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Abstract
Disorders of tonicity, hyponatraemia and hypernatraemia, are common in neurosurgical patients. Tonicity is sensed by the
circumventricular organs while the volume state is sensed by the kidney and peripheral baroreceptors; these two signals are
integrated in the hypothalamus. Volume is maintained through the renin-angiotensin-aldosterone axis, while tonicity is defended
by arginine vasopressin (antidiuretic hormone) and the thirst response. Edelman found that plasma sodium is dependent on the
exchangeable sodium, potassium and free-water in the body. Thus, changes in tonicity must be due to disproportionate flux of these
species in and out of the body. Sodium concentration may be measured by flame photometry and indirect, or direct, ion-sensitive
electrodes. Only the latter method is not affected by changes in plasma composition. Classification of hyponatraemia by the volume
state is imprecise. We compare the tonicity of the urine, given by the sodium potassium sum, to that of the plasma to determine the
renal response to the dysnatraemia. We may then assess the activity of the renin-angiotensin-aldosterone axis using urinary sodium
and fractional excretion of sodium, urate or urea. Together, with clinical context, these help us determine the aetiology of the
dysnatraemia. Symptomatic individuals and those with intracranial catastrophes require prompt treatment and vigilant monitoring.
Otherwise, in the absence of hypovolaemia, free-water restriction and correction of any reversible causes should be the mainstay of
treatment for hyponatraemia. Hypernatraemia should be corrected with free-water, and concurrent disorders of volume should be
addressed. Monitoring for overcorrection of hyponatraemia is necessary to avoid osmotic demyelination.
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Introduction

Disorders of water balance (“dysnatraemias”) are common. In
addition to substantial economic and resource burdens [18],
dysnatraemias are a preventable cause of secondary brain

injury and can worsen outcome and increase mortality [9].
Individuals with a plasma sodium concentration ([Na+]p) <
130 mmol/L have a mortality rate 59-fold (11.2% vs 0.19%)
that of normonatraemic individuals. The severity of the
hyponatraemia also correlates with mortality; those with a
[Na+]p < 120 mmol/L have greater than 2.5-fold the mortality
(25% vs 9.3%) of those with a [Na+]p between 120 and
130 mmol/L. Hyponatraemia in individuals with subarach-
noid haemorrhage (SAH) is associated with increased rates
of delayed cerebral ischemia (DCI) [52, 140] and worse out-
come [106], while severe hypernatraemia ([Na+]p >
160 mmol/L) is an independent predictor of poor outcome in
general neurosurgical patients [6].

Physiology of sodium and water balance

Disorders of volume, hypervolaemia (oedema) and
hypovolaemia, are disorders of sodium balance. Disorders of

* Mendel Castle-Kirszbaum
mdck.journal@gmail.com

1 Department of Neurosurgery, Monash Health, Melbourne, Australia
2 Department of Endocrinology, Melbourne Health,

Melbourne, Australia
3 Department of Medicine, Nursing and Health Sciences, Monash

University, Melbourne, Australia
4 Department of Surgery, Monash University, Melbourne, Australia
5 Department of Intensive Care, Monash Health, Melbourne, Australia

https://doi.org/10.1007/s10143-020-01450-9

/ Published online: 3 January 2021

Neurosurgical Review (2021) 44:2433–2458

http://crossmark.crossref.org/dialog/?doi=10.1007/s10143-020-01450-9&domain=pdf
http://orcid.org/0000-0003-1769-2712
mailto:mdck.journal@gmail.com


water balance, hyponatraemia (water overload) and
hypernatraemia (water depletion), may occur independently
or coexist with disorders of volume.

Osmoles are a measure of solute within a solution and
may be described by osmolarity (solute per unit volume) or
osmolality (solute per unit weight). Tonicity is the summed
strength of the effective osmoles, that is, osmoles that can-
not easily cross cellular membranes and thus influence wa-
ter distribution. Ineffective osmoles include urea, alcohols
(ethanol, methanol, ethylene glycol) and acetone; these
substances can confound laboratory results and they con-
tribute to measured plasma osmolarity without influencing
the distribution of water [109]. Tonicity, not osmolarity, is
the key to water balance.

The body is a reservoir that exquisitely balances in-
flux and efflux of free-water and solute (Fig. 1). Even
with maximal urine concentration (~ 1200mosm/L), ap-
proximately 500 ml/day of free-water is required to ex-
crete the approximately 10 mosm/kg/day of waste solute.
Conversely, if effective osmole intake is low compared
to water intake, even maximal urinary dilution (50–
100 mosl/L) can be insufficient to excrete ingested water.
Exceptionally, urea can be excreted in nonlinear fashion
to facilitate constant nitrogen balance despite varying
water [44]:

Urine Volume ¼ Solute
Urine Concentration

Regulation of plasma tonicity is achieved by alterations in
water balance through the central arginine vasopressin (AVP,
antidiuretic hormone) axis, while regulation of plasma volume
is through the renal renin-angiotensin-aldosterone (RAA) ax-
is. RAA activity leads to retention of volume (solute and sol-
vent together) and is independent of changes in tonicity when
intravascular haemodynamics are normal (Fig. 2).

The organum vasculosum of the lamina terminalis (OVLT)
is the primary tonicity-receptor, though other circumventricular
organs (devoid of a blood-brain barrier) as well as the median
preoptic nucleus (MPN) and magnocellular neurons of the neu-
rohypophysis itself are intrinsically tonicity-sensitive. At these
regions converge other regulators of AVP release, including
angiotensin II which activates neurons of the subforniceal or-
gan, OVLT and MPN. In response to an increase in plasma
tonicity or angiotensin II release due to hypovolaemia, projec-
tions from the circumventricular organs to the MPN activate
the magnocellular neurons of the neurohypophysis.
Converging on these magnocellular neurons are projections
from the nucleus tractus solitarius and ventrolateral medulla
which relay baroreceptor signals. Thus, tonicity and volume
signals integrate at the site of AVP release, the magnocellular
neurons of the neurohypophysis. AVP acts on the kidney to
stimulate free-water resorption, thus concentrating urine. AVP
also upregulates urea transport proteins in the collecting duct,
improving the concentrating capacity of the medullary loops.

AVP is secreted when tonicity increases above an individ-
ual’s osmostat set point, generally 280–285mosm/kg,

Fig. 1 Summary of the daily flux of free-water in an average individual.
Each flux may be obligatory (unregulated) or regulated. Influx of free-
water and solute is mostly dietary (obligatory) and metabolic (water lib-
erated from oxidation of carbohydrates), while regulated intake of water
also occurs via the thirst response and hedonistic/social intake. Obligatory
water excretion occurs through “insensible losses” (trans-epidermal dif-
fusion, sweat, airway humidification and gastrointestinal output; totaling
approximately 10–12 ml/kg/day) and that required to eliminate excess

solute and metabolic waste through the kidney. The water content of food
varies with diet while the regulated water intake varies with societal
norms, diet and thirst. Transdermal and respiratory evaporative losses
may vary with environmental temperature and activity, while regulated
renal losses relate to regulated water intake. Patients inhaling pre-
humidified air, such as those receiving mechanical ventilation, high-
flow nasal cannulae or pressure support, will have reduced respiratory
losses

2434 Neurosurg Rev (2021) 44:2433–2458



although significant interindividual variability is seen [109,
110, 117]. Moreover, the set point may drift, often to become
more sensitive, with age, pregnancy, medications and fluctu-
ations in serum ionized calcium [69, 77, 142]. The
circumventricular organs are exquisitely sensitive to changes
in tonicity; perturbations as small as 1% cause changes in
AVP release. The tonicity at which healthy adults first report
a conscious desire to drink (thirst threshold) is the same as, or
a few milliosmoles greater than, the osmostat set point [59,
132]. In those with primary polydipsia, the thirst threshold is
much lower than this osmostat set point.

Maximal free-water resorption is reached at approximately
294 mosm/Kg, corresponding to an AVP concentration of
approximately 5 pg/ml [109]. Further increases in tonicity
lead to further AVP release, although concentrating activity
is maximal, to bolster the thirst mechanism. As a result,
hypernatraemia will almost only occur in the setting of an
impaired thirst mechanism, damage to the neurohypophysis
or inadequate access to free-water.

The volume state interacts with AVP secretion in two
ways: Firstly, independent of changes to tonicity, a marked
decrease (≥ 8–10%) in the volume state stimulates AVP re-
lease. Secondly, changes to the volume state alter the set point

and gain of the AVP response to tonicity. Hypovolaemia leads
to more AVP secretion for a given tonicity and shifts the
threshold for secretion to a lower tonicity (Fig. 3). Although
the threshold for hypovolaemia stimulating AVP release is
much greater than for tonicity, the AVP response to volume
depletion is exponential and stronger, though diminishes with
age [69].

The Edelman equation

In 1958, Edelman demonstrated that [Na+]p is related to the
total exchangeable sodium (Na+e), total exchangeable potas-
sium (K+

e) and total body water (TBW) (Fig. 4) [35, 100]:

Naþ½ �p ¼ 1:11� Na
þ
e þ Kþ

e

TBW
−25:6

For simplicity, however, the Edelman equation can be re-
duced to:

Naþ½ �p∝
Naþe þ Kþ

e

TBW

Fig. 2 Summary of water and volume homeostasis. AVP is the primary
mediator of tonicity regulation, controlled by tonicity receptors and
volume signalling. Negative feedback is shown in red (broken) lines.
The thirst response and free water absorption in the collecting duct

(V2 receptor mediated) lead to reduction in plasma tonicity. Sodium
retention, mediated by aldosterone and decreased ANP, increases the
volume state. ANP, atrial natriuretic peptide; AVP, arginine vasopressin
(antidiuretic hormone); RAA, renin angiotensin aldosterone
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Thus, the main effective osmoles in the body, sodium and
potassium, determine the [Na+]p. From this, we extrapolate
that perturbations in [Na+]p are due to altered flux of effective
osmoles and free-water in and out of the body. Conversely,

ineffective osmoles do not have any effect on [Na+]p. Urea
contributes to osmolarity but not tonicity:

OsmolalityCalculated ¼ 2� Naþ½ �p þ Kþ½ �p
� �

þ Glucose½ �p þ Urea½ �p

Other effective osmoles (besides sodium and potassium)
affect [Na+]p. In health, plasma glucose is tightly controlled
between 4 and 11 mmol/L. However, the neurosurgical peri-
operative period is often not healthful; patients with acromeg-
aly and Cushing’s disease are prone to hyperglycaemia, as are
those on perioperative steroids. At higher concentrations, glu-
cose, mannitol and other effective osmoles cause a shift of
TBW into the ECF, reducing [Na+]p. This translocational
hyponatraemia is physiologically necessary to maintain nor-
mal plasma tonicity. Translocation has been quantified as a
1 mEq/L drop in [Na+]p for every 3.5 mmol/L increase in
[glucose]p above normal (6.7 mmol/L). Correction of [Na+]p
for [Glucose]p separates this translocational effect from con-
current disorders of water balance. A large discrepancy (e.g. >
10mmol/L) between calculated and measured osmolality sug-
gests an unmeasured osmole is present. Translocational
hyponatraemia (hyperosmolar hypertonic hyponatraemia) oc-
curs with high levels of glucose, mannitol and contrast agents,

Fig. 3 Relationship between AVP, thirst and plasma osmolarity is
modified by the volume state. Increasing degrees of hypovolaemia shift
the threshold for thirst and AVP release to lower osmolalities. The gain is
also increased by hypovolaemia, with more AVP secreted per unit
increase in osmolality. AVP, arginine vasopressin (antidiuretic hormone)

Fig. 4 The Edelman and Nguyen-Kurtz equations. The Edelman equa-
tion (top) and its corresponding coefficients in the Nguyen-Kurtz equa-
tion (bottom). The gradient (1.11) is the ratio of the coefficient of the
Gibbs-Donnan effect (GDE) (G = 1.04) and the average osmotic coeffi-
cient of sodium salts (Ø = 0.93–0.94). The GDE is due to the higher
concentration of large, anionic plasma proteins intravascularly that cannot
cross the endothelium/glycocalyx barrier, thus attracting further sodium
cations to the vascular space to balance their electromagnetic charge. The
Y-intercept is related to the other osmotically effective species in the ICF
(OsmolICF), ECF (OsmolECF) and plasma water (Osmolpw); the plasma
water volume (Vpw) and potassium concentration ([K+]p); and the

inactive/bound sodium (Na+inactive) and potassium salts (K+
inactive). The

components of the Nguyen-Kurtz equation that represent osmotically
inactive stores of exchangeable sodium and potassium (such as stored
in the skin, interstitial spaces and bone) as well as the other osmotically
active components of plasma (glucose and plasma proteins) are shown in
dotted boxes. Several important lessons can be gleaned from these equa-
tions. Firstly, the main effective osmoles in the body, sodium and potas-
sium determine the [Na+]p. From this, we extrapolate that perturbations in
[Na+]p are due to altered flux of effective osmoles and free-water in and
out of the body. Secondly, ineffective osmoles do not have any effect on
[Na+]p. Urea contributes to osmolarity but not tonicity
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and removal of the osmole will generally ameliorate the
hyponatraemia. Conversely, with high levels of ineffective
osmoles (urea, alcohols), a hyperosmolar hypotonic
hyponatraemia can develop. In this latter situation, the cause
of the hyponatraemia still requires investigation as usual.

Neurosurgical and neurological
dysnatraemias

Syndrome of inappropriate antidiuresis

The syndrome of inappropriate antidiuresis describes AVP
secretion inappropriate from the plasma tonicity and intravas-
cular volume state. SIAD is a diagnosis of exclusion but
should be considered when known precipitants of SIAD are
present (Fig. 5) [125, 136]. High levels of AVP increase free-
water resorption in the collecting duct, thus increasing TBW
leading to plasma dilution and ECF volume expansion. The
expansion of the ECF leads to a pressure natriuresis which
restores the normal ECF volume but leads to effective osmole
loss that worsens the hyponatraemia. Given the RAA axis is
unimpaired, and thus renal salt handling is intact, euvolemia is
the norm.

AVP may be secreted inappropriately in response to cere-
bral pathology [74]. Classically, these are associated with
AVP in the high normal range but not responsive to changes
in tonicity. This is in contrast to grossly elevated AVP levels,
typical for ectopic secretion from neuroendocrine tumours
[39].

Anti-epileptics, namely, carbamazepine and its derivative
oxcarbazepine, may cause a syndrome similar to SIAD, due to
increased renal sensitivity to AVP and possibly a shift of the
osmostat “set point” [135]. Hyponatraemia occurs in 26% of
those taking carbamazepine and 46% on oxcarbazepine [15].
It is especially common in elderly patients [60], is dose de-
pendent [85] and is more likely in those with a history of
hyponatraemia and on concomitant diuretics.

Cerebral-renal salt wasting

Intracerebral catastrophes may be associated with ECF deple-
tion, high urine sodium losses, hypovolaemia and an ensuing
hyponatraemia. Traditionally termed cerebral salt wasting
syndrome, we prefer this association to be termed cerebral-
renal salt wasting (CRSW) [88]. Classically described in SAH
[64, 139], it has been described in other neurosurgical diseases
including TBI [71, 86], aneurysm clipping [98], vault recon-
struction for craniosynostosis [45, 75] and infection [123].
CRSW has been variably attributed to natriuretic peptide re-
lease, alterations of sympathetic outflow to the kidney which
downregulate the RAA axis and directly impair proximal tu-
bular sodium resorption, and hypothalamic-pituitary-adrenal

axis dysfunction (Fig. 6) [103]. The differentiation of CRSW
and SIAD, and even the concept of CRSW itself, has been the
subject of much debate. As the ECF is depleted in the early
stages of CRSW, baroreceptor signalling causes increased se-
cretion of AVP, leading to hyponatraemia. Urinary sodium
concentration (which is often a critical step in differentiating
the aetiology of hyponatraemia) is not helpful in differentiat-
ing between CRSW and SIAD. The only clinical difference is
the ECF status (deplete in CRSW and replete in SIAD), which
is often difficult to measure clinically [25, 93]. Neurosurgical
studies utilizing (gold standard) radioisotope dilution methods
demonstrate that there is a subset of hyponatremic patients
with depleted ECF better explained by CRSW than SIAD
[98, 139].

Central diabetes insipidus

Diabetes insipidus (DI) is caused by interruption of the AVP
axis leading to inappropriate free-water excretion and
hypernatraemia. Central DI is the most common type and
most relevant to neurosurgical patients, often seen after sellar
surgery or head trauma. Damage to 80–90% of hypothalamic
magnocellular neurons is necessary before symptoms arise
[54]; transient DI and permanent DI are seen after 10-20%
and 2% of pituitary surgeries, respectively [55, 99]. The risk
of DI after surgery increases with intraoperative CSF leak;
specific pathologies include craniopharyngioma, Rathke cleft
cysts, and Cushing’s disease; young age; extrasellar expan-
sion; and the extent of superior resection [55, 79, 99].
Sectioning above the median eminence generally causes per-
manent DI, as the probability ofWallerian degeneration of the
magnocellular neuron is proportional to the proximity of the
axotomy from the soma (located in hypothalamic nuclei).
More superior damage to the circumventricular organs, spe-
cifically the SFO and OVLT, such as after anterior communi-
ca t ing ar te ry aneurysm (AComA) cl ipp ing and
craniopharyngioma resection [28], may lead to central DI with
adipsia [133].

Occult AVP deficiency may be masked by concurrent
ACTH deficiency and only after glucocorticoid replacement
therapy has been administered do the symptoms DI appear.
Firstly, cortisol induces resistance of the V2 receptor (or at a
post-receptor level) to AVP; thus in states of glucocorticoid
deficiency, the effects of AVP are amplified [118]. Secondly,
corticotrophin-releasing hormone (CRH) stimulates ACTH
and AVP release; as glucocorticoid deficiency upregulates
CRH, thus AVP release is increased [23]. Lastly,
hypocortisolaemia results in renal sodium loss and volume
depletion, potent stimulators for increased (but “appropriate”)
AVP release. As such, when glucocorticoid deficiency is ame-
liorated, these compensatory mechanisms fail, and DI ensues.
Thus, assessment of AVP function both before and after
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Fig. 6 Pathophysiology of the
cerebral-renal salt wasting after
intracranial catastrophe. CRSW
has been variably attributed to
natriuretic peptide release, alter-
ations of sympathetic outflow to
the kidney which downregulates
the RAA axis and directly impairs
proximal tubular sodium resorp-
tion, and hypothalamic-pituitary-
adrenal axis dysfunction. This
culminates in ECF depletion, and
consequent baroreceptor signal-
ling causes increased secretion of
AVP, leading to hyponatraemia.
ACTH, adrenal corticotropic hor-
mone; PCT, proximal convoluted
tubule; SNS, sympathetic nervous
system

Fig. 5 Common causes of the syndrome of inappropriate antidiuresis.
Typical duration of SIAD caused by each aetiology is shown in grey.
AIDS, acquired immunodeficiency syndrome; AVP, arginine
vasopressin (antidiuretic hormone); CVST, cerebral venous sinus
thrombosis; GIT, gastrointestinal tract; GUT, genitourinary tract;
MAOIs, monoamine oxidase inhibitors; MDMA, 3,4-methylenedioxy

methamphetamine; SAH, subarachnoid haemorrhage; SCLC, small cell
lung carcinoma; SDH, subdural hematoma; SIAD, syndrome of
inappropriate antidiuresis; SNRI, serotonin noradrenaline reuptake
inhibitor; SSRI, selective serotonin reuptake inhibitor; TBI, traumatic
brain injury; TCA, tricyclic antidepressant
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glucocorticoid replacement appears to increase the sensitivity
for diagnosis of DI [19].

Central DI is a rare presenting feature of pituitary adeno-
mas and other slow-growing lesions of the sella. As AVP
synthesis occurs in the hypothalamus and not the neurohy-
pophysis, slow destruction of the latter damages only the
magnocellular nerve terminals, allowing the site of secretion
to migrate superiorly to the stalk or hypothalamus [24]. Given
the substantial reserve of magnocellular neurons, sellar lesions
causing DI are often fast growing and highly destructive, such
as metastases, carcinoma or apoplexy. It should also be noted
that conditions affecting stalk (e.g. Langerhans cell
histiocytosis, sarcoidosis and autoimmune hypophysitis)
may cause DI early in their course.

In a patient with new central DI, MR imaging of the sellar
region is paramount to exclude a structural lesion in the ab-
sence of trauma or surgery. Idiopathic central DI is a diagnosis
of exclusion in the setting of a normal MRI and is likely
autoimmune [24]. MRI may demonstrate absence of the pos-
terior pituitary bright spot, but this is not specific [26]. Anti-
vasopressin cell antibodies are present in the majority of cases
[89], while DI associated with adipsia is seen with auto-
antibodies to the circumventricular organs [57]. The presence
of a thickened pituitary stalk (> 2–3 mm) is generally patho-
logical, and the combination of a thickened stalk and absent
bright spot demands thorough investigation for neoplastic and
infiltrative lesions of the hypothalamus and pituitary [24].

Dysnatraemias following pituitary surgery

Given the proximity of tonicity receptors and magnocellular
neurons to the adenohypophysis, dysnatraemias are relatively
common after sellar surgery. Dysnatraemias also represent the
most common cause for delayed unplanned re-admission fol-
lowing pituitary surgery, accounting for 70% of cases [17].
Risk factors for dysnatraemias after pituitary surgery include
male gender, younger age, larger tumours (macroadenomas),
greater extent of resection, suprasellar extension, reoperation,
CSF leak, non-adenoma lesions (Rathke’s cleft cyst and
craniopharyngioma), Cushing’s disease, and microscopic
(c.f. endoscopic) approaches [7, 27, 80, 99, 116, 141]. The
initiation of DI may be delayed after Rathke’s cleft cyst sur-
gery, as the cyst contents incite sterile inflammation of the
stalk which may present weeks to months postoperatively
[53]. Furthermore, those with surgically managed Cushing’s
disease are at increased risk of fluctuating serum sodium due
to the opposing effects of relative glucocorticoid deficiency
and central DI; indeed up to 70% exhibit some abnormality in
sodium and water balance postoperatively [55].

Post-traumatic and post-surgical patients may exhibit fluc-
tuations in AVP secretion termed “biphasic” and “triphasic”
responses (Fig. 7). Immediately after surgery, DI may develop
due to interruption of axons and axoplasmic flow in the

magnocellular osmoregulatory system. This may arise from
surgical manipulation of the stalk or neurohypophysis, or ex-
cision [121]. An increase in serum sodium of 4.5 mmol/L
from preoperative to first postoperative testing is 91% specific
and has a positive predictive value of 57% for DI, while a
postoperative serum sodium of > 145 mmol/L is 98% specific
[116]. After some time, generally 5–7 days, stored AVP may
be released from Herring bodies of the neurons distal to the
site of axonal injury leading to a transient SIAD. Finally, after
partial damage to magnocellular neurons, the remaining neu-
rons and regenerating axons begin to secrete AVP, and normal
osmoregulation reinstated (biphasic response). However, if
damage is severe, all magnocellular cells may degenerate,
and once AVP stores are exhausted, chronic DI persists
(triphasic response).

Hyponatraemia following pituitary surgery is usually
SIAD [29]. It is generally delayed, with a nadir 7–9 days
postoperatively [113, 114], and is associated with larger tu-
mours, younger age and reoperation [126]. This SIAD likely
represents an “isolated second phase” of the triphasic re-
sponse. Initial trauma to the stalk is incomplete, with
persisting neurons sufficient to defend plasma tonicity.
However, degeneration of damaged neurons continues, and
delayed release of stored AVP produces a transient SIAD.
Once these stores are exhausted, the remaining neurons again
resume to maintain normal tonicity [105].

Dysnatraemias following SAH

Hyponatraemia following SAH is common, occurring in up to
56% of patients [50, 122]. Risk factors include increased age,
aneurysmal aetiology [122], current smoking [119], AComA
aneurysms [115], post-SAH hydrocephalus, rebleeding [84],
high SAH grade, large clot volume [90] and surgical or
endovascular intervention. Generally, SIAD is considered
more common than CRSW, but this is contentious [122]; both
have a similar morbidity and mortality [64]. Atrial, brain and
dendroaspis [65] natriuretic peptides are increased after SAH
[14, 36, 61, 63, 130, 134], are associated with hypovolaemia
[33] but may not specifically cause hyponatraemia [50, 130].
Aldosterone levels are generally suppressed despite normal
renin levels [14]. AVP (and a by-product of its formation,
copeptin) levels are greater in patients with DCI independent
of plasma tonicity [41]. Total glucocorticoid levels are com-
monly low after SAH [66, 67, 104]. However, as cortisol is
highly protein bound, simultaneous “negative acute-phase”
changes in carrier protein concentration may dictate that free
cortisol levels are actually normal [47, 68]. Concentrations of
albumin and corticosteroid-binding globulin should be con-
sidered before renal salt wasting is attributed to glucocorticoid
deficiency. Importantly, hypervolaemic hyponatraemia and
hyponatraemia due to inappropriate fluid replacement are also
seen after SAH [50, 122]. The severity of the hyponatraemia
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and its trajectory are independent risk factors for poor out-
come after SAH [34, 91], length of hospital stay [91, 122]
and the development of DCI [34]; however, the overall impact
of hyponatraemia on outcome is small [106, 138].

DI is uncommon after SAH [106, 131]. It is generally tran-
sient but may persist in some patients [5]. DI is associatedwith
AComA aneurysms and is particularly important to recognize
and treat given the risk of DCI with hypovolaemia. Adipsic DI
may complicate surgical clipping of AComA aneurysms
[124].

Dysnatraemias following traumatic brain injury

Hyponatraemia commonly complicates traumatic brain injury
(TBI), occurring in approximately 13% of cases [108], and is
associated with longer hospital stays and poorer outcome [95].
The incidence correlates with radiological severity [82], the
majority of cases are due to SIAD [3] and complete recovery
is the norm [4]. CRSW may also complicate TBI, with an
incidence of 0.8–34.6% [73], greater in those with more

severe injury. Late-onset hyponatraemia, in the second week
post-injury, tends to resemble CRSW more than SIAD [51].
Although uncommonly the sole cause for hyponatraemia,
concomitant hypothalamic-pituitary-adrenal axis dysfunction
may complicate post-TBI hyponatraemia [49].

The frequency of DI following TBI correlates with clinical
and imaging severity, occurs in over 20% of individuals acute-
ly and persists in approximately one-quarter of these cases [3].
Initially, oedema, ischemia or direct neuronal injury to the
hypothalamus and stalk causes DI that presents within 2–
3 days of injury [2], correlating with maximal post-traumatic
oedema. Resolution of oedema leads to resolution of DI in the
majority; however, with direct injury to magnocellular neu-
rons, DI may present earlier and be permanent. Concomitant
injury to the thirst centres leads to adipsic DI, which carries a
worse prognosis [124]. The presentation of post-traumatic DI
may be delayed and may occur in the absence of acute-phase
DI. All individuals with resolved post-traumatic acute DI
should have a screening post-acute phase water deprivation
test, while those without a history of acute post-traumatic DI

Fig. 7 Pathophysiology of the triple response to magnocellular injury
after pituitary surgery. Immediately after surgery DI may develop due
to interrupted axoplasmic flow in the magnocellular neurons. After a
variable amount of time, generally 5–7 days, AVP stored in Herring
bodies located at the terminal part of the magnocellular axon is released,
leading to a transient SIAD. Once the AVP stores are exhausted,

degeneration of the damaged neurons leads to chronic DI. When damage
is less severe, the spared neurons are sufficient to defend body tonicity,
but unregulated release of stored AVP in the affected neurons still causes
a transient SIAD around days 5–9 (isolated second phase). SON supra-
optic nucleus; PVN, paraventricular nucleus; AVP, arginine vasopressin
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that are asymptomatic (no ongoing thirst, polyuria or nocturia)
and have normal urine output (< 3 L/day) require no further
assessment [3].

Common “medical” dysnatraemias

The reset osmostat

The reset osmostat, common in pregnancy, is a shift of the
osmostat set point where AVP secretion begins to increase
significantly [10]. The diagnosis should be considered in those
with mild hyponatraemia or hypernatraemia that is stable over
long time periods despite varying solute and water intake.
Importantly, AVP secretion will alter appropriately after water
and salt loads to maintain tonicity at this new set point.

Hypovolaemic hyponatraemia

Intravascular hypovolaemia is a potent stimulus for AVP se-
cretion. As such, free-water is retained in states of whole-body
salt and water depletion (hypovolaemia). This is not SIAD;
secretion will normalize when intravascular haemodynamics
are restored.

Diuretic-induced hyponatraemia

Thiazides are the primary offender in diuretic-associated
hyponatraemia [56]. Thiazides impair diluting ability of the
nephron, stimulate AVP release and increase water resorption
in the inner medullary collecting duct independent of AVP
[20]. The combination of water retention and renal salt
wasting begets hyponatraemia. Because thiazides impair uri-
nary dilution, those that require maximally dilute urine to
maintain water balance (e.g. those with poor solute intake,
psychogenic polydipsia or “beer potomania”) are especially
vulnerable. Discontinuation of thiazides may lead to danger-
ously prompt correction of serum sodium, with the risk of
osmotic demyelination augmented by the concurrent
hypokalaemia induced by thiazides.

Loop diuretics (e.g. frusemide), althoughmore prevalent than
thiazides in hospitalized patients with hyponatraemia [46], sel-
dom cause hyponatraemia themselves. They disrupt the coun-
tercurrent concentrating mechanism of the nephron and lead to
an increase in free-water clearance. Hypovolaemia-induced
hyponatraemia from overzealous loop diuresis is possible, but
uncommon. More commonly, patients with another cause for
their hyponatraemia, such as heart failure or renal failure, are
also on a loop diuretic, and the latter is wrongly ceased.
Potassium-sparing diuretics (e.g. spironolactone) do mildly re-
duce serum sodium [21] but are unlikely to cause hyponatraemia
in isolation.

Hypervolaemic hyponatraemia

In states of whole-body hypervolaemia, but reduced effective
intravascular volume, such as heart failure or cirrhosis, intra-
vascular depletion stimulates AVP release and thus
hyponatraemia. Normalization of intravascular dynamics
may improve hyponatraemia, although hyponatraemia is an
independent risk factor for mortality in these patients [16,
70, 72, 112].

Sodium measurement
and pseudohyponatraemia

Methods of measuring [Na+]p include flame photometry (FP);
the indirect ion-sensitive electrode (I-ISE), used for “formal”
pathology tests; and the direct ISE (D-ISE), used in point-of-
care analysers [76] (Table 1). FP and I-ISE may produce spuri-
ous results in the setting of elevated or decreased plasma solid
phase, termed pseudohyponatraemia and pseudohypernatraemia,
respectively. The D-ISE is not influenced by the solid phase
composition of plasma [30, 32, 42, 129] (Fig. 8).

A physiology based approach
to dysnatraemia

Traditionally, dysnatraemias were classified by the apparent vol-
ume state of the individual. The clinical utility of such a classi-
fication is hampered by the difficulty of accurately measuring
the volume state [25, 92]. Indeed, clinicians perform worse than
the flip of a coin in differentiating between hypovolaemia and
euvolemia in individuals with hyponatraemia [6]. Our approach
to dysnatraemia is centred around the flux of effective osmoles
and water entering and exiting the body. Simply, if more effec-
tive osmoles are excreted than ingested, or more free-water is
gained than lost, [Na+]p will fall. Conversely, if more effective
osmoles are ingested than excreted, or more free-water is lost
than gained, [Na+]p will rise. As such, we have categorized the
common causes of hyponatraemia and hypernatraemia by free-
water and effective osmole flux (Tables 2 and 3). Additionally,
medications are an often-overlooked sodium burden (Table 4)
[137].

Our approach to diagnosis of dysnatraemia (Figs. 9 and 10)
begins by measurement of the excreted effective osmoles in
comparison to the serum effective osmoles. This is simplified
(initially) to the comparison of urinary sodium and potassium to
[Na+]p, correcting the latter for [Glucose]p if hyperglycaemia is
present (Figs. 11 and 12). We measure urinary losses first as
they represent the body’s attempt to rectify the dysnatraemia.
Dichotomisation based on urinary effective osmole concentra-
tions classifies pathologies into those due to renal loss or other
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means. Note that the interpretation of plasma and urinary
tonicities required for diagnosis and treatment differ slightly.

When urinary tonicity is less than plasma tonicity (i.e.
([Na+]u + [K+]u) < [Na+]p), the kidney is expelling net free-
water from the body. In the setting of hyponatraemia, if
AVP is fully supressed (the appropriate response to
low plasma tonicity), urinary tonicity shoud be much less than
plasma tonicity (i.e. ([Na+]u + [K+]u) << [Na+]p)). If urinary
tonicity is not supressed, even if it lower but similar to plasma,
this response is considered abnormal, as the physiological
response to hyponatraemia is maximally dilute urine. In the
setting of hypernatraemia, a low urinary tonicity is inappro-
priate for plasma tonicity. When urinary tonicity is high
([Na+]u + [K+]u) > [Na+]p), the kidney is retaining net free-
water from the body. In the setting of hyponatraemia, this is
inappropriate, while in hypernatraemia, it is appropriate for
plasma tonicity. The same caveat applies such that a urinary
tonicity just above that of plasma in hypernatraemia is still
inappropriate, as urine should be maximally concentrated. A
futher caveat is if a previously renally driven process resolves
prior to testing, only the restorative phase may be

capturedbiochemically, thus obscuring the diagnosis (but not
effecting treatment).

Although we present a dichotomous approach, clinical ap-
plication is often more blurred, and clinical reasoning is key.
The thresholds presented should not be seen as absolutes, but
as guides (see Appendix 1).

Free-water clearance as a guide
to management

Calculation of the (electrolyte) free-water clearance (EFWC)
of the kidney can be helpful to conceptualize the physiology
underlying the treatment of dysnatraemias (Fig. 13). Urine
volume (Vurine) is described as being comprised of two com-
ponents, one that is isotonic to plasma, and another that is
(electrolyte) free-water. When EFWC is positive, this is vol-
ume of free-water being excreted per unit time (e.g. per day)
by the kidney; when negative, it is the volume of free-water
being retained [101]:

Table 1 Summary of clinically relevant methods to measure sodium in a solution

Device Method Advantages Disadvantages

Flame photometry Alkali metal salts are ionized by a flame and emit light as
electrons return to the ground state. The wavelength
determines the metal species while the intensity determines
the concentration

Does not need to be
calibrated regularly

Subject to spurious results
“psuedohyponatraemia” in
the setting of
hyperlipidaemia,
hyperproteinaemia or any
other state of altered plasma
water to plasma ratio

“Psuedohypernatraemia” may
also occur in altered plasma
water to plasma ratio (usually
hypoproteinaemia)

Ion-specific
electrode

An electrode permeable to a specific species allows a potential
gradient to form across it, which is proportional to the activity
of that ion as per the Nernst equation. Activity must then be
converted to concentration*

Indirect ion-specific electrode A sample of whole plasma is
diluted with a relatively large
volume of buffer of high
ionic strength, so that the
activity coefficient is
constant

Result similar to flame
photometry

Same as flame photometry

Direct ion-specific electrode The activity of a sample of
whole plasma is converted to
a concentration assuming
constant activity coefficients
for the standards, calibrators
and samples

Not effected by states of
altered plasma water to
plasma ratio as measures
electrolyte content in the
plasma water (mmol/kg
H2O)

The electrochemical activity of
the ions in the water is
converted to the readout
concentration by a fixed
(ion-specific) multiplier. This
is only accurate for a given
ionic strength, usually chosen
to equal 160 mmol/L for
plasma, and thus is less ac-
curate at extremes of sodium
concentration

*= Activity is the product of concentration and the activity coefficient (which is defined by the Debye-Huckel equations). ISE ion-sensitive electrode
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Table 2 Causes of
hyponatraemia classified by free-
water and effective osmole flux

Hyponatraemia

Increased free-water intake

Polydipsia

Hypotonic fluids*

Surgical irrigation

Decreased effective osmole intake

Malnutrition

Decreased free-water output

SIAD

Physiologically appropriate increase in AVP (states of decreased
effective intravascular volume, e.g. HF, CLD, sepsis,
hypothyroidism)

Increased effective osmole output

Renal losses

Diuretics (primarily thiazides)

CRSW

Hypocortisolaemia

Hypoaldosteronaemia

Hypothyroidism

Salt losing nephropathy

Non-renal losses

Bleeding

GIT losses with high effective
osmolarity (e.g. secretory diarrhoea)

Burns

*= Note any fluid with an effective osmolar concentration less than the average of the effective osmolar concentra-
tions of all excretionswill lower the serum sodium.Remember to consider the osmotic coefficient of the solute in the fluid

HF heart failure,CLD chronic liver disease, AVP arginine vasopressin (antidiuretic hormone), SIAD syndrome of
inappropriate antidiuresis, CSWS cerebral-renal salt wasting, GIT gastrointestinal tract

Fig. 8 Comparison of the methods of calculating sodium concentration in
plasma with different compositions. Plasma is generally composed of 93%
water, with proteins and lipids (together the “solid phase”) accounting for the
remaining 7%. The D-ISE measures the thermodynamic activity of sodium
in plasma water, which generally follows its concentration, although other
species in the plasma, namely, chloride, may alter this. The thermodynamic
activity of sodium is then divided by an activity coefficient to yield the
concentration of sodium in plasma water. Finally, this value is corrected to
match the values produced by I-ISE and FP methods, assuming the plasma
contains 7% solid phase. I-ISE and FP require dilution prior to sampling,
which introduces dilutional error. Moreover, the I-ISE and FP methods, by

virtue of this dilution step, measure the sodium concentration in whole
plasma, as opposed to the sodium concentration in plasma water measured
by D-ISE. Importantly, the former may produce spurious results in the
setting of elevated or decreased plasma solid phase. Spuriously low values
are seen in states where the lipid or protein component of plasma is in-
creased, the so-called pseudohyponatraemia, and spuriously high values in
the setting of hypoproteinaemia. D-ISE measurements are not affected by
changes in plasma solid phase. Modified from Fortgens P, Pillay TS.
Pseudohyponatraemia revisited: a modern-day pitfall. Arch Pathol Lab
Med. 2011;135:516. ©2010 College of American Pathologists

2443Neurosurg Rev (2021) 44:2433–2458



EFWC≈Vurine � 1−
Naþ½ �u þ Kþ½ �u
� �

Naþ½ �p

 ! Insensitive losses (trans-epidermal and respiratory) must
also be considered in the clearance pathways of free-water.
Sweat and gastrointestinal losses also contribute; however,
they contain variable amounts of solute.

Electrolyte free-water intake (EFWI) is conceptually similar
to EFWC, being the amount of free-water entering the body:

EFWI≈Vintake � 1−
Naþ½ �intake þ Kþ½ �intake
� �

Naþ½ �p

 !

Production of metabolic water is an additional source of
free-water.

Electrolyte free-water balance (EFWB) has therefore been
defined as the difference between EFWI and EFWC [9, 10]:

EFWB ¼ EFWI þMetabolic Water−EFWC−Insensible Losses

The clinical consequences of these equations are that in the
setting of hyponatraemia:

When EFWC is positive, the kidneys are expelling free-
water. If EFWI can be made less than EFWC (e.g. by
restriction of free-water intake), hyponatraemia should
resolve (see Supplemental content 1).

When EFWC is negative, the kidneys are retaining free-
water. Here, EFWC may be increased by AVP

Table 3 Causes of
hypernatraemia classified by free-
water and effective osmole flux

Hypernatraemia

Decreased free-water intake

No access to water

NPO

Loss of thirst drive (e.g. hypothalamic lesions)

Increased effective osmole intake

Medications (see Table 4)

Hypertonic fluids*

Salt poisoning

Increased free-water output

Renal losses

DI (central and nephrogenic)

Osmotic diuresis (e.g. hyperglycaemia, mannitol, urea)

Reduced renal concentrating capacity (e.g. myeloma, ATN,
TIN)

Non-renal losses

Sweating

Osmotic diarrhoea

Respiratory losses (e.g. high flow oxygen
without humidifier)

Decreased effective osmole output

Rarely a cause of clinically important
hypernatraemia

Hyperaldersteronaemia

Hypercortisolaemia

Glucocorticoids

*= Note any fluid with an effective osmolar concentration greater than the average of the effective osmolar
concentrations of all excretions will increase the serum sodium. Remember to consider the osmotic coefficient
of the solute in the fluid

NPO nil per Os, DI diabetes insipidus, ATN acute tubular necrosis, TIN tubulointerstitial nephritis

Table 4 Common medications with a high sodium load

Drug (route) Sodium per dose (mmol)

Piperacillin/tazobactam 4 g/500 mg (IV) 9.4

Ampicillin 2 g (IV) 5.7

Ceftriaxone 2 g (IV) 7.2

Meropenem 1 g (IV) 3.9

Ceftazidime 2 g (IV) 4.7

Omeprazole 40 mg (PO) 13.2

Macrogol 3350 (Movicol®) (1 sachet) 65

1000 ml of 0.9% NaCl 154

100 ml of 3% NaCl 51

20 ml of 23.4% NaCl 80

1000 ml of compound sodium lactate 130

PO per oral, IV intravenous

Sodium per dose is given as the intrinsic sodium for the dose of antibiotic
only. Additional sodiummay be present when administered in a “ready to
use” pack or when reconstituted in saline. Note that many intravenous
medications are administered in 100–250 ml solutions of 0.9% saline,
which increases their sodium load. For example, QID dosing of
piperacillin/tazobactam 4 g/500 mg reconstituted in 100 ml 0.9% sodium
chloride equates to ~ 100 mmol of sodium
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antagonism or EFWImay bemade negative by restriction
of free-water intake and prescription of hypertonic sub-
stances (e.g. salt tablets, 3% saline).

Differentiating the cause of increased AVP
in hyponatraemia

Both hypovolaemia and SIAD demonstrate elevated AVP.
Differentiation is complex, reliant on the amalgam of clinical
history, physical signs and response to treatment.
Physiologically, the difference lies in the state of the RAA
axis, normal in SIAD and upregulated in hypovolaemia
(Fig. 14). Differentiation is critical as volume replacement will
improve hyponatraemia in hypovolaemia, but worsen it in
SIAD. Conversely, free-water restriction below EFWC will
lead to improvement in SIAD but not in hypervolaemia, as
the primary stimulus has not been addressed.

Several markers have been proposed to assess the RAA
axis in hyponatraemia, but none has proved effective in

isolation. A low [Na+]u (< 20 mmol/L) is common in
hypovolaemia and, if present, permits volume replacement
without risk of worsening hyponatraemia. However, [Na+]u
may be elevated (> 40 mmol/L) in hypovolaemia and renal
salt wasting: not all elevated [Na+]u is SIAD.

Tubular handling of different solutes can be estimated
using their fractional excretion, the percentage of the filtered
solute that is lost in the urine:

FESolute %ð Þ ¼ 100� Solute½ �urine � Cr½ �plasma
Solute½ �plasma � Cr½ �urine

A low fractional excretion of sodium (FENa) (< 0.5%) is
one sign the RAA is upregulated and the kidney is retaining
most of its filtered sodium. In small studies, a FENa < 0.5%
predicted improvement of hyponatraemia with saline admin-
istration [96, 97]. When glomerular filtration rate is high and
sodium intake is low, FENa may also be suppressed, even in
the absence of hypovolaemia. The addition of a low (< 55%)
fractional excretion of urea (FEUrea) or a low (< 12–17%) frac-
tional excretion of uric acid (urate) (FEUA) to an FENa < 0.5%
improves specificity for saline responsiveness [38, 96, 97].

Fig. 9 An approach to the diagnosis of hyponatraemia. ACR, albumin/
creatinine ratio (urine); BNP, brain natriuretic peptide; BSL, blood sugar
level; CRSW, cerebral renal salt wasting; D-ISE, direct ion-sensitive
electrode; DKA, diabetic ketoacidosis; ECF, extracellular fluid; FENa,
fractional excretion of sodium; FEUrate, fractional excretion of urate;
GIT, gastrointestinal tract; HHS, hyperglycaemic hyperosmolar; I-ISE,

indirect ion-sensitive electrode; INR, international normalized ratio; IV-
Ig, intravenous immunoglobulin; LFTs, liver function tests; PCR, protein/
creatinine ratio (urine); SIAD, syndrome of inappropriate antidiuresis;
SPEP, serum protein electrophoresis; TTE, transthoracic echocardio-
gram; UEC, urea, electrolytes and creatinine; UPEP, urine protein elec-
trophoresis; USS, ultrasound
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Tracking of FENa and [Na+]u after a volume loading can also
be useful, as SIAD is associated with an increase in FENa but
persistently elevated [Na+]u.

Differentiation between SIAD and CRSW using FENa or
FEUA unfortunately can only be performed retrospectively
after correction of serum sodium (FEurate corrects in SIAD,
while is persistently elevated in CRSW), limiting its clinical
utility [87, 88]. Non-specific markers of the volume depletion
of CRSW (cf. SIAD) include an elevated urea/creatinine ratio
and haematocrit.

Symptoms of dysnatraemia

Cerebral symptoms in dysnatraemias [43] (Fig. 15) are related
to the degree of dysnatraemia and the tempo at which it de-
veloped, with more acute and severe changes associated with
worse symptoms [13].

Management of hyponatraemia

Treatment of hyponatraemia (Fig. 16) depends on clinical
context. Those with cerebral symptoms should be treated ur-
gently with hypertonic solutions. After SAH, volume

restriction increases the risk of DCI and alternative treatments
are required [140]. In individuals with hypovolaemic
hyponatraemia with renal salt wasting (CRSW or other),
free-water restriction must be employed in concert with vol-
ume replacement to avoid worsening hypovolaemia. In most
other clinical contexts, free-water restriction should be consid-
ered first-line therapy. Additional therapies include increasing
effective osmole intake and possibly increasing EFWC using
loop diuretics or antagonists of the AVP axis. These should be
used judiciously and only employed when EFWC is low (<
500 ml/day) or negative. Given that the equations predicting
the response of [Na+]p to treatment are not accurate [48, 78],
we suggest monitoring of serum and urinary electrolytes every
1–2 h during active treatment and twice daily when treating
with free-water restriction alone.

Symptomatic hyponatraemia

Symptomatic hyponatraemia should always be treated by in-
travenous hypertonic fluid (e.g. 3% saline). The goal is to
rapidly increase [Na+]p by 4–6 mmol/L to prevent progression
of cerebral oedema and herniation [128]. The guidelines rec-
ommend infusion of 150 ml of 3% saline over 20 min, follow-
ed by a repeat infusion once a repeat plasma sample has been

Fig. 10 An approach to the diagnosis of hyponatraemia. DI, diabetes
insipidus; D-ISE, direct ion-sensitive electrode; ECF, extracellular fluid;
FENa, fractional excretion of sodium; FEUrate, fractional excretion of

urate; I-ISE, indirect ion-sensitive electrode; MR, magnetic resonance
imaging; SPEP, serum protein electrophoresis
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taken [125]. This process should be repeated until a 5 mmol/L
rise in [Na+]p has been achieved. Infusion of 3% saline should
then be continued until symptoms resolve or a 10 mmol/L rise
in plasma sodium has been achieved, aiming for a rise of
1 mmol/L/h.

Hyponatraemia in the setting of intracranial
catastrophe

Volume restriction in the presence of intracranial catastrophe
is associated with poor outcome [140], and the treatment for
hyponatraemia in these settings is salt. The volume state
should be maintained with isotonic (0.9%) saline, and all ef-
forts should be made to limit the administration of hypotonic
fluids (such as reconstituting medications in saline as opposed
to dextrose solutions). Free-water should be restricted asmuch
as possible. If EFWC is substantially negative, or [Na+]p con-
tinues to decline, second-line agents include salt tablets, con-
tinuous, slow infusion of 3% saline (e.g. 20 ml/h) and miner-
alocorticoids (fludrocortisone) [107]. The latter has not been
shown to improve outcome after SAH [94, 120] and may
increase the risk of hypokalaemia.

Free-water restriction

Restriction of free-water intake reduces EFWI and thus
EFWB, therefore ameliorating hyponatraemia. Restriction
of free-water intake is often all that is required to treat
hyponatraemia when the volume restriction can reasonably

be made lower than EFWC. The restriction of free-water
intake must be lower than EFWC to be effective in isola-
tion; thus, in those with low (e.g. < 500 ml per day) or
negative EFWC, an additional strategy is commonly
employed.

Intravenous volume replacement

When volume depletion is driving AVP secretion, intravenous
crystalloid volume replacement facilitates physiological sup-
pression of AVP secretion. Those with a reduced FENa/UA/Urea
have an upregulated RAA axis and will likely respond to
volume replacement. Those with a normal or elevated FENa/
UA/Urea may be renally salt wasting (respond to volume re-
placement) or have SIAD (worsen with fluid administration).
Because differentiation is impossible biochemically, volume
replacement should only be trialled after free-water restriction
alone is unsuccessful and clinical suspicion of SIAD is low, as
hyponatraemia from SIAD may worsen with crystalloid.

Increasing effective osmole intake

Effective osmoles (salt tablets or hypertonic saline infusion)
can be conceptualized as decreasing EFWI (and EFWB).
These are particularly useful in individuals with negative
EFWC, where free-water restriction alone is insufficient. In
the asymptomatic, salt tablets or high-dose urea [31] provide a
noninvasive method of increasing effective osmole intake, so
long as the dose is great enough to saturate urea transport

Fig. 11 Derivation of plasma and
urine tonicity. The osmolarity of
both plasma and urine differs
from their tonicity by the
inclusion of urea, which is an
ineffective osmole. Plasma
tonicity can be simplified to twice
the sodium concentration given
that potassium and glucose levels
are highly regulated within a
narrow range. Urine tonicity can
be approximated to twice the
sodium potassium sum, as
substantial glycosuria occurs only
in the setting of profound
hyperglycaemia or a Fanconi
syndrome. We can halve these
approximations to more easily
compare urinary tonicity ([Na+]p
and [K+]p) to plasma tonicity
[Na+]p. DKA, diabetic
ketoacidosis; ECF, extracellular
fluid; HHS, hyperglycaemic
hyperosmolar syndrome
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mechanisms in the collecting duct [40]. Salt tablets and urea
have both successfully been used in chronic SIAD resistant to
fluid restriction [81]. Of interest, high-dose urea (15 g) has
been shown to simultaneously reduce intracranial pressure
(ICP) and raise [Na+]p in hyponatraemic patients with intra-
cranial catastrophe [11]. Crucially, salt tablets or other effec-
tive osmoles are not appropriate in hypervolaemic
hyponatraemia. Here, there is adequate (if not surplus) total
body effective osmoles; they are just not in the intravascular
space. Management here relies on improvement of
haemodynamics through vasomediators, albumin and
diuretics.

Increasing urinary free-water clearance

Loop diuretics, by virtue of interfering with the countercurrent
concentrating mechanism of the nephron, ameliorate the fixed
urinary diluting capacity seen with increased AVP. Thus,
when combined with increased solute intake, they can aug-
ment treatment in SIAD. Importantly, they also increase
kaliuresis, and serum potassium should be monitored through-
out therapy.

EFWC can be increased by V2-antagonists (“-vaptans”),
useful in those with a negative EFWC but dangerous in those
with hypovolaemic hyponatraemia. The role of vaptans in

Fig. 12 Using the urinary sodium potassium sum to classify
dysnatraemias. When the urinary sodium ([Na+]u) potassium ([K+]u)
sum is greater than the serum sodium (i.e. ([Na+]u + [K+]u) > [Na+]p)
(purple boxes), renal output is causing free-water to be retained and
AVP levels are high. In the setting of hyponatraemia, whether this ele-
vated AVP is an appropriate physiological response to a decreased effec-
tive volume state or is non-physiological (i.e. SIAD) requires further
investigation. Furthermore, a urinary sodium potassium sum that is slight-
ly less than the serum sodium in a hyponatraemic individual is still gross-
ly abnormal, as ADH should suppress completely, and points towards
renal free-water retention (see Appendix 1). In the setting of
hypernatraemia, this is the appropriate physiological response and the

cause of the hypernatraemia is likely non-renal. The caveat is a previously
renally driven process that resolves prior to testing, where only the restor-
ative phase is captured biochemically. Conversely, when the urinary so-
dium potassium sum is less than the serum sodium (i.e. ([Na+]u + [K

+]u)
< [Na+]pw) (green boxes), renal output is causing excretion of free-water,
and AVP levels are low (or the kidney is not responding appropriately to
circulating AVP, i.e. nephrogenic DI). In the setting of hyponatraemia,
this suppressed AVP is an appropriate physiological response and the
cause is likely non-renal (with the same caveat as above). In the setting
of hypernatraemia, this lack of AVP effect is pathological and points to a
lesion along the AVP axis, from hypothalamus to kidney
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acute symptomatic hyponatraemia has not been established as
this has been an exclusion criterion in all clinical trials. In a
meta-analysis of 14 studies [111], vaptans increased serum
sodium by 5.27 mEq/L (95% CI: 4.27–6.26) and EFWC by
67.8 ml/h (95% CI: 50.2–85.4) over the first 3–7 days;

however, there was significant heterogeneity between studies
(I2 = 70% and 35%, respectively). Resistance to vaptans may
be observed with excessive free-water intake, high AVP
levels, diminished distal renal tubular flow and activating mu-
tations of the V2-receptor [62]. Inhibition of endothelial V2

Fig. 13 Electrolyte free-water balance. The fluids that enter and exit the
body can be described as being comprised of two components, one that is
isotonic to plasma, and another that is (electrolyte) free-water. This is true
for urine volume (Vurine) where the free-water component is termed the
electrolyte free-water clearance (EFWC). When EFWC is positive, this is
the volume of free-water being excreted per unit time (e.g. per day) by the
kidney; when negative, it is the volume of free-water being retained by
the kidney. Insensitive losses (trans-epidermal and respiratory) must also

be considered in the clearance pathways of free-water. Sweat and gastro-
intestinal losses also contribute; however, they contain variable amounts
of solute. Electrolyte free-water intake (EFWI) is conceptually similar to
EFWC, being the amount of free-water entering the body through the
volume of food and drink intake (Vin). Production of metabolic water is
an additional source of free-water. Electrolyte free-water balance
(EFWB) has therefore been defined as the difference between EFWI
and EFWC

Fig. 14 Differentiating the common causes of hyponatraemia based on
FENa and response to therapy. Prolonged and severe hypovolaemia can
cause a high urinary sodium due to very high levels of AVP. A low FENa

predicts a good response to volume replacement. CRSW, cerebral renal
salt wasting; FENa, fractional excretion of sodium; GIT, gastrointestinal
tract; SIAD, syndrome of inappropriate antidiuresis
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may promote bleeding [1], and conivaptan, which also inhibits
the V1a receptor, may particularly promote bleeding given the
role of the V1a receptor in platelet aggregation [58]. Given
their variable efficacy and potential for uncontrolled
aquaresis, “vaptans” are not recommended for routine use in
hyponatraemia.

Management of hypernatraemia

Our approach to the treatment of hypernatraemia (Fig. 17)
depends on clinical context. Those with cerebral symptoms
due to hypernatraemia must be treated urgently with free-
water and consideration of DDAVP. In asymptomatic individ-
uals, slow correction (< 6 mmol/L/day) is associated with
greater morbidity [8] while overzealous correction (>
24 mmol/L/day) may be associated with cerebral oedema
[37]. The volume state is more often deranged than in
hyponatraemia and thus should be corrected simultaneously.

Acute, symptomatic hypernatraemia

Acute hypernatraemia due to DI or salt intoxication may be
symptomatic. Free-water in the form of intravenous 5% dex-
trose should be given, and an initial rate of 4–6 ml/kg/h is
reasonable. Because of the time required for cerebral

adaptation, [Na+]p may be rapidly normalized with impunity.
DDAVPmay be required as an adjunct in thosewith central DI.

Free-water

The thirst mechanism will generally maintain plasma to-
nicity within a narrow range, and thus hypernatraemia is
seen primarily in individuals who cannot experience or
respond to thirst normally; this may be exacerbated by
diuretics, vomiting or diarrhoea [102]. In asymptomatic
individuals with adequate mentation, free oral water is ap-
propriate. Five percent of dextrose is equivalent to free-
water and may be given intravenously at a rate of 1–
1.5 ml/kg/h. Hyperglycaemia is a potential complication
of large dextrose loads and may cause a transient fluid shift
that obfuscates the true severity of the hypernatraemia.
Plasma glucose should be measured at the same intervals
as electrolytes, and 5% dextrose may be replaced with pure
water infused directly into the right atrium in refractory
hyperglycaemia.

AVP analogues

AVP analogues should be utilized in central DI when it is
difficult to match urinary losses with oral intake, such as with
impaired mentation or large urinary losses, especially

Fig. 15 Symptoms of hyponatraemia and hyponatraemia. Note that acute
changes in tonicity generally present with earlier, more severe symptoms.
Cerebral symptoms of dysnatraemias generally occur in those in whom a
precipitous drop in [Na+]p occurred within 48 h, as it is thought that this is
the length of time neurons and glia require to alter their intracellular
tonicity to match that of the ECF. In a study of 65 individuals with
[Na+]p < 128 mmol/L, all those in whom the hyponatraemia developed
within 48 hwere symptomatic. For those in whom the hyponatraemiawas

chronic (present for >48 h), symptomatic individuals had a mean [Na+]p
of 115 mmol/L (cf. 122 mmol/L in the asymptomatic). All individuals in
whom seizures developed had a [Na+]p < 121 mmol/L. Precipitous rises
in plasma sodium concentration are associated with a rapid decrease in
brain volume leading to rupture of cerebral vessels and consequently
intracerebral, subdural and subarachnoid haemorrhages, as well as osmot-
ic demyelination
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overnight. Desmopressin is the most common agent, available
as a tablet, nasal spray and injectable. Duration of effect de-
pends on dose and route of administration with moderate
inter-individual variability.

Effective osmole restriction and effective osmole
excretion

Less commonly, hypernatraemia may occur due to excessive
effective osmole intake. This hypernatraemia can only be
sustained if accompanied by either impaired access to free-
water or renal dysfunction because of hypovolaemia or con-
centrating defect. Here, treatment consists of reduction of un-
necessary effective osmole intake, provision of free-water and

creation of negative cation balance using thiazides or, if nec-
essary, renal replacement therapy.

Complications of dysnatraemia management

Osmotic demyelination syndrome

If the magnitude and rapidity of correction of chronic
hyponatraemia (present for > 48 h) is too great, pontine and
extrapontine myelinolysis occur, presenting as rapidly pro-
gressive paraparesis or tetraparesis with pseudobulbar find-
ings, usually delayed 2–6 days after correction (Fig. 18). An
increased risk of ODS is seen in those with substantial
hyponatraemia ([Na+]p < 105 mmol/L), hypokalaemia,

Fig. 16 An approach to the management of hyponatraemia. Note the
early and important distinction between those with acute and
symptomatic hyponatraemia and those with chronic and asymptomatic
hyponatraemia. Those with cerebral symptoms should be treated urgently
with hypertonic solutions. After SAH or other intracranial catastrophes,
free-water restriction increases the risk of DCI and alternative treatments
are required. In individuals with hypovolaemic hyponatraemia with renal
salt wasting (CRSW or other), free-water restriction must be employed in
concert with volume replacement to avoid worsening hypovolaemia. In
most other clinical contexts, free-water restriction should be considered

first-line therapy. Additional therapies include increasing effective os-
mole intake and possibly increasing EFWC using loop diuretics or antag-
onists of the AVP axis. These should be used judiciously and only
employed when EFWC is low (< 500 ml/day) or negative. CCF, conges-
tive cardiac failure; CRSW, cerebral renal salt wasting; DDAVP,
desmopressin; EFWC, effective free-water clearance; FENa, fractional
excretion of sodium; IV, intravenous; ODS, osmotic demyelination syn-
drome; PO, per oral; PRN, as needed; SAH, subarachnoid haemorrhage;
SIAD, syndrome of inappropriate antidiuresis; TDS, three times a day;
QID, four times a day
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alcoholism, malnutrition and cirrhosis [136]. Generally, ODS
does not occur unless [Na+]p rises by > 10 mmol/L in 24 h or
> 18 mmol/L in 48 h [83]; however, in asymptomatic individ-
uals, there is no benefit in raising the serum sodium at >
6 mmol/L/24 h [12]. Thus, for asymptomatic individuals, we
avoid a rise in [Na+]p by > 10 mmol/L/24 h, while in high risk
groups (vide supra) a more conservative goal (e.g. < 6–
8 mmol/L/24 h) is appropriate. Overcorrection of [Na+]p can
be promptly reversed with 5% dextrose or DDAVP. These
individuals should be managed in an intensive care unit with
endocrinologist and intensivist input.

Cerebral oedema

Cerebral oedema occurs if the magnitude and rapidity of cor-
rection of chronic, generally severe (> 155 mmol/L)
hypernatraemia, are too great and relative reduction in tonicity
results in cellular swelling. Unlike hyponatraemia, there is no
clear evidence in adults for limiting the rate of correction
[127]. Indeed, correction at a rate of > 0.5 mmol/L/h (>
12 mmol/L/day) produced similar outcomes to more conser-
vative sodium lowering [22]. If signs of increased ICP do
occur, a hypertonic saline bolus can be administrated.

Conclusion

A summary of the take-home points regarding the diagnosis and
management of disorders of water balance in neurocritically ill
patients is given below.

Normal physiology

& The renal renin-angiotensin-aldosterone axis (RAA) is the
primary mechanism of volume (combined solute and sol-
vent) homeostasis. Increased RAA activity leads to volume
retention with no substantial change in free-water balance
as both solute and solvent are retained concurrently.

& The central AVP axis is the primary mechanism of free-
water homeostasis. AVP secretion causes free-water reten-
tion and thus an altered balance of solute to solvent, leading
to decreased plasma sodium (solute) concentration.

& AVP maintains tonicity unless substantial (> 10%)
hypovolaemia occurs. Then, defence of tonicity is
sacrificed for the defence of volume, and the body must
tolerate hypotonicity to maintain euvolaemia.

& Sodium, potassium and free-water flux are the primary
determinants of the serum sodium concentration.

Fig. 17 An approach to the management of hypernatraemia. DI, diabetes insipidus; IV, intravenous; PO, per oral
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& Urea is not an effective osmole and thus urinary osmolar-
ity does not correlate well with urinary tonicity. The latter
is the clinically important variable

Pathological states

& Hyponatraemia is a disorder of too much free-water;
hypernatraemia is a disorder of too little free-water.
Thus, plasma sodium concentration is an effective marker
of total body free-water.

& Hypernatraemia will only occur in the setting of an im-
paired thirst mechanism or inadequate access to free-
water.

Analysis

& The sodium concentration in the blood is slightly greater
than that of the interstitial fluid due to the pull of plasma
proteins (Gibbs-Donnan effect). This is negated by com-
pensatory underestimation of plasma water sodium by
measurement devices.

& In states of hyperlipidaemia, hyperproteinaemia or
hypoproteinaemia, sodium values reported on formal pa-
thology may be spuriously low or high, respectively, due
to alteration of the ratio of plasma water to solid phase.

& Psuedohyponatraemia and pseudohypernatraemia should
not be considered when analysing results from point-of-
care analysers (“blood-gas machines”).

& Effective osmoles in large concentrations, such as glucose,
mannitol and glycols, may produce translocational
hyponatraemia or hyperosmolar hyponatraemia.

& Always correct the serum sodium for the glucose concen-
tration in the setting of hyperglycaemia.

Clinical points

& In the absence of overt volume overload (peripheral
pitting and/or alveolar oedema) or overt hypovolaemia
(hypotension, postural hypotension and tachycardia), the
volume state is very difficult to discern clinically.

& Medications and fluid losses other than urine are often
overlooked causes of hyponatraemia.

& All hyponatraemias should be presumed to be chronic
unless these is biochemical evidence of its acuity (i.e. a
normal serum sodium within the last 48 h).

Assessment

& Dysnatraemias can be classified by the flux of water and
solute and by the renal response to dysnatraemia.

When ([Na+]u + [K+]u) exceeds [Na+]p, renal output is
causing free-water to be retained.
When ([Na+]u + [K+]u) is less than [Na

+]p, renal output is
causing excretion of free-water.
When ([Na+]u + [K+]u) is much less than [Na+]p, absolute
(or functional) AVP levels are low.
When ([Na+]u + [K+]u) appraoches or exceeds [Na+]p,
AVP is being secreted

& When EFWC is negative, the kidney is retaining free-wa-
ter, lowering the serum sodium concentration.
Conversely, when EFWC is positive, the kidney is excret-
ing free-water.

& If free-water intake is greater than EFWC and the balance
of insensate losses and metabolic water, serum sodium
will fall. Thus, free-water restriction should be based on
EFWC and, when substantial, GI losses.

& AVP activation is seen in severe hypovolaemia (renal and
non-renal salt wasting) and SIAD and is associated with
an elevated [Na+]u.

Management

& As a rule of thumb, the volume state can be controlled with
normal saline, while water balance can be controlled with
free-water restriction or salt (salt tables, hypertonic saline).

& Individuals with intracranial catastrophe and moderate/
severe hyponatraemia should be treated with salt and vol-
ume replacement, as volume restriction is associated with
poor outcome.

Fig. 18 Typical appearance of pontine osmotic demyelination. This
patient presented with a [Na+]p of 107 mmol/L in the setting of malnutri-
tion and primary polydipsia. Over the course of 24 h, [Na+]p rose
18 mmol/L, and in 48 h it had normalized. Three days after presentation,
the patient became comatose, and MR imaging (T2-FLAIR sequence
shown) demonstrated pontine myelinolysis
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& Patients with cerebral symptoms (decreased conscious
state or seizures) due to hyponatraemia should be treated
with hypertonic saline.

& Those with asymptomatic hyponatraemia should be ini-
tially treated with free-water restriction.

& Options when free-water restriction alone fails to improve
hyponatraemia include adding salt (salt tables, hypertonic
saline), loop diuresis or AVP antagonism (in descending
order of safety).

& Those in which hypovolaemia is thought to be driving
AVP secretion in hypontraemia should receive volume
replacement. This can be safely administered when [Na+
]u is low (e.g. <20). When [Na+]u is elevated (e.g. >40),
hypovolaemia may still be driving the hyponatraemia, but
SIAD needs to be considered. If volume replacement is
trialled, [Na+]p should be monitored closely.

& Those with obvious hypervolaemia and hyponatraemia
should be free-water restricted and the volume state
corrected as possible.

& Overcorrection of sodium in patients with chronic
hyponatraemia (present > 48 h), defined as > 10 mmol/L
in 24 h or > 18 mmol/L in 48 h, introduces the risk of
osmotic demyelination syndrome. Patients with
hypokalaemia, alcoholism, malnutrition and cirrhosis are
at increased risk, and a target of 6–8 mmol/L/day is pre-
sumed to be safest.

& Hypernatraemia should be treated with free-water, prefer-
ably orally if tolerated. AVP analogues can be used when
oral intake cannot match urinary losses.

& Evidence for limiting the rate of correction in hypernatraemia
is lacking in adults. However, limits from studies in the pae-
diatric population are commonly applied to adults (e.g. <
12 mmol/L/day).
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