field surveys. For each design,

one or more design factors were varied. Three of the

designs evaluated involved adaptive cluster sampling

(Thompson and Seber 1996). Adaptive cluster sampling,

which may prove useful for sparse but aggregated popu-

lations, requires that when the variable of interest satisfies a

given condition, additional units in the neighborhood of

that unit are added to the sample (Thompson 1990; Seber

and Thompson 1994). For example, a condition to trigger

adaptive cluster sampling may be that 10 or more plants are

present in a cell. When this condition is met, all adjacent

cells sharing a contiguous border with the primary sam-

pling cell (the neighborhood) are sampled. While the

definition of a ‘‘neighborhood’’ among adaptive cluster

sampling applications may vary, in this study neighbor-

hoods were cross-shaped. Sampling continued for all cells

that met the condition (e.g., C 10 plants) until either: (1)

no neighboring cells met the condition or (2) the boundary

of the sampling region was reached.

The five designs simulated were:

(1) Simple random sampling (SRS). This was the ‘null’

sampling model used for comparison with other

approaches. Sample size was the only design factor.

(2) Adaptive simple random sampling (ASRS). This was

an adaptive cluster sampling approach with the initial

sample plot selected by simple random sampling

(Thompson 1990; Seber and Thompson 1994). The

design factors were initial sample size, condition to

adapt, and neighborhood. The condition to adapt was

the count within a sampling unit; this triggered adaptive

sampling in the neighborhood of the sampling unit. The

neighborhood was defined as all units that shared a side

with the unit that met the condition to adapt; this

neighborhood definition was used in all adaptive

designs. The modified Horvitz-Thompson estimator

was used to estimate density (Thompson 1990).

(3) Grid-based systematic sampling (GSS). A random

plot was initially selected, and then additional plots

were selected at equal intervals in the x and y

directions. The design allowed for multiple random

starts (1, 2, or 3) within the study site. The design

factors were total sample size and number of random

starts.

(4) Adaptive grid-based systematic sampling (AGSS).

The initial sample plot was selected as in GSS, and

then sampling proceeded adaptively. The design

factors were total initial sample size, number of

random starts, condition to adapt, and neighborhood.

(5) GIS-based adaptive sampling (GISA). In this adaptive

design, the condition to adapt is based on the value of

auxiliary information available in a geodatabase. The

design factors were the auxiliary information used to

trigger adaptive sampling, initial sample size, and

condition to adapt. Thus, a unit’s neighborhood is

adaptively sampled if the unit’s auxiliary variable

meets the condition. The condition can take a number

of forms depending on the expected relationship

between the variable of interest (e.g., plant density)

and the auxiliary variable in the ith unit (xi). For

example, condition (C) could be any of these three

forms: xi [ C, xi \ C, or CL \ xi \ CU. In this

study, plant density from previous years provided

the auxiliary information. (In the results section, the

previous year’s information is appended to the

design’s name [e.g., GISA98] to indicate that counts

from 1998 were incorporated into a future year’s

sample selection.) GIS-based adaptive sampling was

not simulated for the 1997 data, as auxiliary infor-

mation was not available.

For all designs, the primary variable of interest was the

density of plants (number/area) across the glade. A sec-

ondary variable of interest was the proportion of area

occupied. We compare performance of the designs based

on estimator precision for fixed sample size and the rate

that plants were encountered in the sample.

The field surveys conducted within the comprehensive

grid produced data in abundance categories. We converted

categories of abundance into counts by generating a Pois-

son random deviate with expected value equal to the

category midpoint. Thus, we randomly generated a single

population for each year based on the observed abundance

categories. Each population was then resampled using the

candidate designs in each year. Number of times that each

population was resampled (i.e., replications) was 1,000.

To account for sampling costs, we used field experience

to determine typical times required to setup the site, travel

Popul Ecol (2008) 50:417–425 419

123

http://www.lsc.usgs.gov/AEB/davids/acs/
http://www.lsc.usgs.gov/AEB/davids/acs/


within the site, and search a plot, and we incorporated these

times into the simulations. Setup time required 48 h and

involved locating and marking reference points throughout

the site. Rate of travel (distance per time) was 10 m per

min and included navigating among plots. Search time

(time per plot) was 15 min per 25 m2 plot. Total cost was

calculated by

c ¼ c0 þ c1 � mþ d=r

where c is total cost (time), c0 = setup time, c1 = search

time, m = final sample size, d = distance traveled, and

r = rate of travel (i.e., distance per time). Distance traveled

(d) was calculated by starting at the southwest corner of the

site and computing the distance (d1) to the nearest sample

plot (plot 1). Then from plot 1, the distance (d2) to the

nearest sample plot (plot 2) was calculated. This was

continued for the remainder of the sample, and distance

traveled was the sum of the plot-to-plot distances, i.e.,

d ¼
Pm

i¼1 di. Distance and cost were calculated for each

replication and then averaged to generate an expected cost.

In this paper we present results for 2003, because our

main purpose is to demonstrate the value of simulating

sampling as a guide for sampling design, and because

patterns observed in 2003 were qualitatively similar to

results from other years. The full results of all simulations

for all 4 years are available as Electronic supplementary

material (ESM) (S1–S4).

Results

The density of the L. filiformis population, as determined

by exhaustive grid-based sampling, varied over an order of

magnitude over the 4 years, while the proportion of area

occupied almost doubled from 1998 to 2005 (Table 1). The

2005 population was the third largest recorded in 18 years

(Fig. 1). A moderate amount of spatial heterogeneity was

observed across the glade (Fig. 2).

The simulation results revealed that sampling fraction

(i.e., the final sample size/the number of units in the pop-

ulation) was the most important factor determining

precision of density estimates (Table 2). The coefficient of

variation (CV) decreased as sampling fraction increased for

all designs (Fig. 3). A linear model showed that ln(sam-

pling fraction), design, and their interaction were strong

predictors of the coefficient of variation (F11,46 = 138.96,

P \ 0.0001, R2 = 0.98). Least square means from the

linear model summarize how relative performance of

designs changed across sampling fraction (Table 3). At a

sampling fraction of 0.1, GSS had a lower CV than SRS,

ASRS, AGSS, or GISA. At a sampling fraction of 0.2, CVs

for GSS and AGSS were low, CVs for SRS and GISA were

high, and the CV for ASRS was intermediate. At a sam-

pling fraction of 0.3, CVs for ASRS and AGSS were the

lowest, and CVs for SRS, GSS, and GISA were similar.

When total sampling costs (time in hours) were taken into

account, relative precision changed modestly (Fig. 4a, b).

Table 1 Abundance of Lesquerella filiformis at BHG as determined

by exhaustive grid-based sampling

Year Density

(plants/m2)

Population

variance

Population

occupancy

1997 0.31 1.750 0.31

1998 0.65 6.201 0.28

2003 0.73 5.241 0.38

2005 2.91 81.023 0.54

Population occupancy is the proportion of the glade occupied by

L. filiformis

Fig. 2 Spatial heterogeneity in the Lesquerella filiformis population at

BHG in 2003. Abundances of Missouri bladderpod plants: 0 = none,

1 = 1–9 plants, 2 = 10–49 plants, 3 = 50–99 plants, 4 = 100–499

plants, 5 = 500–999 plants, 6 = C 1,000 plants. Cells are 5 9 5 m
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However, when costs were restricted to distance traveled,

adaptive cluster sampling designs (AGSS and ASRS) had

much lower CVs than other designs across a range of dis-

tances (Fig. 4c). The reason that differences were modest for

total sampling costs, but large for distance traveled, was

because of the high setup cost, which was equal among all

designs. The condition to adaptively sample neighboring

units also affected sampling fraction. Sampling fraction

declined when the condition was increased (e.g., from 10 to

100), because fewer cells existed that supported the higher

plant densities.

Adaptive designs sampled a greater proportion of cells

containing plants compared to conventional designs

(Fig. 5). For example, the rate that plants were encountered

during sampling was as much as 90% greater for adaptive

than for conventional designs (Table 2). The encounter rate

was higher for GIS98 compared to GIS97, suggesting that

the plant distribution for the more recent year was a better

predictor of plant distribution in 2003 (Fig. 5).

There was some deviation between population parameters

(e.g., density and proportion of area occupied) and the esti-

mates averaged across the 1,000 replications (Table 2).

Percent relative bias averaged -0.06% and ranged from

-3.2 to 2.6% for density estimates and averaged -0.12%

and ranged from -1.6 to 1.1% for occupancy estimates.

These deviations were attributed to the random nature of the

simulations. All the candidate designs and estimators are

theoretically unbiased for density and proportion of area

occupied, assuming perfect detection within the sampled

units. Thus, as the number of replications increase the

average estimate will approach the population parameter.

Overall, grid-based systematic designs would probably be

more practically implemented than the others for this system.

For example, to achieve a coefficient of variation of 24%

Table 2 Example results from simulated sampling of the Lesquerella filiformis population at BHG in 2003

Sampling

design

SF Initial

sample

size

Condition

to adapt

Random

starts

Expected

final

sample

size

Density

estimate

Variance

of

density

estimate

CV Estimate of

population

occupancy

Proportion of

sampling

units

occupied

Cost

(h)

SRS 0.05 48 48 0.75 0.108 0.44 0.38 0.38 62

SRS 0.15 144 144 0.73 0.031 0.24 0.38 0.38 87

SRS 0.20 192 192 0.73 0.022 0.20 0.38 0.38 99

SRS 0.30 288 288 0.73 0.014 0.16 0.38 0.38 124

ASRS 0.05 28 100 47 0.73 0.156 0.54 0.39 0.56 61

ASRS 0.14 86 100 136 0.73 0.038 0.27 0.38 0.57 83

ASRS 0.24 28 10 233 0.73 0.018 0.18 0.38 0.71 107

ASRS 0.29 48 10 281 0.74 0.005 0.10 0.39 0.69 120

GSS 0.06 54 2 54 0.74 0.049 0.30 0.38 0.38 63

GSS 0.11 107 1 107 0.73 0.030 0.24 0.38 0.38 78

GSS 0.22 214 2 214 0.73 0.015 0.17 0.38 0.38 105

AGSS 0.04 24 100 2 40 0.72 0.165 0.56 0.38 0.56 58

AGSS 0.09 54 100 2 87 0.72 0.051 0.31 0.37 0.59 70

AGSS 0.24 24 10 2 227 0.72 0.011 0.15 0.38 0.73 105

AGSS 0.31 54 10 2 300 0.73 0.002 0.06 0.38 0.68 123

GISA97 0.05 48 100 48 0.73 0.102 0.44 0.39 0.39 62

GISA97 0.10 96 100 96 0.74 0.052 0.31 0.38 0.38 75

GISA97 0.14 96 10 126 0.73 0.042 0.28 0.38 0.45 82

GISA97 0.25 192 10 233 0.73 0.019 0.19 0.38 0.43 110

GISA98 0.05 48 100 51 0.72 0.103 0.44 0.38 0.41 62

GISA98 0.11 96 100 101 0.72 0.048 0.30 0.38 0.41 76

GISA98 0.15 48 10 146 0.74 0.057 0.32 0.38 0.69 86

GISA98 0.26 144 10 252 0.74 0.017 0.18 0.38 0.56 113

Population parameters are given in Table 1. See text for description of sampling designs. The expected final sample size is the mean from the

1,000 replications. Sampling fraction (SF) is final sample size/number of units in the population. Initial sample size differs from final sample size

only for adaptive designs. Condition to adapt refers to the trigger to adaptively sample (i.e., if count C condition to adapt). Estimates of density

(no./m2), variance, and population occupancy are means from 1,000 replications. CV = coefficient of variation. Proportion of sampling units

occupied is computed from the sample
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required a sampling fraction of 11% when using a GSS

design (Table 2).

Discussion

The problem of sampling rare, spatially clustered popula-

tions is widely recognized, and a number of sampling

designs have been evaluated for this purpose (see review

by Christman 2000). The performance of sampling designs

is difficult to predict, however, based on generic studies,

because the performance of sampling designs (as measured

by precision, for example) depends on the spatial distri-

bution and density of the population of interest. Ultimately,

Fig. 3 Estimates of the

coefficient of variation as a

function of sample fraction for

the Lesquerella filiformis
population at BHG in 2003. CA
condition to adapt, 10 and 100
indicates the number of plants

that must be present in a cell

before sampling neighboring

cells

Table 3 Least square mean coefficient of variation (CV) and stan-

dard error (SE) for each sampling design and sampling fraction (SF)

of 0.1, 0.2, and 0.3

Sampling design SF = 0.1 SF = 0.2 SF = 0.3

CV SE CV SE CV SE

SRS 0.32 0.011 0.21 0.008 0.15 0.011

ASRS 0.36 0.009 0.19 0.008 0.10 0.010

GSS 0.25 0.011 0.17 0.017 0.12 0.022

AGSS 0.31 0.009 0.16 0.008 0.08 0.010

GISA97 0.33 0.008 0.21 0.008 0.14 0.011

GISA98 0.33 0.010 0.22 0.007 0.15 0.009

Means were calculated from a linear model of CV as a function of

ln(SF), design, and their interaction R2 = 0.95
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there is high practical value in being able to simulate

sampling on an actual or approximate population; doing so

can save time and money.

Although the theory of adaptive cluster sampling was

introduced in 1990 (Thompson 1990), application has

lagged behind, and this approach has only recently seen

wide use. A number of recent studies have revealed

adaptive cluster sampling to be an efficient method (e.g.,

Acharya et al. 2000; Vasudevan et al. 2001; Conners and

Schwager 2002; Philippi 2005; Talvitie et al. 2006),

although others have expressed some reservations in the

use of adaptive methods over more conventional designs

(e.g., Hanselman et al. 2003; Smith et al. 2003; Noon et al.

2006; Goldberg et al. 2007). The relative efficiency of

adaptive sampling will ultimately depend upon a number of

factors, and vary among different populations (Smith et al.

2004).

Adaptive sampling can be efficient when target organ-

isms occur in clusters, and the clusters are relatively rare

across the landscape (Thompson and Seber 1996; Smith

et al. 2004). Although adaptive designs increased the

likelihood of sampling where plants were, rather than

where they were not, these adaptive designs did not uni-

formly result in more precise density estimates compared

to conventional designs. This is possibly because L. fili-

formis was widespread throughout the site and clustered

only to a moderate degree (Fig. 2).

We compared the designs based on the precision of

density estimates for fixed sample size, cost, and distance

traveled. Relative performance changed little by fixing on

total costs compared to fixing sample size because, on

average, setup costs comprised over 50% of total costs, and

setup costs were shared by all designs. When only travel

related costs were considered, adaptive sampling designs

(particularly AGSS and ASRS) had much higher precision

Fig. 4 Coefficient of variation as a function of sampling fraction,

total sampling cost (h), and distance traveled (m) for six sampling

designs evaluated through simulation

Fig. 5 Box plots of the proportion of sampling units occupied by at

least one Lesquerella filiformis plant in 2003 when population

occupancy was 0.38. For conventional designs (GSS, SRS), the

sample proportion is an estimate of the population occupancy. For

adaptive designs (GISA97, GISA98, AGSS, ASRS), the sample

proportion is higher than the population occupancy because adaptive

sampling increases the probability of selecting occupied units, but

adaptive sampling estimators result in unbiased estimation of

population occupancy. Each box encloses 50% of the data with the

median value of the variable displayed as a line. The lines extending

from the top and bottom of each box mark the minimum and

maximum values of the data set
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for fixed distance traveled compared to the other designs.

In this situation, travel costs were low compared to the time

required to setup and search a unit. However, when sam-

pling a large site or one that is difficult to negotiate, travel

costs can become high and minimizing travel can become

relatively important.

When candidate designs perform similarly in terms of

precision for fixed cost, the choice of which design to apply

will depend on factors such as practicality and ease of use.

Conventional designs allow sampling fraction to be deter-

mined prior to sampling, unlike adaptive designs. In

contrast to simple random sampling, systematic sampling is

often easier to apply in field surveys. In the adaptive ver-

sions of both designs, relatively more cells containing the

target organisms will be sampled, but the final sample

fraction will be unknown until sampling is complete.

A high fraction could lead to the expenditure of more time

and resources than planned to complete the survey.

There are several practical benefits of the GIS-based

adaptive sampling design. First, units and networks to be

sampled can be selected within a GIS before starting the

survey. Thus, sample size will be known prior to fieldwork

(although the resulting sample size could be quite large in

relation to available resources). Second, because the net-

works or patch of sampled units are defined with existing

data, ‘edge’ units (i.e., neighboring cells that do not meet

the criteria for adaptive sampling) need not be sampled

during fieldwork unless they are part of the initial sample.

Third, the effect of the condition to adapt on final sample

size can be investigated prior to fieldwork using a GIS-

based analysis. The success of the GIS-based adaptive

design is, however, contingent on the availability of pre-

dictive information prior to sampling. We used previous

counts from the grid survey as a surrogate, which is arti-

ficial in this case because such information was generated

for this simulation study. Alternatively, habitat and land-

scape variables that are predictive of organism distribution

and available in GIS can be used in a GIS-based adaptive

design (van Manen et al. 2005).

Contrasting our results to similar studies underlines the

importance of evaluating conventional and adaptive sam-

pling designs on a case-by-case basis. For example,

Khaemba et al. (2001) simulated sampling for aerial sur-

veys of African wildlife and found no significant

differences between estimates obtained under random and

systematic designs. An increase in precision was observed,

however, for an adaptive design (Khaemba et al. 2001). In

contrast, Smith et al. (2003) evaluated adaptive sampling

for rare freshwater mussel populations and found that

whereas encounter rates of rare individuals and species

were higher for adaptive than for conventional designs,

adaptive sampling did not increase precision of density

estimates (Smith et al. 2003). Lesquerella filiformis was

neither as clustered as the African wildlife populations nor

as rare as the freshwater mussels.

Implications

In this case study, no single design was uniformly superior in

terms of precision of density estimates across all sample

sizes, over the years and population densities evaluated.

Consideration of the simulation results and logistics of

sampling, however, indicated that grid-based systematic

designs would be more efficient logistically and more prac-

tically implemented than the others. Thus, simulations

proved valuable as they indicated an appropriate sample

fraction and allowed an evaluation of the practical advan-

tages and disadvantages of the various sampling approaches.

Ultimately, many potential sampling designs exist, and

design choice may depend upon conservation objectives,

population characteristics, and available resources. The

performance of various sampling designs may be difficult

to predict, however, because such performance depends on

the spatial distribution and density of the population of

interest. Evaluation of candidate designs by computer

simulation programs, such as SAMPLE, prior to sampling

is likely to provide information critical to choosing an

efficient overall design. Simulations can be an inexpensive

decision tool for tailoring the evaluations to the particular

populations under study.
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