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Abstract
Endoscopic transsphenoidal surgery is a novel surgical technique requiring specific training. Different models and simula-
tors have been recently suggested for it, but no systematic review is available. To provide a systematic and critical literature 
review and up-to-date description of the training models or simulators dedicated to endoscopic transsphenoidal surgery. 
A search was performed on PubMed and Scopus databases for articles published until February 2023; Google was also 
searched to document commercially available. For each model, the following features were recorded: training performed, 
tumor/arachnoid reproduction, assessment and validation, and cost. Of the 1199 retrieved articles, 101 were included in the 
final analysis. The described models can be subdivided into 5 major categories: (1) enhanced cadaveric heads; (2) animal 
models; (3) training artificial solutions, with increasing complexity (from “box-trainers” to multi-material, ct-based models); 
(4) training simulators, based on virtual or augmented reality; (5) Pre-operative planning models and simulators. Each avail-
able training model has specific advantages and limitations. Costs are high for cadaver-based solutions and vary significantly 
for the other solutions. Cheaper solutions seem useful only for the first stages of training. Most models do not provide a 
simulation of the sellar tumor, and a realistic simulation of the suprasellar arachnoid. Most artificial models do not provide a 
realistic and cost-efficient simulation of the most delicate and relatively common phase of surgery, i.e., tumor removal with 
arachnoid preservation; current research should optimize this to train future neurosurgical generations efficiently and safely.
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Introduction

Endoscopic transsphenoidal surgery is a novel surgical 
technique that recently evolved in endoscopic skull base 
surgery [1]. As we have learned to exploit the advantages 
of the relatively large median and paramedian corridors to 
the skull base [2–5], the indications for this surgery have 
been expanding, together with its complexity.

It is well recognized that endoscopic transsphenoidal 
surgery has a long learning curve [6], which requires inte-
grated and specific training [7]. Though traditional neu-
rosurgical training is still primarily based on experience 
in the operating room, many complementary methods are 
now available. The cadaver laboratory has been classi-
cally used to acquire basic technical skills and knowledge 
of detailed surgical anatomy. Still, high maintenance costs 
and the challenge of simulating pathologies might limit its 
utility. Thanks to 3D printing technologies, it has become 
possible to create customized models replicating normal 
and pathological anatomy [8]. Furthermore, thanks to vir-
tual reality (VR) development, simulators may provide a 
repeatable experience in a more complex anatomical envi-
ronment. In addition, the development of augmented real-
ity (AR) simulators might enhance the quality of training.

In this evolving scenario, this review aims to provide 
a systematic and up-to-date description of the training 
solutions for endoscopic transsphenoidal surgery, along 
with their technical details, costs, utility for surgical skills 
development, and validation.

Material and methods

Search strategy

A systematic review, following the PRISMA 2020 state-
ment [9, 10], was performed by searching articles pub-
lished until February 2023 on PubMed and Scopus, with 
the following keywords: training AND (transsphenoidal 
OR transnasal) AND (phantom OR simulator OR model); 
physical AND (simulator OR phantom OR model) AND 
(endoscopic endonasal); (Pituitary OR hypophysis) AND 
surgery AND training AND (model OR phantom OR sim-
ulator); (transsphenoidal) AND ((3D print*) OR (three 
dimension* print*)); ((3D print*) OR (three dimension* 
print*)) AND tumor AND pituitary OR hypophysis; (Endo-
scopic endonasal) AND ((3D print*) OR (three dimension* 
print*)); (neurosurgical) AND training AND ((phantom) 
OR (model) OR (simulator)) AND (3D print*) OR (three 
dimension* print*); (Skull base) AND (surgery) AND 
(training) AND ((model) OR (phantom) OR (simulator)).

Additional references and models or simulators used for 
training in endoscopic transsphenoidal surgery were iden-
tified by reference analysis and investigations on the web 
using the Google search engine.

Inclusion and exclusion criteria

Inclusion criteria were as follows: English Language, training 
models, or simulators for endoscopic transsphenoidal surgery.

Exclusion criteria were the following: non-English lan-
guage, papers unavailable at our libraries, models/simula-
tors for other surgical interventions, and other studies (e.g., 
reviews with no novel data).

Quality assessment and data extraction

Articles were imported into the reference management soft-
ware Zotero (version 6.0.8), and duplicates were removed. 
AM and GS examined the title and abstract of the retrieved 
records, and non-relevant citations were excluded. Any disa-
greement was resolved by discussion between the reviewers. 
For each selected study, an accurate full-text analysis was 
performed to extract the following information about the 
training model or simulator, when available: reproduced 
anatomy, data on training and validation studies, and costs.

The selected studies were divided into the following cat-
egories (Fig. 1):

1.	 Enhanced cadaver models (ECH);
2.	 Animal models (AM);
3.	 Training models;

3.1	Box-Trainers;
3.2	CT-based: mono-material model (m), multi-material 

model (M), and the “EggHead”;

4.	 Training Simulators: virtual reality (VR) simulator and 
augmented reality (AR) simulator;

5.	 Preoperative planning models/simulators.

The difference between “model” and “simulator” is that 
simulators are models in a virtual reality environment and 
with real-time feedback for the surgeon.

Each training model/simulator was listed in a table based 
on the category. In addition, each model was described in the 
table reporting the following data when available:

1.	 First author and year of publication for academic reports, 
or name of the developers and nation, for commercially 
available models/simulator (CA);

2.	 whether the model included the tumor (T) and the arach-
noid membrane (A) in their model;
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3.	 Simulated tasks for which the model was conceived and 
used;

4.	 Assessment or validation of the model;
5.	 The reported cost of the used materials or the retail 

price.

For the CT-based training models, a 5-point sub-col-
umn was added to evaluate their anatomical reliability and 
defined “anatomy score.” The sub-column score gives an 
overall evaluation of the anatomical accuracy of the model; 
points are given according to the design of the model: +1 
point per mono-material (m) models or +2 points for multi-
material (M) ones M; +1 or +2 points according to the 
degree of reproduced details, such as the skin, dura mater, 
optic nerve, or ICA; and +1 point if the tumor or the arach-
noid are reproduced.

Results

The initial literature search yielded 1199 articles: 675 from 
PubMed and 524 from Scopus. Of these articles, 568 were 
removed before screening because they were duplicates. 
The remaining 631 articles were screened and evaluated by 
title. At this point, 380 articles were excluded, and a full-
text screening was performed to determine if the remaining 
251 articles met the inclusion criteria. Of the 251 articles 
identified for retrieval, 2 were removed (because the full text 
was not available). A total of 249 reports were screened for 

eligibility and 181 were removed because they did not meet 
the inclusion criteria, specifically 15 were removed because 
of language; 8 were removed because of experience with a 
pre-existing model or simulator; 76 were removed because 
the model/simulator described was used to simulate other 
surgeries; 51 were removed because no model/simulator 
was described in the reports; 9 were removed because they 
were designed for planning; and 22 were removed because 
they were previous reviews of the literature. Finally, 101 
reports were included in this systematic review, including 
6 articles retrieved from previous papers [11–32] and 28 
websites (Fig. 2).

Enhanced cadaver models

The cadaver-based training models can be divided into three 
main groups, according to the training experience they pro-
vide (Table 1): tumor resection [33, 34, 38, 46], management 
of ICA injury [35–37, 41, 43, 44], and CSF leak repair [41, 
42, 45, 47].

The tumor resection models are designed to train neu-
rosurgeons to resect a sellar tumor [33, 34, 38]. The idea is 
based on the work of Gragnaniello et al. who injected resin 
into the sella turcica to mimic the texture and location of a 
pituitary tumor [33].

In ICA injury models, a red-dyed solution is pumped into 
the arterial system to mimic blood [35–37, 41, 43, 44]; an 
ICA lesion is caused, and the surgeon can be trained to deal 
with it.

Fig. 1   Training models and 
simulators diagram
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The CSF models are obtained by perfusing a water-
based solution in the subarachnoid or subdural space so 
that the surgeon can be trained in skull base reconstruction 
[39, 40, 42, 45].

Although anatomical specimens are intuitively used at 
their best only once, some models can be used multiple times 
for training, lowering their total cost [37, 41, 48]. For exam-
ple, Mladina et al. [49] reported a cost of $1520 per resident.

Animal models

These models use animals to provide training, mainly 
on surgical instrumentation handling (Table 2). The 
animals include Wistar rats [50], lambs [49, 54, 56, 
58], and sheep [55, 57] and also one hybrid model spe-
cifically designed to manage ICA rupture with a live 
sheep [51–53].
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Fig. 2   PRISMA 2020 flow chart
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Artificial models

By definition, these models are fabricated artificially. 
They can be divided into two major categories: the first 
is represented by the so-called box-trainers (Table 3), 
while the second comprises anatomically more realistic 
models (Table 4). Artificial training models are con-
sidered the most cost-effective alternative to cadaver-
based training [89]. Tables 3 and 4 report each model 
costs when available.

Box‑trainer

If compared to CT-based models, the anatomical accuracy 
of box-trainers is significantly lower, but they are generally 
easier to fabricate and cheaper.

The models under this category are characterized by a 
box with two holes representing the head and the nostrils. 
Different materials and training modules can be used inside 
the box, e.g., chicken wing or tangerine [60, 62, 66, 68], 
rings, and pegs, to create specifically designed exercises [59, 

Table 1   Enhanced cadaver 
models. The table reports the 
ECH models that have been 
modified to simulate different 
surgeries, the simulated task, 
who assessed the model, and 
whenever available, the cost

$ US dollars, $/head US dollars x cadaveric head, $/trainee US dollars × trainee, CSFL cerebrospinal fluid 
leakage, CSFLR cerebrospinal fluid leakage repair, Dev. developers, ECH enhanced cadaver models, EETA 
endoscopic endonasal transsphenoidal approach, ETTA​ endoscopic transnasal transsphenoidal approach, 
FA first author, ICAI internal carotid artery injury, ICAIR internal carotid artery injury repair, n/a not avail-
able, SBS skull base surgery, SRSP stratathane resin ST-504 polymer, T tumor, Tr tumor resection
a 500–700 $ per cadaver head
b Marginal cost per trainee

FA/Dev. (YOP/nation) ECH Simulated task Assessment Cost/price

Type T

Gragnaniello (2010) [33] Tr SRSP SBS Experts n/a
Berhouma (2013) [34] Tr SRSP EETA Authors n/a
Pham (2014) [35] ICAI - ICAIR Residents n/a
Ciporen (2017) [36] ICAI - ICAIR Residents 600 $a

Pacca (2017) [37] ICAI - ICAIR Surgeons n/a
Gagliardi (2018) [38] Tr SRSP EETA Surgeons n/a
AlQahtani (2018, 2021) [39, 40] CSFL - CSFLR Surgeons n/a
Shen (2018) [41] ICAI - ICAI Surgeons n/a
Christian (2018) [42] CSFL - CSFLR Residents n/a
Donoho (2019, 2021) [43, 44] ICAI - ICAIR Residents 275 $b

Mattavelli (2020) [45] CSFL - CSFLR Experts n/a
Li (2022) [46] Tr - ETTA​ Surgeons n/a

Table 2   Animal-based models. 
The table reports animal-based 
training models, the simulated 
task, who assessed the model, 
and whenever available, the cost

$ US dollars, CSFLR cerebrospinal fluid leak repair, Dev. developers, EESBS endoscopic endonasal skull-
base surgery, EESS endoscopic endonasal sinus surgery, ERT endoscopic rhinology tasks, ETr endscopic 
training, FA first author, ICAIR internal carotid artery injury repair, n/a not available, YOP year of publica-
tion
c This model is hybrid as the SIMONT artificial model is also used

FA/Dev. (YOP/nation) Animal Simulated task Assessment Cost/price

Fernandez-Miranda (2010) [50] Wistar rat EESBS Surgeons n/a
Valentine (2011, 2016, 2016) [51–53] Sheepc ICAI Authors n/a
Mladina (2013) [54] Lamb CSFL Authors n/a
Awad (2014) [55] Sheep ERT Surgeons 6$
Skitarelić (2015) [56] Lamb EESS Authors 2$
Isaacson (2015) [57] Sheep ETr Authors n/a
Mallmann (2016) [58] Lamb EESS Surgeons n/a
Mladina (2018) [49] Lamb ESSBS Residents 3–4$
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61, 63–65, 69]. These models aim to develop the surgeon’s 
dexterity [68]. The box-trainers are reported in Table 3.

CT‑based models

These training models are developed from patient-specific 
CT data (Table 4). The overall level of anatomical accuracy 
is strongly related to the design, materials, and technology 
used.

Some are mono-material solutions [70, 72, 81], while oth-
ers are multi-material to reproduce the different tissues of 
the human head more accurately [66, 71, 73, 74, 76–80, 82, 
83, 85–88, 101, 102, 105].

A brilliant and cheap solution frequently incorporated 
in CT-based models is the “EggHead,” described by Engel 
et al. [77]: a chicken or quail egg reproduces the sellar region 
anatomy [46, 67, 72, 74, 77, 80, 85]. The eggshell mim-
ics the sphenoid bone, the vitelline membrane is the dura 
mater, and the albumen and yolk represent the contents of 
the sella. According to Wen et al. [80], the egg may be raw 
or soft-boiled.

Among multi-material training models, some are com-
mercially available, such as SIMONT by ProDelphus 
[91], Kezlex: A22 [98], A39 [99], and A43 [100] by Japan 
Medical Company [96]. The Sinus Model Otorhino Neuro 
Trainer, SIMONT - Otorhino Surgical Trainer, is the train-
ing model developed which allows the performing of many 
neurosurgical operations [93], including removing the 
pituitary adenoma. One of the most innovative features is 

Neoderma®, the material developed by Pro Delphus used to 
mimic the mechanical properties of the skin and the mucous 
membranes [94, 95, 104]. The model is available on the 
website [92] for US$ 3798.00, while the portable version 
costs US$ 1630. In the literature, its use has been described 
by Valentine et al. [51–53].

Kezlex is a series of training models developed by Japan 
Medical Company [96]. Among all the training solutions 
[97], the most pertinent are models A22 [98], A39 [99], and 
A43 [100]. Oyama et al. described their experience with 
the A22 for various neurosurgical approaches. Maza et al. 
[101] described the A43 model. This training model was 
developed to help the neurosurgeon deal with a catastrophic 
ICA injury. The cost is not reported on the website, but Muto 
et al. [102] reported in their article the cost of the A43 model 
of $4000 plus $250 for the reusable platform.

Simulators

Training simulators can be divided into two categories, as 
they are either based on virtual (VR) or augmented reality 
(AR). Table 5 reports the relative costs of each model when 
available.

Virtual reality

VR simulators consist of a PC with a virtual environment 
software that represents the patient’s data, and the sur-
geons interact with it by simulating actual surgeries using 

Table 3   Non-anatomical (box-
trainer). The table reports the 
box-trainers, the simulated task, 
who assessed the model, and 
whenever available, the cost

$ US dollars, A arachnoid, CB the tumor was simulated with the medullar content of a chicken bone, 
CSFLR cerebrospinal fluid leak repair, Dev. developers, E exercise based box-trainer, EEA endoscopic 
endonasal approach, EES endoscopic endonasal surgery, EETA endoscopic endonasal transsphenoidal 
approach, EF exercise and food based box-trainer, Egg chicken or quail egg used to mimic the content of 
the sella turcica, F food based box-trainer, FA first author, HI handling instruments, n/a not available, T 
tumor, TE transnasal endoscopy, TP transnasal procedures, YOP year of publication
d Additional training simulation with the chicken wing inside a Phacon training model
e Improved version of Sing et al. box-trainer
f 15$ for the disposable parts

FA/Dev. (YOP/nation) Box-Trainer Simulated Task Assessment Cost/price

Type T A

Hirayama (2013) [59] E - - HI Surgeons 180$
Jusue-Torres (2013) [60] Fd - - EEA Surgeons 10$
Singh (2016) [61] E - - EES Surgeons 100–150$
Sanromán-Álvarez (2017) [62] EF Egg - TP Residents n/a
Berkowitz (2017) [63] E - - TE Students n/a
Srivastav (2017) [64] Ee - - HI Novices n/a
Xie (2018) [65] EF - - CSFLR Surgeons 100$f

Altun (2020) [66] F CB - EETA Experts 100$
Gallet (2021) [67] EF - - EES Surgeons n/a
Tikka (2022) [68] F - - EEA Fellows n/a
Bright (2022) [69] E - - TP Surgeons 15$
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joysticks [106, 107, 109], special haptic devices [108, 115, 
118, 121, 147], or surgical instruments [114]. Virtual real-
ity simulators are a technologically advanced alternative 
to train surgeons to perform complex surgeries before they 
enter the operating room [3, 60].

Two different VR simulators were found to be available 
online, the NeuroVR and Voxel-Man Sinus.

The NeuroTouch-Endo, now NeuroVR, is the training 
simulator developed by NRC and NeuroSim [116] (Can-
ada); it is a VR simulator that simulates endoscopic trans-
nasal procedures [132] with MRI data for patient-specific 
features. In addition, it has haptic devices that provide 
force feedback [115, 133], and it is available on the CAE 
website [134].

Table 4   Training models. The table reports the training model, 
including m models, M models, and EggHead, the simulated task, 
who assessed the model, and whenever available, the cost. The sub-
column score gives an overall evaluation on the anatomical accuracy 

of the model; points are given according to the design of the model: 
+1 point per m models or +2 points for M; +1 or +2 points to the 
details reproduced such as the skin, the dura mother, the optic nerve, 
or the ICA; and +1 point if the tumor or the arachnoid are reproduced

$ US dollars, € Euros, CSFLR cerebrospinal fluid leak repair, Dev. developers, EEA endoscopic endonasal approach, EETA endoscopic endo-
nasal transsphenoidal approach, Egg chicken or quail egg used to mimic the content of the sella turcica, ESBS endoscopic skull-base surgery, 
ESS endoscopic sinus surgery, ETA endoscopic transsphenoidal approach, ETr endoscopic training, ETTA​ endoscopic transnasal transsphenoidal 
approach, FA first author, m mono-material, M multi-material, n/a not available, ns not specified, NT neurosurgical training, PESS pediatric 
endoscopic sinus surgery, Pm polyvinyl alcohol cryogel mixed with water, PS paranasal sinus, SB skull-base, SG silica gel, SR sellar region, SBS 
skull base surgery, T tumor, TP transsphenoidal procedure, Y yuan, YOP year of publication
g Cost per model
h Production cost
I Material cost
j The arachnoid was reproduced for a non-transsphenoidal training model
k In the article are reported 3 different model; the M was chosen as it is considered the best option by the authors

FA/Dev. (YOP/nation) Training model Simulated task Assessment Cost/price

Type/name Anatomy T A Score

Briner (2007) [70] m PS - - 3/5 ESS Experts n/a
Chen (2010) [71] M Head - - 4/5 EETA Authors n/a
Okuda (2010) [72] m SB Egg - 2/5 EETA Authors n/a
Waran (2012) [73] M SB - - 3/5 ETr Experts n/a
Okuda (2014) [74] M Head Egg - 3/5 TP Surgeons n/a
Chan (2015) [75] m SB - - 2/5 ETr Experts 600$g

Chan (2015) [75] M SB - - 3/5 ESS Expert 900$g

Narayanan (2015) [76] M Head - - 3/5 TP Surgeons n/a
Engel (2015) [77] M Head Egg - 4/5 TP Surgeons 2500h

Tai (2016) [78] M Head - - 3/5 EEA Surgeons 500$i

Kashapov (2016) [79] M Head SR - 4/5 ESBS Surgeons 200$h

Wen (2016) [80] M Head Egg - 4/5 EETA Surgeons n/a
Shah (2016) [81] m Head - - 2/5 EETA Resident n/a
Zheng (2018) [82] M Head - - 4/5 ESBS Experts 500$i

Masuda (2018) [83] M Head - - 4/5 EETA Authors n/a
Lin (2018) [84] M SR ns nsj 4/5 ETA Experts n/a
Ding (2019) [85] M Head Egg - 5/5 EETA Residents n/a
Zheng (2019) [86] Mk SR ns - 5/5 EETA Residents n/a
Shen (2020) [87] M Head SG - 5/5 EETA Authors n/a
London (2021) [88] m Head - - 3/5 PESS Surgeons 63$g

Masalha (2021) [89] M Head - - 4/5 CSFLR Surgeons 80$g

Lai (2021) [90] M Head Pm - 5/5 ESBS Experts 570$g

Li (2022) [46] m Head Egg - 2/5 ETTA​ Surgeons 200Yg

Li (2022) [46] M Head - - 4/5 ETTA​ Surgeons 3000Yg

Pro Delphus (Brazil) [91] SIMONT [92] Head ns - NT[93] [51–53, 94, 95] 3798$–1630$
JMC (Japan) [96, 97] Kezlex [98–100] Head - - NT [101–104] n/a
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The Voxel-Man Sinus [126] is the training simulator 
developed by the University Medical Center Hamburg-
Eppendorf (Germany) [127] for paranasal sinus surgery 
[128]. The Voxel-Man provides an accurate haptic and visual 
representation of surgery and is based on standard PC hard-
ware [129]. The Voxel-Man can be purchased [130] for $ 
145,255.95$ [131].

Augmented reality simulators

AR simulators are VR simulators where surgeons inter-
act with a physical, CT-based [75, 117, 120, 122, 123], or 
cadaver [110–114, 117] head. Additionally, Cai et al. [125] 
developed an application that can be used for AR simulators. 
Two models were available for purchase, the Phacon Sinus 
Trainer and the TNS Box.

The PHACON Sinus Trainer comprises a series of 
simulators developed by Phacon GmbH (Germany) [135]. 
The most suitable for this review were found with the web 
research: the [S-00005] PHACON Sinus Trainer [137], 
available at 8.910€ [140], and the [S-00007] PHACON 
Sinus Assistant [136], purchasable at 1.870€ [139]. The 
module for the transnasal approach, the [SN-ah] PHACON 
Sinus Patient “Meyer” – pituitary tumor, can be purchased 
separately for 290€ [141]. The simulator consists of a multi-
material modular head connected via visual registration to 
specially developed software that assists the neurosurgeon 
by providing CT data displayed as a virtual 3D model; it can 
automatically detect injuries to high-risk structures.

The TNS Box is one of the multiple simulators developed 
by UpSurgeOn [142]. It consists of an anatomically accu-
rate modular and multi-material simulator designed explic-
itly for the transsphenoidal approach to the pituitary gland. 

Table 5   Training simulators. The table reports VR and AR simula-
tors. In the sub-column, “Devices” is reported the tools that surgeons 
use to interact with the simulator, while the sub-column “Model” 

is for the AR simulators only, and it is reported the physical model 
where the simulation is performed

$ US dollars, € Euros, A arachnoid, CH cadaver head, Dev. developers, disposable n/a disposable cavities cost not available, EEA endoscopic 
endonasal approach, EETA endoscopic endonasal transsphenoidal approach, ESBS endoscopic skull-base surgery, ESS endoscopic sinus surgery, 
ESSBS endoscopic sinus and skull-base surgery, FA first author, m mono-material head, M multi-material head, n/a not available, NT neurosurgi-
cal training, disp disposable cavities, PTR pituitary tumor resection, RTBTR robotic transsphenoidal brain tumor resection, YOP year of publica-
tion
l Simulator developed upon the NeuroVR platform
m Application for AR training simulator

FA/Dev. (YOP/nation) Training simulator Simulated task Assessment Cost

Type/name Devices Model T A

Wolfsberger (2004, 2006) 
[106, 107]

VR Joystick - T - EETA Authors n/a

Pöβneck (2005) [108] VR Haptic - - - ESS Residents n/a
Neubauer (2005) [109] VR Joystick - T - EETA Authors n/a
Dixon (2011, 2012, 2014) 

[110–112]
AR Instruments CH - - ESBS Experts n/a

Prisman (2011) [113] AR Instruments CH - - ESBS Surgeons n/a
De Notaris (2013) [114] VR Instruments CH - - EEA Residents n/a
Varshney (2014) [115] VRl [116] Haptic - - - ESS Authors n/a
Li (2016) [117] AR Instruments m, CH - - ESBS Surgeons n/a
Won (2018) [118] VR [119] Haptic - - - ESBS Authors n/a
Barber (2018) [120] AR Instruments m T - ESS Authors 1000$
Heredia-Pérez (2019) [121] VR Haptic - T - REETA Surgeons n/a
Lai (2020) [122, 123] AR Instruments m - - ESBS - n/a
Kim (2020) [124] VR Haptic - - - ESSBS Experts n/a
Cai (2022) [125] ARm - - T - PTR - n/a
UKE (Germany) [126, 127] Voxel-Man Sinus Instruments - - - ESS [128] [129] 145,255.95$ [130, 131]
NRC and NeuroSim (Canada) 

[116]
NeuroVR Instruments - T - NT [132] [115, 133] n/a [134]

Phacon GmbH (Germany) 
[135]

Phacon Instruments M - - NT [136, 137] [60, 138] 1870€ [139]; 8910€ [140]; 290€ 
[141]

UpSurgeOn S.r.l. (Italy) [142] TNS Instruments M T - EETA [143] [144] 599–€699€ [145]; disposable 
n/a [146]
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The simulator comprises an external box with a disposable 
nasal cavity and a face mask on the front. The TNS is pro-
vided with an App available on the App Store or Google 
Play, which improves the training experience with a virtual 
reality environment [143]. The TNS is now available at 
UpSurgeOn website [145] at €599–€699. It is also possible 
to purchase disposable nasal cavities separately [146]. Two 
articles reported a positive experience with the simulators 
[144, 148].

Models and simulators for surgical planning

Table 6 reports models and simulators conceived for surgical 
planning, which are not included in this systematic review 
but might help neurosurgeons improve their knowledge on 
the subject [28, 149–154, 156–158].

Discussion

It is recognized that the endoscopic endonasal transsphenoi-
dal approach has a long learning curve [6]. To ensure safe 
and effective surgery, it is crucial to have excellent hand-
eye coordination under the endoscopic vision and make 
sound clinical and intraoperative judgments. The required 
confidence can only be achieved after many surgeries in the 
operating room. However, this learning process can be sped 
up with proper training in a safe environment outside the 
operating room.

This systematic review aimed to show all alternatives for 
training in endoscopic transsphenoidal surgery. We found 
four categories of training systems: enhanced cadaver head 
training models, animal models, training models (CT-based, 
box-trainer, and EggHead), and training simulators (virtual 
reality and augmented reality).

Human cadaver heads remain the gold standard for train-
ing: the anatomical reliability is still higher if compared to 

every other option [21]. However, their low availability [18, 
40, 45] and the fact that they are suitable for limited training 
experience make them an expensive and not easily accessi-
ble option [42]: the cost of one human cadaveric head ranges 
from almost 600$ [48] to 1000$ [79], while Mladina et al. 
[49] reported a cost of 1520$ per resident for training. In 
addition, the maintenance costs of anatomy laboratories are 
high [17]. Using animal heads is a cheap and readily avail-
able option, but the anatomy is divergent [56]. Nevertheless, 
they can be considered a good alternative as an inexpensive 
and simple system to teach residents the dexterity required 
to fully exploit the more expensive cadaver head, as stated 
by Mladina et al. [49]. Their main advantages are the costs 
which are lower than 6$ [49, 55, 56], making them the 
cheapest solution for initial training.

Compared to human and animal specimens, training mod-
els have the advantage of being versatile. The developers can 
choose the anatomical accuracy level they want to obtain, 
which is directly related to the costs of the system. Modular 
solutions, in which not all parts are disposable, are a way to 
optimize the costs of this solution.

Among the different solutions, the box-trainers are 
cheaper and easier to fabricate. However, the low degree 
of anatomical accuracy makes them suitable as a first tool 
to teach how to handle surgical instruments in the narrow 
space of the nasal cavities, and they can be a useful first 
experience before training with more expensive models like 
the cadaveric head [68].

CT-based training models, on the other hand, poten-
tially have a significantly higher level of accuracy related 
to the design complexity and the background knowledge 
required. The EggHead represents a brilliant solution as 
it mimics the sellar region with a chicken or quail egg 
in an economical and repeatable way [46, 72, 74, 77, 
80, 85]. What needs to be added is a reproduction of 
blood and CSF [76]; the latter was implemented only 
in the training model of Mashala et al. [89]. Costs are 

Table 6   Surgical planning 
training models/simulators: the 
model and simulators reported 
in this table are those designed 
to help neurosurgeon during the 
preoperative planning. BR Blue 
Resin (Vero Cyan®, Stratasys)

$ US dollars, A arachnoid, BR blue resin (Vero Cyan®, Stratasys), Dev. developers, EETA endoscopic 
endonasal transsphenoidal approach, ESBS endoscopic skull-base surgery, FA first author, m mono-mate-
rial, M multi-material, n/a not available, NT neurosurgical training, PSS paranasal sinus surgery, PS-SB 
paranasal sinus–skull-base, SB skull-base, SR sellar region, T tumor, Y yuan, YOP year of publication

FA/Dev. (YOP/nation) Surgical planning model/simulator Planning Assessment Cost

Type/name Anatomy T A

Shinomiya (2018) [28] m SR BR - EETA Experts n/a
Zhang et al. (2018) [149] m PS-SB - - PSS Experts 3$/m
Huang (2019, 2021) [150, 151] m SR T - EETA Authors 900–1500Y
Panesar (2021) [152] M SB T - ESBS Experts 3–40$/m
Chaudhary (2021) [153] m SR T - EETA Experts n/a
Chopra (2021) [154] m SR T - EETA Authors n/a
Bracco Group (Italy) [155] Dextroscope Head - - NT [156–158] n/a
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generally low but cannot be compared to each other due 
to the different criteria by which they were determined by 
the authors, as reported in Table 4. They can be divided 
into three categories: cost per model, material cost, and 
production cost.

VR training simulators provide visually the most com-
plete experience to neurosurgeons. Their main advantage 
is the fact that the simulation can ideally be repeated an 
infinite number of times [17]. In addition, some of them 
also have a real-time feedback system that provides infor-
mation about the position of the instruments, the level of 
forces reached, and the performances of the trainees [18, 
115, 129, 133]. However, the lack of a “physical head” 
where to perform the surgery can be limiting, even if many 
sensors and haptic devices have been studied and added 
[121]. Another defect of some VR systems is the low qual-
ity of the visual effects and the fact that the instruments 
used during training sessions differ from those used in 
the operating room [106–109, 116, 118, 121, 124, 131]. 
The initial costs of VR training simulators are the highest 
among the different solutions; i.e., the Voxel-Man Sinus 
training simulator is available for 145,255.95$ [130, 131]. 
However, the fact that surgeries can be simulated an indefi-
nite number of times makes the cost of a single training 
session low if the system is used frequently.

AR simulators with cadaver heads may be the best solu-
tion for residents as they provide the best anatomy from the 
cadaver head and real-time feedback from the VR environ-
ment [110–112, 117, 156]. However, they may also be the 
most expensive solutions: a better trade-off to reduce cost 
may be an AR simulator based on a multi-material head. 
The costs available for the training simulators are those of 
the Phacon, 8910€ [140], or 1870€ [139] and 290€ [141] 
for the cartridge, and those of the TNS, 599–699€ [145], 
plus the costs of the disposable cartridge, which it is not 
reported. Similar to CT-based training models, developing 
VR and AR simulators requires a high level of knowledge.

Finally, this review documents what is missing in most 
training solutions. Most are dedicated to the phase of the 
approach in surgery, while only a minority have developed 
simulators for sellar tumors and suprasellar arachnoid. 
Except for VR simulators, where the pituitary adenoma 
was implemented virtually, the sellar tumor has been 
simulated only in a few models using different materi-
als. In addition, ECH models have been modified to allow 
training for dealing with ICA intra-operative rupture and 
CSF leak. We believe it might be of interest to develop a 
modular training model that provides a realistic simulation 
of both sellar tumors and suprasellar arachnoid to provide 
a cost-efficient way to train future generations not only in 
the surgical approach but also in the management of sellar 
tumors of different consistencies and the preservation of 
the arachnoid.

Limits of the study

The limit of this systematic review could be the lack of 
some data of the training models/simulators (e.g., the cost 
of the training model) and therefore the difficulty of com-
paring the models. Furthermore, not all models that are 
being developed are available at the moment. We expect 
that further improvements will be made soon in the field.

Conclusions

The training solutions for endoscopic transsphenoidal sur-
gery are cadaveric (human or animal) or artificial models and 
virtual reality simulators. Human cadaveric specimens con-
stitute the gold standard, as they provide a realistic environ-
ment, which specific modifications for managing ICA rupture, 
CSF leak, and tumor removal can enhance. Their availability 
is though relatively low due to relatively high costs. Virtual 
reality simulators and artificial models provided an excellent 
alternative. However, the lack of haptic realism and anatomi-
cal fidelity makes them ideal for learning the basics. Augment 
reality applied to cadaver-based models is an exciting solution 
that might be further developed in the near future.

Most artificial models do not provide a realistic and cost-
efficient simulation of the most delicate and relatively com-
mon phase of surgery, i.e., tumor removal with arachnoid 
preservation; current research should optimize this to train 
future neurosurgical generations efficiently and safely.
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