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Abstract
Perioptic meningiomas, defined as those that are less than 3 mm from the optic apparatus, are challenging to treat with ste-
reotactic radiosurgery (SRS). Tumor control must be weighed against the risk of radiation-induced optic neuropathy (RION), 
as both tumor progression and RION can lead to visual decline. We performed a systematic review and meta-analysis of 
single fraction SRS and hypofractionated radiosurgery (hfRS) for perioptic meningiomas, evaluating tumor control and visual 
preservation rates. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 
we reviewed articles published between 1968 and December 8, 2022. We retained 5 studies reporting 865 patients, 438 
cases treated in single fraction, while 427 with hfRS. For single fraction SRS, the overall rate of tumor control was 95.1%, 
with actuarial rates at 5 and 10 years of 96% and 89%, respectively; tumor progression was 7.7%. The rate of visual stability 
was 90.4%, including visual improvement in 29.3%. The rate of visual decline was 9.6%, including blindness in 1.2%. For 
hfRS, the overall rate of tumor control was 95.6% (range 92.1–99.1, p < 0.001); tumor progression was 4.4% (range 0.9–7.9, 
p = 0.01). Overall rate of visual stability was 94.9% (range 90.9–98.9, p < 0.001), including visual improvement in 22.7% 
(range 5.0–40.3, p = 0.01); visual decline was 5.1% (range 1.1–9.1, p = 0.013). SRS is an effective and safe treatment option 
for perioptic meningiomas. Both hypofractionated regimens and single fraction SRS can be considered.

Keywords Stereotactic radiosurgery · Perioptic meningioma · Meningioma · Radiation-induced optic neuropathy · Skull 
base meningioma

Introduction

Meningiomas are the most common primary brain tumors, 
accounting for one-third of all primary brain tumors[1]. If 
these tumors are located ≤ 3 mm from the optic apparatus 
(usually sellar or parasellar), they are typically classified 
as perioptic meningiomas[2, 3]. For perioptic meningiomas 
that are small and asymptomatic, some centers advocate for 
a “wait-and-scan” strategy. However, due to the intimate 
association with the optic apparatus, even minor growth 
can lead to visual deterioration or complete blindness [4, 5]. 
Symptomatic tumors are classically treated by microsurgical 
and/or endoscopic resection [6] to ensure adequate, imme-
diate decompression of the optic apparatus [7–9]. Maximal 
safe resection is the primary goal. This approach aims for a 
gross total resection to fully decompress the optic apparatus 
and reduce the risk of tumor recurrence but prioritizes pres-
ervation of visual function over complete resection [10–12]. 

 * David R. Peters 
 davidrpeters23@gmail.com

1 Carolina Neurosurgery & Spine Associates, Charlotte, NC, 
USA

2 Department of Neurosurgery, Atrium Health, Charlotte, NC, 
USA

3 Neurosurgery Service and Gamma Knife Center, Lausanne 
University Hospital (CHUV), Lausanne, Switzerland

4 Department of Biomedical and Neuromotor Sciences, Alma 
Mater Studiorum University of Bologna, Bologna, Italy

5 Unit of Neurosurgery, IRCCS Istituto Delle Scienze 
Neurologiche Di Bologna, Bellaria Hospital, Bologna, Italy

6 Radiation Oncology Department, Lausanne University 
Hospital (CHUV), Lausanne, Switzerland

7 Faculty of Biology and Medicine (FBM), University 
of Lausanne (UNIL), Lausanne, Switzerland

8 Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), 
Lausanne, Switzerland

Neurosurgical Review (2023) 46:287 

/ Published online: 28 October 2023 

http://orcid.org/0000-0002-0908-7128
http://crossmark.crossref.org/dialog/?doi=10.1007/s10143-023-02197-9&domain=pdf


Neurosurgical Review (2023) 46:287 

1 3

Despite prioritizing functional preservation, microsurgery 
carries a risk of postoperative deficit between 2.6 and 13.7% 
[6, 13].

Stereotactic radiosurgery (SRS) is a valuable therapeutic 
option for the treatment of small to medium-sized, newly 
diagnosed, or recurrent intracranial meningiomas [14–18], 
particularly those involving the skull base [19]. One of the 
most radiosensitive structures of the skull base and a fre-
quent obstacle for SRS is the optic nerve (ON)/optic appara-
tus (OA) [20]. Prior studies on OA dose tolerance suggest a 
cut-off between 8 and 12 Gy as the maximal delivered dose, 
above which the risk for radiation-induced optic neuropathy 
(RION) becomes unacceptably high [21, 22]. Due to this 
risk of RION, perioptic meningiomas, especially those in 
direct contact with the OA, often cannot be treated by sin-
gle fraction since they do not have the separation needed to 
limit the dose to the OA. Hence, these cases need alternative 
therapeutic approaches.

Recently, the role of hypofractionated radiosurgery 
(hfRS) regimens has been rapidly expanding, especially for 
perioptic lesions. HfRS allows safer treatment of tumors near 
radiosensitive structures and for larger tumor volumes. For 
perioptic meningiomas, hfRS appears to have similar rates 
of high local tumor control as single fraction SRS, while 
potentially decreasing the risk of RION [23, 24]. These tech-
niques and fractionation schemes are derived from the linear 
quadratic model and its application to SRS and RT [25]. 
Tumor control must be weighed against the risk of RION, as 
both tumor progression and RION can lead to visual decline.

Here, we performed a systematic review and meta-anal-
ysis of the current knowledge related to the perioptic men-
ingiomas, treated both with single fraction SRS and hfRS. 
We review local tumor control as well as visual outcomes.

Methods

Study guidelines

The study was performed in accordance with the published 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines[26].

Eligibility criteria

Inclusion criteria: peer-reviewed articles of intracranial 
perioptic meningiomas treated either with single fraction or 
hypofractionated SRS, independently of the device; single 
center, multi-center, retrospective, and prospective clinical 
studies or case series were included. Perioptic location was 
defined as intracranial meningiomas that were less than or 
equal to 3 mm from the optic nerve, optic chiasm, or optic 
tract.

Exclusion criteria: case reports, unpublished series, and 
series not published in English. Meningiomas of the orbit, 
optic nerve sheath within the optic canal, or series with a 
mixture of perioptic and other locations were excluded. Case 
series involving the treatment of multiple pathologies were 
excluded if they did not report meningioma-specific data 
separately from the other pathologies. If the dose to the optic 
apparatus was not reported, the series was excluded.

Search strategy

Our information sources were Medline, Pubmed, Embase, 
Scopus, and Web of Science databases. The following 
MESH terms or combination of those were used: “periop-
tic,” “anterior optic pathways,” “radiosurgery,” “stereotactic 
radiosurgery,” “meningioma,” and “hypofractionated.” Two 
independent reviewers (DP, CT) have screened the content 
of all articles and abstracts published between 1968 and 
December 8 2022. The corresponding PRISMA diagram is 
found in Fig. 1.

Article selection

Six papers met inclusion criteria, of whom 2 were mainly 
focusing on results after single fraction SRS [27, 28] and 4 
on hfRS [23, 24, 29, 30]. We retained 5 studies reporting 
865 patients. The study by Asuzu et al. [27] was excluded 
from the current meta-analysis during the peer-review pro-
cess to avoid duplicate data, as it included all patients from 
the study of Bunevicius et al. [28]. Single fraction SRS was 
reported for 438 cases, while hfRS for 427. We extracted 
clinical data related to patient demographics, prior treat-
ments with surgery or radiation, tumor size, and dosimetric 
data (Tables 1 and 2).

Primary and secondary outcomes

The primary outcome was tumor control, defined as stable 
to decreased size of the tumor on follow-up imaging. The 
secondary outcome was visual function after SRS or hfRS 
(Table 3). The outcomes were sometimes reported using het-
erogeneous scales, including Radiation Therapy Oncology 
Group central nervous system criteria [31] and Common 
Terminology Criteria of Adverse Events (CTCAE)[32].

Statistical analysis

OpenMeta (Analyst) from the Agency for Healthcare 
Research and Quality was used for statistical analysis. A 
binary random-effects model (the DerSimonian-Laird 
method) was chosen. Weighted summary rates were identi-
fied, testing for heterogeneity was completed, and pooled 
estimates were attained for all the outcomes of interest.
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Results

Single fraction radiosurgery

The rate of prior radiation was 2%. The rate of prior sur-
gery was 35%.

The rate of tumor control was 95.1%, with actuarial 
rates at 5 and 10 years of 96% and 89%, respectively. The 
tumor progression rate was 7.7%, after a median interval 
of 94 months (12–233).

The rate of visual stability was 90.4%, including 
29.3% with visual improvement after a mean interval of 
54.6 months (3–151.7). The rate of visual decline was 
9.6% after a median interval of 52 months (range 0.2–133). 
The rate of blindness was extremely low (1.2%).

Hypofractionated radiosurgery

The funnel plots are seen in Fig. 2.The overall rate of prior 
radiation was 5.6% (range 3.2–14.4, I2 = 80.52%, p hetero-
geneity = 0.02, p = 0.2; Fig. 2a). The overall rate of prior 
surgery was 54.4% (range 40.9–67.8, I2 = 87.4%, p hetero-
geneity < 0.001, p < 0.001; Fig. 2b).

The overall rate of tumor control was 95.6% (range 
92.1–99.1, I2 = 73.47%, p heterogeneity = 0.01, p < 0.001; 
Fig. 2c). The overall rate of tumor progression was 4.4% 
(range 0.9–7.9, I2 = 73.47%, p heterogeneity = 0.01, p = 0.01; 
Fig. 2d).

The overall rate of visual stability was 94.9% (range 
90.9–98.9, I2 = 77.05%, p  heterogeneity = 0.004, 
p < 0.001; Fig. 2e). Among those, the overall rate of visual 

Fig. 1  PRISMA flowchart for 
article selection
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improvement was 22.7% (range 5.0–40.3, I2 = 95.94%, p 
heterogeneity < 0.001, p = 0.01; Fig. 2f). The overall rate 
of visual decline was 5.1% (range 1.1–9.1, I2 = 77.05%, p 
heterogeneity = 0.004, p = 0.013; Fig. 2g).

Discussion

Our systematic review and meta-analysis show that for 
single fraction SRS, the overall rate of tumor control was 
95.1% and of tumor progression was 7.7%. The overall rate 
of visual stability (patients who either improved or had no 
change in visual status after treatment) was 90.4%, with vis-
ual improvement of 29.4% and visual decline of 9.6%. For 
hfRS, the overall rate of tumor control was 95.6% and tumor 
progression was 4.4%. The overall rate of visual stability was 
94.9%, with visual improvement of 22.7% and visual decline 
of 5.1% (1.1–9.1%).

From a radiobiological point of view, meningiomas can 
be considered on the spectrum of late-responding normal 
tissue to normal brain tissue [33]. Hence, a high dose per 
fraction might improve local control [34]. Moreover, shorter 
treatment duration is associated with higher biologically 
effective dose (BED), leading to further improvement in 
local control [35–38]. Radiation-induced optic neuropathy 
(RION) may occur due to vascular occlusion, damage to 
the blood–brain barrier, free radical injury, DNA damage, 
and demyelination [39]. The mechanism of damage may be 
different based on dosage, as cell response to different irra-
diation doses is not always the same [40, 41].

Radiosurgery is a minimally invasive management 
approach for patients with skull-base meningiomas, par-
ticularly useful for lesions intimately involved with critical 
neurovascular structures, those that are difficult to access 
surgically, or in frail patients who are poor microsurgical 
candidates [42]. Commonly used dose regimens for WHO 
grade I, II, and III meningiomas treated with single fraction 
SRS are 12–16 Gy, 16–20 Gy, and 18–24 Gy, respectively 
[43, 44], but even with increased treatment dose, the long-
term tumor control achieved is worse with increased WHO 
grade. Historical data [2] suggested that the maximal dose 
to the optic pathways should be kept below 8 Gy [45]. How-
ever, recent series suggested that such dose might be safer up 
to 12 Gy [20], with minimal risk for RION. Of note, RION 
is not necessarily immediate and can occur months and/or 
years after SRS, manifesting as painless visual loss, changes 
in color vision, and pupillary abnormalities [46]. Given that 
the acceptable dose limit to the optic apparatus is approxi-
mately 10–12 Gy [20–22], the gradients that can be achieved 
with single-session photon SRS are usually challenging for 
the delivery of an adequate dose of radiation to the tumor 
while also keeping harmless doses to the optic nerve. Hence, 
perioptic meningiomas treated with single fraction SRS may Ta
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Fig. 2  Tumor control and visual 
status for hypofractionated 
radiosurgery
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receive smaller doses than typically used for meningiomas to 
accommodate this 10–12 Gy dose limit and reduce the risk 
of RION. This may lead to suboptimal tumor control, and 
visual deterioration may occur due to tumor progression.

Hypofractionated RS could be the best solution for perio-
ptic meningiomas, balancing the risk of RION with reliable 
tumor control. The emergence of frameless, image-guided 
radiosurgery techniques [47] allows multisession stereo-
tactic treatments, usually 2–5 fractions of 4–10 Gy each, 
comparable in terms of radiobiological effect to single frac-
tion SRS, with lower toxicity to the optic apparatus [48]. 
Hypofractionation enables a better chance of preservation 
of surrounding normal tissues and excellent tumor control 
[49, 50]. The most used fractionation scheme in the analyzed 
data was 25 Gy in 5 fractions. Significant variability exists in 
the literature, and there is currently no gold standard hypo-
fractionated regimen.

The results of the present meta-analysis are in agreement 
with recent studies from Speckter et al., suggesting that 
there might be a benefit for hypofractionation with perioptic 
lesions, not only in benign but also in malignant tumors, due 
to the very low alpha/beta ratio of the optic system which is 
considered to be around 1.03 [51].

Although fractionated external beam radiation therapy 
(EBRT) is a common treatment approach for perioptic men-
ingiomas, the reported tumor control rates are only 84% [52, 
53]. Such rates are not as good as SRS, and complications 
are still possible [54]. The Quantec Project demonstrated 
that for conventional fractioned radiotherapy with fractiona-
tions of 1.8 to 2 Gy, the risk of RION increases (3–7%) 
when the treatment dose is 55–60 Gy and goes even higher 
for doses above 60 Gy (7–20%) [55]. Another drawback of 
fractionated radiotherapy is the risk of neurocognitive dys-
function, including in patients treated for meningiomas [56].

Our meta-analysis has several inherent limitations. First, 
the treatment approaches and follow-up algorithm might be 
different from one intuition to another. Second, the timing of 
SRS or hfRS might be diverse. Third, except for one study 
[24], all reviewed retrospective data. Some of these stud-
ies have sample overlap, but the exact amount is not speci-
fied [23, 24, 30]. It was not possible to separate overlapped 
and unique patients in each study. Our preference was to 
include all the studies, so that there was no loss of the unique 
patients of each individual study. However, a sample over-
lap could bias the data. In addition, prior radiotherapy and 
prior surgery might have influenced the reported outcomes. 
Moreover, there was only one study in the single fraction 
SRS group. Another limitation comes from the histological 
grading, either unknown (as a diagnosis based on MRI) or 
including a few rare cases of WHO grade II meningiomas 
(which have a different response to radiation in terms of 
tumor control). Lastly, treatment using single fraction SRS 
only included two studies, while hfRS included 4 studies.

Conclusions

For single fraction SRS, the overall rate of tumor control 
was 95.1% and tumor progression was 7.7%. The overall 
rate of visual stability was 90.4% (including an improve-
ment of 29.3%), while visual decline was 9.6%. For hfRS, 
the overall rate of tumor control was 95.6% with a small 
rate of tumor progression of 4.4%. The overall rate of 
visual stability was 94.9% (including visual improvement 
of 22.7%), while visual decline was 5.1% (range 1.1–9.1).

In sum and as analyzed here, tumor control rates are 
similar between techniques. Single fraction SRS resulted 
in higher visual improvement rates (29.3% versus 22.7%). 
Overall rates of visual decline were lower in hfRS as 
compared with single fraction SRS (5.1% versus 9.1%). 
However, such rates were highly variable among the hfRS 
series, with the highest rate reaching 9.4%, which is com-
parable to single fraction SRS.

The authors of the present meta-analysis recommend 
prescribing at least 12 Gy for WHO I meningioma, while 
keeping the dose to the OA less than 10 Gy.

Both hypofractionated regimens and single fraction 
SRS can be considered.
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