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Abstract
The pathogenesis and natural history of intracranial aneurysm (IA) remains poorly understood. To this end, animal models with
induced cerebral vessel lesions mimicking human aneurysms have provided the ability to greatly expand our understanding. In
this review, we comprehensively searched the published literature to identify studies that endogenously induced IA formation in
animals. Studies that constructed aneurysms (i.e., by surgically creating a sac) were excluded. From the eligible studies, we
reported information including the animal species, method for aneurysm induction, aneurysm definitions, evaluation methods,
aneurysm characteristics, formation rate, rupture rate, and time course. Between 1960 and 2019, 174 articles reported endogenous
animal models of IA. The majority used flow modification, hypertension, and vessel wall weakening (i.e., elastase treatment) to
induce IAs, primarily in rats and mice. Most studies utilized subjective or qualitative descriptions to define experimental
aneurysms and histology to study them. In general, experimental IAs resembled the pathobiology of the human disease in terms
of internal elastic lamina loss, medial layer degradation, and inflammatory cell infiltration. After the early 2000s, many endog-
enous animal models of IA began to incorporate state-of-the-art technology, such as gene expression profiling and 9.4-T
magnetic resonance imaging (MRI) in vivo imaging, to quantitatively analyze the biological mechanisms of IA. Future studies
aimed at longitudinally assessing IA pathobiology inmodels that incorporate aneurysm growth will likely have the largest impact
on our understanding of the disease.We believe this will be aided by high-resolution, small animal, survival imaging, in situ live-
cell imaging, and next-generation omics technology.
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Introduction

Intracranial aneurysm (IA) is a multifaceted disease that is
characterized by pathologic outpouchings of the cerebral vas-
cular wall. An estimated 3–5% of the general population har-
bors an IA [1], but the exact prevalence is unknown because
most are asymptomatic. The rupture of an IA is the most
common cause of nontraumatic subarachnoid hemorrhage, a
devastating event that carries high rates of mortality, morbid-
ity, and disability, as well as high health care costs [2].
Although IAs are a major public healthcare concern, their
pathogenesis and natural history remain poorly understood.
Aside from studies involving imaging, the only investigations
of human IA pathobiology have been performed using pre-
cious clinical samples that are rarely obtained from autopsy or
clipped IAs. Furthermore, their examination has only provid-
ed biological information about the aneurysm’s endpoint, not
its genesis or development over time, which limits delineating
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mechanisms of natural history. To this end, animal models
with induced cerebral vessel aneurysm mimicking the hu-
man disease have shown the ability to expand our under-
standing of IA, affording opportunities to unravel disease
mechanisms, identify biomarkers, and develop potential
pharmacotherapies.

Generally, animal models of IA can be categorized into two
classes. The first class induces aneurysmal lesions spontane-
ously in the cerebral vasculature in response to manipulations
that incite risk factors relevant to the disease. These are what
we are calling endogenous IA models. The second class sur-
gically creates an aneurysm pouch, typically in extracranial
arteries. These models include the creation of vein pouches
and elastase-treated, distally ligated extracranial artery stumps
[3–5]. Such surgical models have been integral in evaluating
endovascular IA interventions (e.g., aneurysm coiling and
stenting). As they have been thoroughly reviewed elsewhere
[6–8], they will not be discussed here. Instead, this reviewwill
focus on endogenous IA models, which have provided the
most knowledge of aneurysm pathobiology to date.

Nearly six decades of research have been devoted to the
development and implementation of endogenous IA models
in various animal species. In the last 20 years, extensive use of
these models has led to a deeper understanding of the biolog-
ical and molecular basis of IA formation and development.

Materials and methods

For this review, we comprehensively searched the published
literature. In PubMed, we used Medical Subject Headings
(MeSH) terms to identify studies that used animal models with
endogenously induced IAs between 01/01/1960 and 12/31/
2019 (Fig. 1). We included the MeSH terms “intracranial an-
eurysm,” “cerebral aneurysm,” “animal model,” “animal
model, experimental,” and “animal model, laboratory,” and
excluded MeSH terms “surgical,” “structure, surgically creat-
ed,” and “medical device.” Next, we excluded review articles,
as well as re-analyses of existing datasets, letters and commen-
taries, published datasets, and other articles that did not meet
our search terms. In all, we identified 174 original publications
between 1960 and 2019 (Table 1), from which we extracted
the animal species, the method for aneurysm induction, the
definition of aneurysmal lesion(s), IA evaluation methods,
aneurysm characteristics, the IA formation and rupture rates,
and the developmental time course.

In this review, we present a brief history of endogenous IA
models and summarize the methods that have been employed
for induction, investigation, and characterization of experi-
mental IAs.Wewill also discuss the strengths and weaknesses
of the various approaches and the relevance of these models to
human disease.

Results

A history of endogenous IA model development

Endogenous animal models of IA have been studied over the
last 60 years.While clinical IA studies during that time largely
focused on epidemiologic analyses and interventions, experi-
mental IA investigations have tried to understand the disease
pathophysiology, unravel mechanisms of IA formation, iden-
tify molecular targets for potential pharmacological therapies,
and understand IA rupture. Figure 2 illustrates the chronology
of the introduction of aneurysm models in terms of three as-
pects that will be discussed in this review: the animal species,
the factors used to induce aneurysms, and the technology used
for manipulation or assessment.

The earliest report of an endogenous IA animal model
was published by White et al. in 1961 [9]. In this study,
various noxious chemical solutions, i.e., hyaluronidase
(150 or 300 USP units/mL), sodium morrhuate (10% or
5%), plasmocid (1 or 5 mg/mL), and nitrogen mustard
(0.5 or 2 mg), were injected into the wall of the left internal
carotid artery (ICA) of mongrel canines to induce IA.
Hypertonic saline produced the best results, mimicking
many features of human IAs, including loss of internal
elastic lamina (IEL) and degradation of the medial layer.
In 1963, motivated by observations that IAs form in high
blood flow regions in the cerebral circulation, Hassler et al.
[10] used unilateral common carotid artery (CCA) ligation
in rabbits of unspecified strain to induce flow-mediated
cerebrovascular damage. The resulting vascular changes
were described as “consistent with aneurysms,” including
bulging, media thinning, and loss of IEL at the basilar
terminus (BT) and other bifurcations. Then in 1978, seek-
ing a small animal model of IA, Lee et al. [12] created
micro-aneurysms in rats via hypertension (a known IA risk
factor [182]) induced by unilateral nephrectomy,
deoxycorticosterone acetate (DOCA) treatment, and high
salt diet. They found lesions throughout the vasculature of
the cortex and basal ganglia 14 weeks after inducing hy-
pertension. From these early, simpler models, multi-modal
models (i.e., models inducing multiple risk factors) began
to emerge in the 1970s in an effort to increase the incidence
of IA formation [13; 14]. Notably, in 1974, Uchida et al.
[11] built upon Hassler’s model [10] by combining β-
aminopropionitrile (BAPN) with either unilateral or bilat-
eral CCA ligation in rabbits. With this approach, they were
able to produce larger and more rapidly developing lesions
at the BT [11].

One of the most important milestones in IA model devel-
opment was the rat model created by Hashimoto et al. [14]
fromKyotoUniversity in Japan. In 1978, this group combined
flow increase via unilateral CCA ligation, hypertension in-
duced by renal ligation and DOCA (2.5 mg/100 mg body
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weight) and salt diet (1% in drinking water), and vessel wall
weakening by oral administration of BAPN (0.12%) to incite
aneurysm formation in the anterior Circle of Willis (CoW) of
male Sprague-Dawley rats. This led to consistent lesion for-
mation at the anterior cerebral artery-olfactory artery (ACA-
OA) bifurcation. Histopathological studies confirmed that IAs
induced by this model share common features with human
IAs, including bulge formation, IEL loss, destructive changes
in the medial layer, and intimal hyperplasia [14]. This model
has since been employed in a large number of follow-up stud-
ies, making it one of the most extensively studied IA animal
models [54, 56, 59, 64, 66, 67, 71, 72, 74, 83, 85, 89, 90, 95].
It has largely served as the means for the most comprehensive
pathobiological research on experimental IAs, which has been
led by Tomohiro Aoki from the same group [54, 56, 59, 64,
66, 67, 71, 72, 74, 83, 85, 89, 90, 95]. The combination of
manipulations in this rat model also laid the foundation for
later efforts that added modifications in different species (e.g.,
mice), with the goal of increasing aneurysm (and rupture)
incidence or elucidating the role of specific proteins and sig-
naling pathways.

Since the incidence of IAs in humans is higher among
females [183], Suzuki et al. [22] began investigating the role
of estrogen in IA models via feminization of male Sprague-
Dawley rats in 1980. Further study on the role of estrogen was
continued by Jamous et al. [49–51] from Tokushima
University in Japan in 2005. In a series of studies, they built
upon the rat model introduced by Hashimoto, but used female
rats instead of males, removed BAPN from their diet, and
added bilateral oophorectomy (removal of the ovaries).
Using these manipulations, they showed that estrogen defi-
ciency increased lesion formation 3-fold (from 20 to 60%) in
rats when added to hypertension and CCA ligation [49–51,
73]. Eldewoody et al. [76] from Tohoku University in Japan
further fine-tuned this model by optimizing the method of
hypertension induction. They found that despite the simplified
surgical procedure, posterior renal artery ligation was more
effective at inducing IA formation, i.e., led to greater degree
and frequency of IA lesions than did posterior and inferior
renal artery ligation or the use of spontaneously hypertensive,
Dahl salt-sensitive rats.

Given a long-recognized correlation between blood flow
and IA pathophysiology in humans—IAs preferentially form
at locations of high fluid shear stress[184]—several groups
began studying the effect of hemodynamic insult on aneurysm
formation in flow-only experimental models [24, 185, 186]. In
1986 Alvarez et al. [24] subjected rats to either left CCA
ligation or left CCA ligation coupled with anastomosis of
the proximal left CCA to the right CCA, to increase flow in
the right CCA. They found that the latter manipulation result-
ed in much higher flow rates in the right CCA compared with
unilateral ligation alone and higher rates of aneurysm forma-
tion at downstream locations—the anterior communicatingT
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artery and P1 segment of the left posterior cerebral artery—
that presumably experience higher flow [24].

The critical role for hemodynamics in IA formation was
further explored by Meng et al. [185] at the University at
Buffalo in New York. In 2006, this group first observed flow-
driven aneurysm-like remodeling in surgically created carotid
bifurcations in a canine model (not included in Table 1 as it was
not an endogenous model) [187–189]. Using computational
fluid dynamics (CFD) simulations of flow at the artificial bifur-
cation and co-mapping flow topology with histology (hemody-
namics-histology co-mapping), they demonstrated that the vas-
cular response to flow (namely IEL loss and groove formation)
was associated with increased flow acceleration [190].
Subsequently, the same group built upon Hassler’s rabbit mod-
el and induced endogenous aneurysmal remodeling at the BT in
New Zealand White rabbits after bilateral CCA ligation to in-
crease flow in the BA. The induced remodeling was character-
ized by IEL loss, medial thinning, and vessel bulging [186].
Using their hemodynamics-histology co-mapping, they showed
that the aneurysmal remodeling occurred predominantly in re-
gions where high wall shear stress (WSS) and high positive
WSS gradient (WSSG) exceeded a quantitatively defined
threshold level [191, 192]. Using this rabbit model, they ob-
served a critical role for smooth muscle cells (SMCs) in IA
genesis, finding that SMCs exhibited proinflammatory behav-
ior in response to hemodynamic insult and produced matrix
metalloproteinases (MMPs) in the earliest stages of IA devel-
opment [193]. In 2019, Tutino et al. [166, 167], demonstrated

the feasibility of determining detailed cerebrovascular hemody-
namics in mice using CFD and high-resolution 9.4-T MRI,
which could permit fine-grained analysis of hemodynamic fac-
tors in small animals where a much wider range of molecular
tools, such as protein antibodies and genetically engineered
animals, are available.

Beginning in the late 1990s, genetic factors that increase IA
incidence began to be studied in animal models. Genetic pre-
disposition in the Hashimoto model was first investigated by
Coutard et al. [40], who explored the effects of genetic vari-
ability as a result of differing strains of rats. Induction of IA
formation via unilateral CCA ligation and renal artery ligation
in 4 different strains demonstrated that Long Evans rats have
over a 5-fold higher IA incidence rate compared with LOU
rats and over a 3-fold higher IA incidence compared with
Brown Norway rats [40]. Hybrid Brown Norway and Long
Evans rats were later shown to have a higher incidence rate (~
50%) of IA remodeling compared with the original Brown
Norway strain (0%), demonstrating that IA incidence could
be modulated by genetics [45]. With the rapid evolution of
microarray technology in the early 2000s, many began to in-
vestigate the RNA expression profiles of endogenously creat-
ed IAs in animals [48, 89], albeit they did not study the role of
inherited genetics [45]. These efforts include microarrays im-
plemented on aneurysmal tissue from the Hashimoto rat
model[64] and microRNA arrays in flow- and hypertension-
driven rat models [194]. More recently, transgenic knockout
(KO) mice have been implemented in several IA models to
elucidate the biological mechanisms of key genes/proteins
identified in previous animal model studies [72, 111, 121].

At the turn of the century, IA models had been utilized to
extensively explore the roles of suspected molecules in IA
formation, delineate mechanistic pathways, and develop tar-
gets and drugs for reducing IA formation [44, 64, 74]. After
the establishment of the rat model in Kyoto, several investi-
gators applied similar manipulations in mice to create aneu-
rysms. In 2009, Nuki et al. [75] reported a new model of IA
induction in female C57BL/6J mice, which was distinguished
from other endogenous IA models by its aggressive applica-
tion of elastase (35 mU) and sustained infusion of angiotensin
II (500 or 1000 ng/kg/min). They showed that their newmodel
increased the incidence of aneurysm formation by 77%, de-
pending on the dose of elastase and an angiotensin II injection.
One variation of this model [75], introduced by Makino et al.
[99], was subsequently used to explore aneurysm rupture and
resulting subarachnoid hemorrhage. This model used a com-
bination of stereotactic elastase injection, hypertension by uni-
lateral nephrectomy, implantation of a DOCA-salt pellet, and
a high-salt diet. These manipulations led to higher rates of IA
formation (greater than 60%) and higher rates of aneurysm
rupture (greater than 50%) at approximately 1 week after in-
duction. Aneurysms created by this method resembled human
IAs in terms of IEL disruption, endothelial cell (EC) loss,

Fig. 1 A flowchart detailing the literature survey that yielded the
publications analyzed in this study. In PubMed, we searched for
published animal model studies of intracranial aneurysm, excluding
those that used surgically created aneurysms (primarily to study
medical devices). Furthermore, we manually excluded review articles,
as well as other publications (i.e., commentaries on other articles) that
did not fit our search criteria
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inflammatory cell infiltration, and SMChyperplasia. To increase
the rate of IA formation and rupture, Hosaka et al. [106] subse-
quently modified this model to include ligation of the left CCA
to increase flow in the CoW, as well as exacerbating hyperten-
sion by angiotensin II infusion and 8% NaCl diet (rather than
DOCA) in addition to unilateral renal artery ligation, and weak-
ening extracellular matrix (ECM) by adding BAPN to the diet.
Since their creation, these models have been also implemented
in rats [119, 155, 195], and have been used extensively to ex-
plore IA rupture and to test pharmacological treatments that
decrease the incidence of IA formation and rupture.

IA induction methods Endogenous animal models of IA have
implemented manipulations that mimic risk factors for human
IAs [196], such as elevated blood flow, hypertension, and
estrogen deficiency in several animal species. Figure 3 illus-
trates these methods and the frequency at which they appear in
the literature. We note that manipulations are most often used
in combination; only 32 of the 174 publications (18%) sur-
veyed employed a single manipulation. Figure 4 shows the
model-generating manipulations with the numbers of publica-
tions that use them, either individually (non-overlapping
regions) or combined (overlapping regions).

The abovementioned manipulations have been implement-
ed in 5 types of animals: canines (in < 1% of studies), primates
(2%), rabbits (12%), mice (33%), and rats (62%), with rats and
mice being used in the vast majority of studies. A total of 7.5%
of studies used multiple animal species. In recent years, mice
have been increasingly used, likely due to their rapid life cy-
cle, inexpensive housing, and well-established methods for
their genetic manipulation that make them ideal candidates
for an animal model [166, 170]. New Zealand white rabbits
are still used, albeit to a lesser extent, because their cerebral
vessels are large enough for imaging by catheter-based digital
subtraction angiography, which can enable minimally inva-
sive vessel morphology measurement and CFD analysis
[171].

Flow increase Anecdotal observations have strongly implicat-
ed hemodynamic insult in IA pathogenesis [197]. Saccular
IAs are commonly located at bifurcations and along outer
curves of cerebral vessels [190, 192], locations that are ex-
posed to flow impingement and increased wall shear stress
(WSS) [192]. Clinical reports have demonstrated de novo IA
formation in the human Circle of Willis in contralateral re-
gions where compensatory flow increase occurs following

Fig. 2 A timeline of important milestones in IA model development. For
the most part, endogenous animal models of IA were developed from
1961 through the early 2000s. At the turn of the century there was an
exponential growth in research focused on the pathogenesis of the
disease. The top row shows noteworthy studies that utilized new
methods to incite IA risk factors. The middle row highlights notable
first uses of different animal species (many of which are still in use

today, i.e., rats). The bottom row highlights the first use of different
analytical technologies in the study of animal models of IA. Ang II,
angiotensin II; angio., angiography; BAPN, β-aminopropionitrile; CFD,
computational fluid dynamics; DOCA, deoxycorticosterone acetate; IA,
intracranial aneurysm, KO, knock-out; SEM, scanning electron
microscopy
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carotid occlusion or ligation [198]. In animal models, cerebral
blood flow increase is generally achieved by vessel ligation.
Of the 174 publications we surveyed, 137 (79%) used flow
increase for aneurysm creation, as indicated by the pink circle
in Fig. 4. Out of these, 23 (13%) used flow increase as the sole
manipulation. The most frequently performed manipulation to
elevate hemodynamic stress has been unilateral common ca-
rotid artery (CCA) ligation, which increases blood flow
through the contralateral CCA and the basilar artery [116,
118, 168]. This has typically been performed in rodents,
where aneurysms are commonly observed at the ACA-OA
bifurcation.

Bilateral CCA ligation has also been performed in order to
increase flow more drastically through the BA and create
more severe hemodynamic insult at the BT [10, 82, 186].
This has been used extensively in rabbits to elucidate the re-
lationship between hemodynamic insult and IA initiation,
even without other risk factors. Tutino et al. [124] demonstrat-
ed that combining additional risk factors (hypertension and
estrogen deficiency) to bilateral CCA ligation increased the
observed aneurysmal remodeling at the BT, as well as other
locations in the Circle of Willis. While bilateral CCA ligation
has been used with great success in rabbits, this manipulation
has failed to produce detectable aneurysm initiation at the rat
and mouse BT [134, 166]. This may be because the configu-
ration of the rat and mouse Circles of Willis dictates lesser
hemodynamic forces at locations around the basilar artery
bifurcation where IAs form in the rabbit. Recently, other

flow-only models have been developed in rats [52, 97]. For
instance, Cai et al. [97] developed a model that formed aneu-
rysms in the anterior communicating artery following unilat-
eral CCA ligation, and contralateral external carotid artery and

Fig. 3 Different methods used for
IAmodel creation. A diagram of a
rat with annotations of different
surgical and chemical
manipulations performed to
induce IA-associated risk factors.
BAPN, β-Aminopropionitrile;
DOCA, deoxycorticosterone
acetate

Fig. 4 The different factors induced in endogenous animal models. Each
main risk factor (in bold) is represented by one oval (hemodynamic
alteration—pink, hypertension—violet, estrogen deficiency—teal,
connective tissue weakening—yellow, and genetic modification—
green) The overlapping of ovals represents studies in which the
respective methods were used in conjunction with each other. The
number of studies using each method of IA induction is also indicated
(italicization indicates the number for each combination of
manipulations). The vast majority of the studies have implemented
multi-modal models, with flow increase, hypertension, and connective
tissue weakening as the predominant factors used
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pterygopalatine artery ligation. Yet, while this model pro-
duced large aneurysmal bulges in the anterior communicating
arteries, IA incidence was low (< 30%).

Hypertension Hypertension is a major risk factor for IAs in
humans, as it is present in 43% of those with IA, compared
with 20% of the general population [124]. This may be be-
cause increased blood pressure causes greater tensile stress in
the vessel wall, leading to arterial remodeling that causes stiff-
ening. Increased stiffness makes the arterial wall less mechan-
ically responsive to changes in blood flow, and thus increases
hemodynamic stresses [199], and also disrupts the beneficial
production of nitric oxide by endothelial cells in response to
flow [200]. Additionally, angiotensin II, a vasoconstrictive
hormone involved in the renal initiation of hypertension (it
increases Na+ reabsorption), can also cause increased inflam-
mation in the vasculature [201], which could make vessels
more susceptible to pathological remodeling.

As shown by the violet circle in Fig. 4, 143 of the 174 sur-
veyed articles (82%) used hypertension in IA model creation.
Hypertension is most commonly produced in animal models by
surgical means, such as branch ligation of the renal arteries [60,
61], nephrectomy [111, 184], and silk wrapping of the kidneys
[13]. All of these manipulations increase salt retention in the
bloodstream and elevate systemic blood pressure. Many models
combine these surgeries with the addition of salt (in the form of
NaCl or KCl, typically at a dose of 1 to 8%) in the animals’ diets
[29, 73]. Furthermore, hormonal manipulation has also been
used to induce hypertension. Here, animals have been given
angiotensin II infusions or corticosteroids (such as DOCA at
2.5 mg/100 mg body weight [12]), either alone or in addition
to surgery [75].While studies have shown that hypertension can
lead to the formation of micro-aneurysms throughout the cere-
bral vasculature [12, 13], it has generally not been sufficient to
form lesions resembling human IAs on its own. Indeed, all
models used in the last 10 years employ hypertension in con-
junction with other IA risk factors to induce IAs.

Connective tissue weakening Several studies on human IA
tissues collected from autopsy or after resection following
aneurysm clipping have found that IA walls tend to have de-
graded IEL. This is even more pronounced in ruptured aneu-
rysms [202]. Studies have also reported that that aneurysm
tissues contain weakened and disorganized collagen matrices,
likely because of collagen turnover due to remodeling of the
IA tissue [203]. This has typically been attributed to inflam-
matory cells (macrophages, neutrophils, T/B lymphocytes)
infiltrating the IA wall and secreting MMPs and reactive ox-
ygen species (ROS), which are associatedwith smoothmuscle
cell turnover and destruction of ECM proteins, like elastin and
collagen [204–206].

As indicated by the yellow circle in Fig. 4, 92 of the 174
surveyed publications (53%) incorporated connective tissue

weakening in IA model creation. To mimic degradation,
chemical manipulation of the connective tissues has been pre-
viously used. This was first described by White et al. [9] in
1961, who injected noxious materials (i.e., hyaluronidase, so-
diummorrhuate, plasmocid, nitrogenmustard) into the wall of
the ICA, which resulted in the formation of berry aneurysms
in animals. Since 1974, BAPN has beenmore commonly used
to increase the severity of IA lesions, as it inhibits lysyl oxi-
dase, thus preventing collagen cross-linking and promoting
vessel weakening [11, 207]. Early publications by
Hashimoto et al. [14, 15], showed that the addition of BAPN
(0.12%) to rats’ high-salt diet increased the rate of IA inci-
dence. Work by the Kyoto group led by Aoki demonstrated
that the addition of BAPN increased IA incidence and IA
severity. These findings suggest that this manipulation may
therefore simulate aneurysm formation in humans with con-
nective tissue disorders (such as Ehlers-Danlos syndrome
[208]). Overall, the combination of connective tissue weaken-
ing, hypertension, and flow increase resulted in over a 3-fold
increase in IA incidence compared with flow increase plus
hypertension or flow increase alone.

More recently, elastase, an enzyme that specifically de-
grades elastin, has been used to degrade the vessel wall and
encourage IA formation. Typically, this has been done by
stereotactic injection (typically 25–35 mU) into the basal cis-
tern. To develop a model of IAs that rupture, Nuki et al. [75]
combined elastase injection into the basal cistern and osmotic
angiotensin II infusion (to simulate hypertension) to create
large bulging IAs in the anterior circulation of mice with high
frequency (> 70%). This was later followed by modifications,
such as those by Makino et al. [99] who used elastase treat-
ment and hypertension via unilateral nephrectomy, DOCA-
salt pellet implantation, and 1% NaCl in diet. Such modifica-
tions enabled 50–60% of created IAs to rupture within a peri-
od of approximately 2 weeks. Tada et al. [108, 110] used this
model in a series of studies on the effects of certain pharma-
cotherapies (e.g., doxycycline) on IA formation and rupture.
This approach has since been used extensively to study phar-
macological treatments aimed at reducing rupture rates.
However, due to its quick, aggressive weakening of the IA
wall, there are concerns that the manipulation might mask the
true biological mechanisms behind rupture.

Estrogen deficiency The formation of IAs is more prevalent in
females [209], particularly in post-menopausal populations
[124]. This may be because under normal conditions, estrogen
enhances endothelial release of nitric oxide (NO), a
vasoprotective molecule that helps regulate vascular tone, di-
lation, and cell growth, as well as protect vessels from inflam-
mation and injury [210]. Estrogen itself has also been shown
to be vasoprotective, as it stimulates the proliferation of endo-
thelial cells, reduces oxidative stress, enhances SMC function,
and inhibits MMP-2 and MMP-9. Thus, it has been
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hypothesized that the reduction in estrogen levels during men-
opause may increase the risk for IA formation.

A total of 21 of the 174 surveyed publications (12%) de-
scribed IA models that incorporated estrogen deficiency and
hormonal modulation to augment IA development, as indicat-
ed by the teal oval in Fig. 4. However, considering the higher
IA incidence in women [1], the majority of investigations opt
to use only female animals for experimental IA models al-
though they may not manipulate hormone levels. Early on,
the feminization of male rats via removal of the testes and
administration of estradiol (1 mg/kg/7 days) was briefly used
to test the role of sex on IA formation [23], but did not increase
the rate of IA formation. Then, in 2005, Jamous et al. [50]
introduced a model to form IAs in rats via unilateral CCA
ligation, posterior renal artery ligation, and bilateral oophorec-
tomy. They showed that the incidence of IA formation in this
model is three times higher than in rats that were only subject-
ed to unilateral CCA ligation and posterior renal artery liga-
tion (60% vs 20%). In 2014, Tada et al. [113] used
oophorectomized mice to show that stimulation of estrogen
receptor-β (but not α) protected against IA genesis. Since
these studies, estrogen deficiency has been utilized extensive-
ly in rat models and added to a flow-only model in rabbits
[124], as well as elastase mouse models from Hoh et al. in
2018 [154].

Genetic predisposition Several genetic factors are associated
with IAs. In patients with heritable disorders that affect con-
nective tissue, such as Ehlers-Danlos syndrome, Loeys-Dietz
syndrome, and Marfan syndrome, the integrity of the vascu-
lature is severely compromised, and IA development occurs at
a far greater frequency than in the general population [211].
Even in the absence of any identified heritable syndrome, a
family history of IA is associated with higher IA prevalence
(10%) and rupture rates (4%), suggesting that other heritable
genetic factors may contribute to IA susceptibility [212].
Furthermore, clinical data indicates higher rates of aneurysmal
subarachnoid hemorrhage in certain populations, notably the
Japanese and the Finnish [213]. Recent genome-wide associ-
ation studies (GWAS) have identified several important single
nucleotide polymorphisms (SNPs) that occur at greater rates
in people that have IAs [214–222].

In animal models, only 5 of the 174 surveyed studies (3%)
used genetic predisposition in IA model creation, as indicated
by the green oval in Fig. 4. To investigate genetic influences
on the tendency to develop IAs, researchers have used selec-
tive breeding to obtain animals that preferentially develop
more severe IA lesions. Established strains, such as
Spontaneously Hypertensive Rats (SHR) have been used
along with other manipulations to create IAs [47, 76].
Coutard et al. designed an IA-prone rat strain by crossing
Long Evans and Norwegian Brown rat strains [45]. After 3
generations of crosses, the IA formation rate following

surgical manipulation increased from 24 to 50%. However,
genetic manipulation alone was not sufficient to induce spon-
taneous aneurysms; at least one other manipulation (such as
hypertension) has always been used in conjunction with ge-
netics. More recent studies have begun using genetic knock-
out mice to study the mechanisms of IA formation [91, 121].
However, these knockouts have been implemented in existing
animal models, and thus far have only been used to study the
roles of specific molecules in targeted mechanistic pathways,
rather than addressing genetic predisposition to aneurysm.

Methods for evaluating experimental IAs

Characterization of experimental IAs has been based not only
on aneurysm morphology but also on biological changes in
the vascular wall during IA development. A variety of tech-
niques have been used to process specimens in order to assess
the morphology and structures of lesions created in animal
models. These techniques include tissue (whole-mount) ex-
amination, histology, corrosion casting, and scanning electron
microscopy (SEM). Their advantages and disadvantages as
well as the frequency in the literature are shown in Fig. 5
(for details on which study used each method, see
Supplemental Table 1).

Cerebral vessel tissue examination The most basic form of
examining aneurysms in experimental models is the inspec-
tion of the whole CoWwith a dissecting microscope. In all, 68
of the 174 studies we reviewed (40%) used whole-mount
specimen examination. Before knowing the location(s) of le-
sions produced by a given IAmodel, many investigators opted
to inspect the entire cerebral vasculature for morphological
changes. For example, this approach enabled Hashimoto
et al. [14, 15] to identify common sites of IA formation, name-
ly the ACA-OA bifurcation, in early studies. This examination
method has been key in determining where to cut histological
sections for further study. While whole tissue examination
limits detailed imaging of the IA wall remodeling, as it only
reveals the adventitia to a microscope, the collected tissues of
IA lesions are often subjected to secondary molecular analy-
ses. Molecular analyses require additional, destructive pro-
cessing of aneurysmal material, such as physical or chemical
breakdown to extract and stabilize biomolecules (primarily
proteins or nucleic acids). Extracted materials have been ana-
lyzed by gene expression techniques (e.g., PCR [116, 118,
125, 127]) or protein expression methods (e.g. ,
ELISA[173]), which have begun to lead to a greater under-
standing of the mechanisms behind the pathological remodel-
ing of IA.

Histological sections The majority of studies, 129 of 174
(74%), have used histological sections of the aneurysmal tis-
sue, with or without whole-mount pre-examination. Tissue
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can be prepared in many ways for histological sectioning,
including chemical fixation and embedding in paraffin or be-
ing frozen in an optimal cutting temperature compound. It is
possible to preserve the vessel geometry more accurately by
pressure fixing the vessels with formalin while still in vivo
using a perfusion pump or pressure drip. Overall, histological
staining can provide cellular information and reveal micro-
scopic lesions that are too small to see with the dissecting
microscope. Histological examination allows for visualization
of all the vessel layers, and adjacent sections can be stained for
different purposes (based on the stain used). Traditional his-
tological analyses using H&E stain have been most frequently
used to evaluate aneurysm lesions. Besides revealing overall
tissue morphology and cell organization, H&E staining shows
the presence of cell nuclei (to determine where cells are pres-
ent in the wall). Further, Van Giesen staining has been used to
visualize elastin, and in aneurysmal lesions, plays a pivotal
role in determining if there is a loss of IEL, a hallmark of IA
(which will be discussed further below). Trichrome staining
additionally has allowed for better demarcation of connective
tissues in the vascular wall.

In addition to identifying vessel remodeling present in the
arterial wall (which may or may not be obvious when viewed
from the vessel’s exterior surface), another advantage of his-
tological analysis is that it enables molecular investigation of
the tissue by immunohistochemistry or immunofluorescence.

Immunostaining for individual molecules can be done on in-
dividual slides to determine the presence and spatial distribu-
tion of protein expression [178]. This technique has been
widely employed across almost all endogenous animal models
and has greatly contributed to the current knowledge of the
molecular mechanism of aneurysmal remodeling. For exam-
ple, in multiple studies, Aoki et al. have used immunostaining
to characterize the inflammatory environment of the IA wall,
demonstrating increased MCP-1, MMP-9, and NF-kB protein
levels [54, 59, 68]. Additional analyses, such as in situ hybrid-
ization to reveal expression of specific mRNAs [100], have
also been employed in histological sections but to a lesser
degree.

Corrosion casting Another method of tissue preparation,
which has some of the advantages of both whole-mount spec-
imen and histological sections, is the creation of vascular cor-
rosion casts [134]. This has been performed in 18 of the 174
studies we reviewed (10%). By injecting a polymer that
hardens inside the arteries, then chemically removing the ar-
tery tissue, a cast is created that accurately preserves the ge-
ometry of the vascular lumen. Such casts can capture the ge-
ometry of the entire CoW, which makes it easy to study mor-
phological changes across all cerebral vessels. The casts can
be quickly analyzed via dissecting microscope with oblique
illumination or by SEM for accurate morphological

Fig. 5 Aneurysm tissue examination methods in experimental models. A
graph indicating percentage each method was used in the literature.
Model development studies tended to use corrosion casting and whole

mount analysis, while mechanistic studies have strongly favored
histology for analysis. SEM, scanning electron microscopy
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assessment at high resolutions to reveal large- and small-scale
changes. Furthermore, visualization of the endothelial cell im-
prints is possible under SEM, which can permit the assess-
ment of changes in the endothelial layer [107]. For example,
several models employing this technique have found that, ear-
ly in IA formation, ECs at bifurcations where the aneurysms
form change morphology from smooth spindle shapes
(aligned with the flow) to amorphous, cobblestone shapes
[25]. Unfortunately, the tissue is typically destroyed by the
casting process, thus limiting further biological analyses of
the vessels from these animals [107].

Scanning electron microscopy A few studies (14 of the 174
surveyed, 8%) have performed SEM on the vascular tissue
itself (not on corrosion casts, as discussed above). Tissue
SEM allows for visualization of the intima of the vessel and
can allow for direct visualization of endothelial cells and gaps
in endothelial cells. SEM has primarily been employed in
early model development studies to observe en face vascular
damage during IA formation at the highest magnification. For
SEM, fixed tissue is prepared by taking the desired vessel
section and opening it up to expose the intima. The sample
is then coated with a thin layer of conductive material (i.e.,
carbon or gold) to allow visualization of the tissue via the
microscope. Tissue used for SEM cannot undergo the same
molecular studies as preparations for histological sections, but
some studies have used SEM to visualize inflammatory cells
on the inner walls of IAs [207]. However, the vast majority of
studies employing SEM have used it to analyze corrosion
casting of the cerebral arteries after IA induction as described
in the previous section.

Cerebrovascular imaging Cerebrovascular imaging, typically
by traditional medical imaging modalities, such as digital sub-
traction angiography or MRI, has been used in a limited num-
ber of reported studies, primarily because aneurysmal lesions
in animal models are substantially smaller than human IAs. It
is not surprising that medical imaging has only been per-
formed in 13 of the 174 reviewed studies (7%). Typically,
imaging has been used to confirm the presence of IAs, since
it cannot reliably be used to analyze aneurysm morphology in
most models where both the animals and the lesions are small.
Hashimoto was the first to report in vivo imaging of IAs in rats
with 2D angiography [17, 20], but the procedure involved
immediate euthanasia of the animal. This was similar to Cai
et al. who reported cyclotron imaging of rat aneurysms, but
this was also accompanied by the termination of the animal.
However, recent efforts with MRI have demonstrated survival
IA model imaging. In 2015 Makino et al. reported successful
serial imaging of the mouse cerebral vasculature via 3 T MRI
in a mouse IA model. More recently, Tutino et al. [166] and
Rajabzadeh-Oghaz et al. [167] used non-invasive, survival
9.4-T MRI to track aneurysmal remodeling in mice,

demonstrating the feasibility of longitudinal IA studies using
high-resolution MRI in small animals. They also demonstrat-
ed the feasibility of generating 3D geometries of the mouse
CoW during flow-induced remodeling, which allowed them
to perform CFD to study the detailed cerebrovascular hemo-
dynamics. These recent efforts show promise of the ability to
longitudinally image aneurysmal lesions that can be visual-
ized at a resolution as low as 50 μm3.

Characteristics of experimental IAs

It is important to compare experimentally induced IAs to the
human aneurysms that the animal models aim to recapitulate.
Histopathological evaluation of human IAs has shown that,
aside from their bulging appearance, the hallmarks of IA tis-
sue are degradation of the IEL (the main load-bearing element
of the vessel wall) and degeneration of the ECM, both of
which severely weaken the IA wall [202]. Loss of mural cells,
mainly SMCs, is also common, as IAs tend to have thinned or
absent medial layers [202, 223, 224], which can lead to
anoikis [225]. Inflammatory cells, including macrophages
and T lymphocytes, can contribute to aneurysm degeneration
via production of MMPs and the release of ROS. These cells
are present in aneurysms at a much higher rate (~ 50%) than in
healthy vasculature [223] and have been shown to be more
numerous in ruptured IAs [202]. Common characteristics of
experimental aneurysms are detailed in Fig. 6 (for details on
what study reported each characteristic, see Supplemental
Table 1). Unlike human IAs, aneurysmal lesions induced in
animal models tend to be small with shallow/wide necks. This
may be because animal IA models are created within a rela-
tively short time window (a few days to a few months) via a
limited number of manipulations, and thus may only recapit-
ulate certain aspects of the human disease. Nonetheless, key
features of human IAs are typically investigated in animal
models as noted below.

Bulging Bulging is the ultimate defining characteristic of an-
eurysms, and as such, is commonly used to denote the IA
presentation. Of the 174 studies surveyed here, 129 (74%)
noted bulging in experimental IA models. Unlike human
IAs, however, bulges observed in animal models tend to be
microscopic, often only visible after histological processing
and imaging. These bulges are measured either by maximal
lesion diameter, length along the bulge, or dome height to
neck ratio [136, 144]. Aneurysmal bulges in animal models
tend to have a larger neck and less rounded shape than human
IAs. Using animals sacrificed at different end points, Meng
et al. [86] inferred progressive development of a BT aneurysm
due to flow increase in the bilateral CCA ligation rabbit mod-
el. The longest time-point was six months after flow increase
manipulation, at which time the aneurysmwas a wide-necked,
thin-walled bulge that was pointed, but not rounded, and
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exhibited complete loss of media and IEL. Many models that
have used combinations of flow increase, hypertension, and
estrogen deficiency have created aneurysmal lesions such as
these. Recent models of IA formation and rupture that induce
aneurysms by multiple risk factors and injection of elastase
have shown prominent bulging, berry IAs that have diameters
larger than the parent artery, as one would see in humans.

IEL destruction Vessel wall remodeling during IA formation
has most notably been shown by the loss of the IEL (as well as
medial thinning) and can be seen in the absence of discernable
bulging [86]. Typically, the IEL (or its absence) is detected by
Van Giesen staining on histological sections, and its loss is the
most commonly used marker of IA development other than
bulging. Of the 174 publications we studied, 94 (54%) indi-
cated IEL loss associated with IA formation. Many studies
have even used IEL loss to define the formation of the aneu-
rysmal lesion. Indeed, IEL loss appears to be one of the first
morphological changes during aneurysm development in an-
imal models [82, 88]. This highlights one important strength
of the developed models: the ability to reveal early stages of
aneurysm genesis and development that are not readily ob-
servable in humans (where most studied IAs are terminal).
Indeed, even 5 days after hemodynamic driven IA induction,
Tutino et al. [107] found IEL fenestrations or raised circular
lesions on the corrosion cast surface representing indentations

in the vessel due to IEL loss or focal weakening of the IEL or
matrix degradation, in locations that develop aneurysms.

Smooth muscle cell loss In human aneurysms, SMCs undergo
phenotypic modulation from a contractile to a proinflamma-
tory phenotype [226]. This is often accompanied by increased
SMC turnover and apoptosis that increases as the vessel wall
degenerates [227]. Studies of human IA tissues have shown
that ruptured IAs have widespread SMC apoptosis with few
remaining SMCs, while unruptured IAs still had some thinned
SMC layers [228]. Indeed, a loss of media is noted in many IA
models either by comparing the thickness of the media in the
lesion to the thickness in the adjacent wall, or by investigating
surrogate markers, such as apoptosis of SMCs. In all, 72 of the
174 studies we investigated also observed SMC loss associat-
ed with experimental IAs. The loss of SMCs is interpreted as
evidence of a weakened wall that is susceptible to rupture. In
many models, SMC loss and media thinning are commonly
observed together with IEL loss on histology [88]. Several
studies have even created scores to grade aneurysmal devel-
opment, which combine the degree of SMC loss and media
thinning, along with bulging, e.g., the Aneurysm
Development Score [86].

Endothelial changes The endothelium is responsible for sens-
ing shear forces of flow and communicating with the blood,

Fig. 6 Features observed in endogenously created animal aneurysms. A
graph indicating the percentage that each feature was observed in the
literature. The three most common IA features are bulging, IEL loss,

and medial thinning. EC, endothelial cell; IEL, internal elastic lamina;
SMC, smooth muscle cell
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and as such is critical in the initiation of IAs [229]. EC changes
were noted in 38 of the 174 studies investigated as part of this
review. Typically, investigators have looked at the loss of
endothelial nitric oxide synthase production, gaps between
endothelial cells, or endothelium irregularities, typical
markers of endothelial dysfunction [230]. Early tissue SEM
studies demonstrated degeneration of ECs at locations of IA
formation [31], while later corrosion casting experiments by
Jamous et al. [49] found that early EC morphology changes
were related to changes in hemodynamic shear stress and
blood flow patterns. Tutino et al. [107] also showed EC irreg-
ularities, deviations from healthy, spindle-shaped, flow-
aligned ECs in locations that form IAs in the Meng rabbit
model. A rough and irregular endothelial surface has conven-
tionally been interpreted as a sign of EC dysfunction. Dolan
et al. further demonstrated altered EC gene expression in these
locations [101].

Intimal thickening Intimal thickening (or intimal hyperplasia)
is the process by which the intimal layer becomes enriched
with vascular SMCs and proteoglycan-rich ECM components
and is typically associated with atherosclerosis [231]. In
humans, many IAs are seen with atherosclerotic changes oc-
curring in the sac [232, 233], and individuals with atheroscle-
rosis are at greatly increased risk of IA formation [234].
Migration of smooth muscle cells or inflammatory cells into
the intima of the vessel, which causes thickening of the intima
(as observed in humans) has been reported in a number of
animal studies. Intimal thickening is commonly observed in
OA-ACA aneurysms formed in response to unilateral CCA
ligation, renal artery ligation, and salt diet in rats (i.e. the
Hashimoto rat model). This feature was observed in experi-
mental aneurysms in 21 of the 171 studies we surveyed here,
which mostly included the OA-ACA IAs of the Hashimoto
model.

Inflammatory changes Inflammation plays a key role in IA
pathophysiology. The natural history of the disease is charac-
terized by an escalating inflammatory response, which accom-
panies the progressive degradation of the aneurysm wall
[235–237]. This process is thought to begin with risk-factor
(including elevated blood flow) induced pro-inflammatory re-
sponses in ECs and SMCs that lead to local production of
MMPs and the initial formation of an aneurysmal sac. Once
formed, the IA sac creates a hemodynamic environment char-
acterized by slower recirculating flow that is conducive to
leukocyte infiltration into the wall. In the IA tissue, inflamma-
tory cells, such as macrophages and neutrophils, extensively
produceMMPs and ROS (via expression ofmyeloperoxidase)
which further degenerate the aneurysm, advancing its growth
and rupture [227]. Our knowledge of the presence of inflam-
mation in human IAs has largely been informed by early his-
tological studies [202, 223, 224]. However, recent gene

expression studies of IA tissues have demonstrated increased
inflammatory processes and production of inflammatory
cytokines/chemoattractants in the walls of humans IAs [238,
239].

Inflammatory cells, primarily macrophages, have been ob-
served infiltrating aneurysmal lesions in animal models.
Beginning in the late 2000s and owing to the wide acceptance
of inflammation as a main driver in IA natural history, many
investigators have begun to directly study inflammation in
experimental IA models. In addition to purely inflammatory
cell staining, immunostaining for inflammatory cytokines is
common in many studies [59, 68]. Inflammation has been
uncovered to be among the first responses to IA risk factors,
such as increased hemodynamics. Meng et al. demonstrated
that during IA formation pro-inflammatory SMCs produce
MMPs [100]. Furthermore, the inflammatory pathways in-
volving NF-kB, MCP-1, TNF, and MMP were thoroughly
investigated over several studies by Aoki et al. [54, 59, 68,
109]. More recent gene profiling studies and qPCR-based in-
vestigations have also been used to study inflammatory gene
expression in experimental IA tissues [174]. In all, 53 out of
174 studies (30%) specifically denoted inflammatory changes
associated with experimental IAs.

Discussion

The pathogenesis and natural history of human IAs is a com-
plex process that remains widely unknown. In order to study
this disease and uncover pathobiological mechanisms, endog-
enous animal models of IA have been implemented over the
past 60 years and have enabled investigations of the patho-
physiological, cellular, and molecular biology of IA. Most
models have implemented multiple manipulations mimicking
aspects of the human disease, largely to maximize the rates of
aneurysm development. The majority of these were imple-
mented in rats and mice, used histology to study lesion patho-
biology, and defined IA remodeling by IEL loss, bulge for-
mation, and medial thinning. While there was a wide range of
aneurysm induction techniques, the most common models
included hemodynamic stress, hypertension, and connective
tissue weakening (typically by elastase injection).

Endogenous IA models were largely developed between
the years 1961 and the early 2000s, starting with relatively
large animals (e.g., canines, rabbits, and primates) and quickly
moving to rodents (i.e. rats and mice) due to their versatility
and low cost. Since the turn of the century, several models
have been extensively used to study the mechanisms of IA,
leading to discoveries about the physical and molecular mech-
anisms behind IA formation and rupture. The most common
models have been the Hashimoto model (rat—unilateral CCA
ligation, unilateral nephrectomy, DOCA, salt diet, and BAPN)
[14]—or modifications thereof (such as that published by
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Nagata et al. [20] and Aoki et al. [56], rat—unilateral CCA
ligation, bilateral renal artery ligation, salt diet, and BAPN), to
study the molecular biology of aneurysmal tissue, the Jamous
model [50] (rat—unilateral CCA ligation, renal artery ligation,
oophorectomy) to study the influence of added risk factors,
namely estrogen deficiency, the Meng model [82] (rabbit—
bilateral CCA ligation) to study the role of hemodynamics in
IA genesis, and the Nuki [75]/Makino [99] model (mouse—
elastase injection with either Angiotensin II pump or unilateral
nephrectomy and DOCA salt diet, respectively), which has
been most recently used to study IA rupture. These models of
IA have been very successful at emulating many histological
and geometric properties of human IAs. In particular, multi-
modal models where many etiological factors are employed
have shown particularly impressive bulge formation in addition
to IEL damage, wall thinning, and apoptosis [40, 45, 177]. On
the other hand, other studies with genetic and chemical manip-
ulations have teased out the beginnings of the mechanisms that
may lie behind IA formation in humans [47].

Over the last 20 years, the use of these models, in conjunc-
tion with new technology, such as high-resolution imaging,
microarray technology, and genetic knockouts has led to the
identification of several key molecular pathways involved in
IA formation and rupture [63, 67, 72, 111, 121]. One of the
most important successes of the endogenous IA models is that
they allow the study of early pathological events that precip-
itate IA formation, which is impossible in humans. Kolega
et al. [88] used the rabbit bilateral CCA ligation model to
investigate mechanisms of IA formation as early as 2 days
after aneurysm induction. They observed the earliest changes
in aneurysm genesis reported to date, namely loss of the IEL
and degradation of the medial layer, and correlated these
changes with changes in smooth muscle differentiation and
local expression of matrix proteases.

Despite these successes, there remain many opportunities
for improvement that would help further elucidate mecha-
nisms of aneurysm formation and progression. While they
share some features with human IAs, aneurysms in animals
may have significant pathophysiological differences, since
several factors in the development of human IAs have not
been incorporated into endogenous animal models. A number
of risk factors that influence IA development in humans have
only just begun to be explored in animal models. For example,
a predominant risk factor for IAs in humans is cigarette
smoking [240, 241], possibly through toxic effects on the
vasculature, including increased oxidative stress in the vascu-
lature, damage to the endothelium, and stimulation of the pro-
duction of pro-inflammatory cytokines [242]. Starke et al.
[152] recently explored the role of NOX1-mediated SMC
phenotype switching in IA formation in mice that were ex-
posed to cigarette smoke and found that smoke exposure
brings about oxidative stress-induced SMC phenotypic mod-
ulation during IA formation.

Other risk factors have yet to be studied. Older age, for
example, is strongly correlated with IA development [243],
as it is associated with stiffening of the vasculature and de-
creasing EC responses to vasodilatory factors [244], which
make blood vessels less adaptive to changes in blood flow
[245]. While comparisons have been made between different
age animals [10], no group to date has explored animals at an
age with documented vascular changes consistent with human
old age. The addition of more risk factors into animal models
of IA will likely give rise to studies to determine mechanisms
behind different induced factors. Animal models can contrib-
ute to understanding how factors interact in inciting IA, by
varying the manipulations in order to disentangle the contri-
butions of individual factors to the observed traits or path-
ways. Indeed, several groups have already reported such stud-
ies, broadly finding that adding extra risk factors leads to
increased rates of aneurysmal development. Throughout their
work, Hashimoto et al. added manipulations to their rat IA
model, demonstrating that tissue weakening (via BAPN), hy-
pertension, and flow increase increased the formation rate of
aneurysmal lesions by more than 300% compared with rats
subjected to hypertension and flow increase alone [14, 15].
Jamous et al. [50] also showed that adding estrogen deficiency
via bilateral oophorectomy to the Hashimoto model increased
IA lesion formation from 20 to 60%. More recently, Tutino
et al. [124] investigated IA formation in the rabbit CoW after
flow manipulation alone and in combination with risk factors
(hypertension and estrogen deficiency) and reported increased
IA formation and a greater degree of IEL damage in the model
with combined risk factors. Nevertheless, work is still needed
to determine how and to what extent individual risk factors
contribute differently to IA formation and development.

In addition to combining and exploring the contribution of
aneurysm risk factors to IA formation, animal models could
elucidate what factors influence progression of the disease, i.e.
growth and rupture. One of the most important advancements
in IA animal models to emerge in recent years has been the
creation of IA rupture models, which hold the promise of
revealing how and why an IA progresses towards rupturing
[110, 120, 122, 128]. With a reported rupture rate of ~ 50%,
their success has been facilitated by the addition of direct
injection of elastase to hypertension and hemodynamic ma-
nipulation. Compared with other endogenousmodels, connec-
tive tissue weakening brought on by the injection of elastase is
the major differentiator that leads to the creation of larger IAs
that proceed to rupture. Thus, the observed biological re-
sponses in models that include elastase may reflect that of
human IAs in patients with connective tissue disorders. For
example, Ehlers-Danlos syndrome, a hereditary disease that is
associated with higher rates of IA formation and rupture, re-
sults in part from SNPs in exonic regions of collagen [246,
247]. Such rupture models have been used to study the effects
of certain pharmaceutical drugs on IA formation and rupture
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[108, 110]. Still, as the fast delivery of a massive bolus of
elastase likely does not occur in humans during IA formation
(rather proteases and elastases are released over time by in-
flammatory cells [248]), these models may better simulate
end-stage rupture-prone IAs, rather than the true growth and
rupture phenomenon. Furthermore, the massive destruction of
elastin that is induced throughout the cerebral vessels causes
side-wall IAs that may, in some cases, reflect dissecting aneu-
rysms. The disruption of the IEL may cause blood leakage
into the medial layer and ballooning of the artery that may
rupture through the adventitia, and could thus produce
lesions/ruptures similar to those reported in animal studies of
elastase-induced IAs. Future endogenous IA models that in-
corporate the effect of collagen degradation using more phys-
iological methods are needed.

Conclusions

We believe that future studies aimed at longitudinally
assessing IA pathobiology in models that incorporate aneu-
rysm growth will likely have the largest impact on our under-
standing of the disease. Investigations using the latest devel-
opments in vascular imaging may permit the tracking of the
entire course of the disease on an individualized basis, as well
as the tracking of disease reversal in response to hemodynam-
ic or pharmacological interventions. Putatively, once an aneu-
rysm is established in a growth/rupture model, the success of a
treatment can be monitored via imaging, to see if the IA stops
growing or even decreases in size. This would enable longi-
tudinal and non-destructive analysis of IA development in an
individual before and after IA initiation, which would be
uniquely possible in animals. The major limitation of current
methods that use tissue examination for assessment is that
they are only useable as endpoint assessments. In contrast,
intravascular imaging of the IAwall (i.e. via optical coherence
tomography[249]) or live cell imaging would allow for longi-
tudinal studies of the IA that can continue even after bulge
visualization. Recently Miyata et al. [168] reported real-time
in vivo imaging of IAs in transgenic rats with GFP-stained
ECs and were able to visualize aneurysm wall movement.
However, the procedure was unable to be repeated serially.
Future efforts to merge imaging and pathobiology analyses
like this could enable longitudinal assessment of biological
pathways in IA and would be highly valuable in investigating
IA natural history.
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