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Abstract The species diversity of phytoplankton is usu-
ally very high in wild aquatic systems, as seen in the
paradox of plankton. Coexistence of many competitive
phytoplankton species is extremely common in nature.
However, experiments and mathematical theories show
that interspecific competition often leads to the extinc-
tion of most inferior species. Here, we present a lattice
version of a multi-species Lotka–Volterra competition
model to demonstrate the importance of local interac-
tion. Its mathematical equilibrium is the exclusion of all
but one superior species. However, temporal coexistence
of many competitive species is possible in an ecological
time scale if interactions are local instead of global. This
implies that the time scale is elongated many orders
when interactions are local. Extremely high species
diversity of phytoplankton in aquatic systems may be
maintained by spatial coexistence in an ecological time
scale.
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Introduction

Species diversity of phytoplankton is usually very high
in natural aquatic ecosystems. Coexistence of many
competitive species is extremely common in natural
aquatic ecosystems (Hutchinson 1961 ; Ogawa and
Ichimura 1984; Ogawa 1988). In spatially competitive
communities, the coexistence of species is highly limited
unless interspecific competition is weaker than intra-
specific competition. Simulation studies usually exhibit
the dominance of a single species, leading to the
exclusion of all the rest (inferior species). At equilib-
rium, all but one species is persistent. This theoretical
prediction (competitive exclusion) is often supported by
the experimental results using chemostats (Tilman
1977, 1982; Takeya et al. 2004; Kuwata and Miyazaki
2000). Thus, local coexistence of multiple species is
usually impossible without additional extrinsic factors.
Many studies, therefore, proposed to include some
extrinsic factors such as climatic changes, immigration,
dormancy and spatial heterogeneity of habitats, and
chaotic dynamics (Richerson et al. 1970; Levins 1979;
Sommer 1985; Padisák et al. 1993; Huisman and
Welssing 1999). Certainly the coexistence of two to
three species has been shown in the systems with
extrinsic factors. However, coexistence of four or more
species is practically impossible due to the extremely
sensitive tradeoffs between species. Thus, the coexis-
tence of 10 or 100 species is totally out of question in
these systems. Furthermore, such extrinsic factors seem
to be not always applicable to aquatic systems. For
example, spatial heterogeneity of microhabitats is dif-
ficult to imagine in aquatic ecosystems, because aquatic
environment is homogeneous and the niches of phyto-
plankton are almost identical.

We build a lattice explicit model of multi-species
competition with local interaction (‘‘lattice Lotka–Vol-
terra model or LLVM’’; Tainaka 1988; Matsuda et al.
1992) and global interaction (Lotka–Volterra model,
also called mean-field theory; Hofbauer and Sigmund
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1988). In our model, competitive exclusion of all but one
species is expected at the equilibrium state both in re-
gards to local (Neuhauser 1992) and global interactions
(Harris 1974). However, we only focus on the transient
temporal dynamics in ecological time scales. We inves-
tigate the persistence of population in terms of spatial
competition avoidance.

Methods

Lattice model

We consider a competitive ecosystem of ten planktonic
algal species (i=1, ..., N=10); we apply a two-
dimensional lattice (500·500), since phytoplankton
distribute near the surface of the body of water and
compete for light. Each lattice site is either occupied
by i species (Xi) or empty (O). Overall reactions are as
follows:

Xi þO! 2Xi; rate: bi ð1Þ
Xi ! O, rate: mi ð2Þ

where Xi is an individual (site) of species i of N species.
The parameters bi and mi denote the rates of birth and
death, respectively. The death rate is kept constant
(mi=0.3) for all simulation runs. The simulation is
carried out according to the contact process where
interaction occurs between adjoining lattice sites
(Harris 1974; Tainaka 1988; Marro and Dickman
1999).

When interactions are global, the two sites are
chosen randomly from the whole lattice. In this case,
the population dynamics of our system is given by the
mean-field theory. Let xi be the overall density of
species i. Since the probability of finding Xi point
becomes equal to overall density of Xi, we have the
following dynamics:

dxi

dt
¼ �mixi þ bixie ð3Þ

where i=1, ..., N, and e is the density of empty site (O).
Note that e ¼ 1�

P
i xi:

The first and second terms on the right-hand side of
Eq. 3 denote death and birth processes, respectively. For
example, we consider the cases of N=1 and N=2. When
N=1, Eq. 3 becomes the logistic equation:

dx1
dt
¼ �m1x1 þ b1x1ð1� x1Þ: ð4Þ

The non-zero steady-state density for this equation is
given by; x1 ¼ 1� m1=b1:

In the two-species system (N=2), Eq. 3 can be
rewritten as (i, j=1 or 2 and i „ j)

dxi

dt
¼ RixiðKi � xi � aijxjÞ=Ki: ð5Þ

Here the parameters satisfy the following relations:

Ri ¼ bi � mi; Ki ¼
bi � mi

bi
; aij ¼ 1: ð6Þ

Equation 5 is called the Lotka–Volterra competition
model, and its result is well known. Final stationary
states are classified into four classes, depending on the
values of parameters. Namely, (1) both X and Y coexist,
(2) only X survives, (3) only Y survives, and (4) both
become extinct. The condition for the coexistence is gi-
ven by

K1 > a12K2 and a21K1\K2: ð7Þ
The above relations are not satisfied in our case

(a=b=1). Hence, at least one species becomes extinct.
In general, in the case of N>2, we can show that
coexistence of two or more species is impossible.

Simulation procedure

The simulation procedures of local interaction are as
follows:

1. Algal cells are distributed randomly over some of the
square-lattice points in such a way that each point is
occupied by only one species, if the point is occupied.

2. Each reaction process is performed in the following
two steps.
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Fig. 1 Steady-state density vs. birth rate (bi) in a single-species
lattice ecosystem with local and global interactions. Death rate is
kept at m=0.3. For local interaction, the steady-state density
is estimated at around 20,000 Monte Carlo steps. The lattice size is
500·500 cells. The threshold value for positive density was b1�0.49
for local interaction (b1=0.3 for global interaction). Below this
value, the population becomes extinct. For global interaction, the
density is calculated analytically. The two horizontal arrows indicate
the comparative parameter conditions between local and global
interactions under poor and rich nutritional conditions. When
conditions are poor, b(local)=0.5, while b(global)=0.322. When
conditions are rich, b(local)=0.9, while b(global)=0.786
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a. We perform the single body reaction (2). Choose
one square-lattice point randomly. Let change the
point to O with probability mi, if it is occupied by
the species i.

b. Next, we perform the two-body reaction (1).
Select one point randomly and specify one of
adjacent points. Here the adjacent site is set as
the Neumann neighbors (four sites: up, down,
left and right). If the selected pair is Xi and O,
then the latter point will become Xi with proba-
bility bi. Here we employ periodic boundary
conditions.

3. Repeat step 2 L·L times, where L·L is the total
number of the square-lattice sites. Here we set
L=500. This step is called a Monte Carlo step.

4. Repeat step 3 for a specific length (100,000 Monte
Carlo steps).

The simulation procedures of global interaction are
almost the same as those of local interaction. However,
in the two-body reaction, step b in step 2, we select two
lattice points randomly and independently.

Results

We first measure the steady-state density of a single
species against birth rate (Fig. 1). For comparison, we
determine the values of birth rates so that the steady-
state densities (Fig. 1) become equal between local and
global interactions.

We simulate both low and high nutrient conditions
(Fig. 2). In the low nutrient conditions (near extinc-
tion thresholds), the difference in the birth rates is
kept small, since algal growth in natural oligotrophic
waters is slow and the difference in the growth rates
between species is considered small. In the high
nutrient concentrations (high productivity), these dif-
ferences are proportionally increased. In eutrophicated
waters, we expect a high variation in species-specific
growth rates.

In low nutrient conditions, when interactions are
local (Fig. 2a), the two most superior species (S10, S9)
increase their density only slightly more than all of the
rest of the species. In contrast, when interactions are
global (Fig. 2b), the most superior species (S10) grows
out of other species, followed by the second most
superior species (S9). The average density of the sur-
viving species is very low regarding local interaction,
while it is relatively higher regarding global interaction
(Fig. 2a, b).

Similarly, in high nutrient conditions, species stay
together when interactions are local (Fig. 2c). Further-
more, the difference in birth rates is not exactly reflected
in the order of species. From the third species, the order
in density does not correspond with the order in growth
rates. When interactions are global (Fig. 2d), the most
superior species (S10) flourishes, reaching nearly 0.5 in

density, while others move toward extinction. Thus the
density profiles are almost similar in both high and
low nutrient conditions (Fig. 2). When interactions
are local, species stay together: none stand out (Fig. 2a,
c). In contrast, when interactions are global, one
species thrives while the others move toward extinction
(Fig. 2b, d).

The extinction process of these dynamics is plotted as
the number of species (Fig. 3). Extinction processes
show that relatively inferior species become extinct when
interactions are global (Fig. 3b, d). In contrast, when
interactions are local with high birth rates, all ten species
persisted during simulation runs. Even with low birth
rates, nine species persisted and only one species became
accidentally extinct, because low birth rates are close to
the extinction boundary (Fig. 1). Thus, the persistence
of species is extremely strengthened by local interac-
tions.

To evaluate the species differences in birth rates, the
densities of all ten species at 20,000 time steps are
plotted for ten simulation runs under both local and
global conditions in low nutrient conditions (Fig. 4).
When interactions are local, most species persist with
similar densities in all ten runs with slightly higher ten-
dencies with superior species (Fig. 4a). In contrast, the
superior species stands out from the others in all ten
runs and all inferior species (S1 to S7) become extinct
(Fig. 4b).

The spatial patterns in regards to local interactions
exhibit strong clumping (Fig. 5). In high birth rates,
species clumps are almost touching other species’ clumps
(Fig. 5b), while, in low birth rates, species clumps are
isolated/separated by a wide area of open cells (Fig. 5a).
No competitive interactions are possible in low birth
rates because of spatial separation.

Discussion

The population dynamics in regards to local interaction
are different from those when interactions are global
(Figs. 2, 3). Regarding global interaction, a superior
species ‘‘wins out’’ at the expense of the other species
(Figs. 2b, d, 4b). However, when interactions are local,
species tends to stay at almost similar densities: no
single species stands out among the others (Figs. 2a, c,
4a). This means that the effective time scale is elon-
gated by many orders of magnitude. This condition
seems further elongated when the growth rates are
lower. The temporal dynamics in regards to local
interaction with low growth rates becomes extremely
slow. Thus, in the ecological time scale, the coexistence
of species is achieved when interactions are local with
low growth rate conditions, even though the mathe-
matical expectation (with infinite time horizon) is the
exclusion of all but one superior species. With this
system, coexistence of hundreds of species is easily
achieved by simulation as long as the size of the lattice
is large enough. This finite aspect of coexistence is
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markedly different from the traditional studies of
coexistence based on equilibrium analysis (Marro and
Dickman 1999).

It is well known that it is easy for a low density with
a finite lattice to become extinct (Marro and Dickman
1999). However, our results show that extinction seems
delayed considerably, due to the lack of actual com-
petition (Fig. 2a). The snapshot of pattern indicates
extreme clumping, resulting in a lack of competition
(Fig. 5). One of the most important results of LLVM is
the ‘‘divergence of the clumping degree’’ in a low
density limit (Tainaka and Fukazawa 1992; Tainaka
et al. 2004). Namely, the degree of clumping is uni-
versally inverse proportional to the density in lattice
models.

Many models of coexistence have been suggested
since the paradox of plankton was proposed (Hutch-
inson 1961). The current model is markedly different in
terms of the following two points: (1) persistence based
on the finite ecological time scale instead of the infinite
mathematical equilibrium state, and (2) focus on the
local interaction in contrast to global (random) inter-
action. These two features are very basic to commu-
nities and ecosystems. We also do not include specific
external factors or a detailed kinetics such as chaotic
fluid dynamics. From the natural observation (Ogawa
and Ichimura 1984; Ogawa 1988), the biodiversity
feature of phytoplankton is common and universal.

Therefore, the mechanism for coexistence should not
rely on highly specific factors such as chaotic flows or
disturbance patterns. Rather, it is based on very
common features which we have missed. In this sense,
our model does not have any specific factors, but is
based solely on very common features of any organ-
isms. The only main difference is the combination of
shifting the viewpoint of coexistence (transient vs.
equilibrium states) and the realistic spatial nature of
community—local (lattice) vs. global (random) inter-
actions.

We should also note that the current model is also
more advantageous than the previous models from the
aspect of the number of coexisting species. In previous
models, only a few (2–4) species are shown to coexist. It
is almost definitely impossible for ten species to coexist
in these systems. In our system, however, virtually 100
species can coexist for a long time, depending on the
lattice size. Thus, there seems to be almost no limit to the
biodiversity of plankton as observed in nature (Hutch-
inson 1961).

The mechanism of competition avoidance is very
simple; the enhancement in the clumping degree origi-
nates in the fact that ‘‘offspring are located near their
mother.’’ Our idea in this paper is based on the diver-
gence behavior. If the nutritional conditions of a system
is very poor, or if densities of species are very low, then
segregation of habitats may occur. Therefore, in poor

Fig. 2 Temporal dynamics of ten competitive species in the lattice
competition model in ecological timescale under low and high
growth rates. Low variable birth rates are assumed
(bi=b+0.0001(i-1), where b=0.5 for local interaction and 0.322
for global interaction). High variable birth rates are assumed
(bi=b+0.00018(i-1), where b=0.9 for local interaction and 0.786

for global interaction). The death rate is constant at mi=0.3. The
density of each species is plotted for 20,000 Monte Carlo steps.
a Local interaction with low growth rates. b Global interaction
with low growth rates. c Local interaction with high growth rates.
d Global interaction with high growth rates
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Fig. 3 Temporal changes in the
number of persisting species
with low and high growth rates
in Fig. 2. a Local interaction
with low growth rates. b Global
interaction with low growth
rates. c Local interaction with
high growth rates. d Global
interaction with high growth
rates. Below local interaction (a
and c), almost all species persist
up to 20,000 time steps. When
interactions are global (b and
d), many inferior species
become extinct in a short time
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conditions, species can coexist for a very long period
without actual competitive interactions (Liggett 1999).
The poor nutritional condition when interactions are
local maintains at least a high species diversity of phy-
toplankton. It may result in the paradox of enrichment
(Rosenzweig 1971). The coexistence of plankton
(Hutchinson 1961) thus becomes possible if the inter-
actions are local as is expected in many natural aquatic
systems.
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Fig. 4 Densities of ten species at 20,000 Monte Carlo steps in
regards to both local (a) and global (b) interactions. Parameter
settings and simulation conditions are the same as in Fig. 2 for all
ten simulation runs

S1=0.000224 S2=0.054764 S3=0.017176 S4=0.009404

S5=0.033908 S6=0.016948 S7=0.008444 S8=0.000000

S9=0.009624 S10=0.017220

Step=20000

S1=0.007684 S2=0.039264 S3=0.036800 S4=0.021020

S5=0.056460 S6=0.041960 S7=0.058660 S8=0.063452

S9=0.103956 S10=0.189708

Step=20000

Fig. 5 Snapshots of a temporal pattern at 20,000 time steps in
Fig. 2. a Low growth rates. b High growth rates
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