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Abstract
Intracranial aneurysms (IA) occur in 3–5% of the general population and may require surgical or endovascular obliteration if the
patient is symptomatic or has an increased risk of rupture. These procedures carry an inherent risk of neurological complications,
and the outcome can be influenced by the physiological and pharmacological effects of the administered anesthetics. Despite the
critical role of anesthetic agents, however, there are no current studies to systematically assess the intraoperative anesthetic risks,
benefits, and outcome effects in this population. In this systematic review of the literature, we carefully examine the existing
evidence on the risks and benefits of common anesthetic agents during IA obliteration, their physiological and clinical charac-
teristics, and effects on neurological outcome. The initial search strategy captured a total of 287 published studies. Following the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 28 studies were included in the
final report. Our data showed that both volatile and intravenous anesthetics are commonly employed, without evidence that either
is superior. Although no specific anesthetic regimens are promoted, their unique neurological, cardiovascular, and physiological
properties may be critical to the outcome in vulnerable patients. In particular, patients at risk for perioperative ischemia may
benefit from timely administration of anesthetic agents with neuroprotective properties and optimization of their physiological
parameters. Further studies are warranted to examine if these anesthetic regimens can reduce the risk of neurological injury and
improve the overall outcome in these patients.
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Introduction

Anesthesia for UIA obliteration differs from routine cranioto-
mies because of specific physiological challenges associated
with the underlying neurovascular disease and the planned
procedure. The margin of safety between high blood pressure
leading to rupture and a low blood pressure provoking ische-
mia is narrow in these patients; hence, immediate manage-
ment of hypertensive or hypotensive events is critical.
Moreover, the anesthesiologist must balance the need tomain-
tain cerebral perfusion pressure (CPP) to promote brain oxy-
genation with the risk of increasing the transmural pressure
gradient that can promote aneurysm rupture [1, 2] (Fig. 1).
Respiratory parameters must be carefully titrated to optimize
oxygenation and carbon dioxide tension; coagulation and
electrolyte balance, maintained; and intraoperative events
and complications, rapidly managed to prevent risk for
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devastating neurological injuries (Fig. 2). Procedure-related
challenges such as temporary occlusion of the parent vessel
require special anesthetic consideration. Temporary clipping
of the parent vessel may be needed to rescue or preempt IA
rupture or to facilitate a surgical step in elective IA surgeries.
However, temporary clipping can lead to ischemic stroke,
dissection of the vessel, or rupture of the aneurysm [3–5].
Prolonged occlusion of the parent vessel leads to extended
hypoperfusion in its corresponding territory; therefore, proper
anesthetic management such as careful blood pressure aug-
mentation and neuroprotection may be warranted. Various
anesthetic agents reduce cerebral metabolism—as listed in this
review—and, therefore, could be considered. However, it is
essential to choose an anesthetic approach that preserves or
ideally even augments cerebral blood flow (CBF)—in partic-
ular collateral flow to the ischemic territory—while reducing
cerebral metabolic rate of oxygen (CMRO2) (Table 1). Since
temporary clipping during IA surgery may provoke cerebral
vasospasm, cerebral function monitoring may be employed to
guide blood pressure management and removal or reapplica-
tion of the temporary clip.

In some patients, it may become necessary to induce a
transient circulatory arrest or severe hypotension in case of
an aneurysm rupture or for decompression of the aneurysm
to facilitate clip application. With appropriate safety precau-
tions, adenosine boluses of up to 30 mg have been successful-
ly used to induce a transient asystole in these patients [5].
Adenosine may also be considered when temporary clipping
of proximal vessels is not desirable or possible. Although
some recent reviews provide general guidelines on the anes-
thetic management of cerebral aneurysm surgery [1, 2, 8],
there are no rigorously conducted studies or reviews to assess
the intraoperative anesthetic risks and outcome effects for UIA
obliteration. Therefore, we conducted a systematic review of
the literature examining the hemodynamic, physiological and
pharmacological effects of common anesthetic agents and

regimens during endovascular and open procedures to oblit-
erate UIA.

Methods

Study selection

All articles in English language, including adult patients, and
published in indexed scientific journals were considered.
Randomized controlled trials (RCT), prospective and retro-
spective cohorts, case series, and case reports, as well as
cross-sectional studies involving patients with unruptured ce-
rebral aneurysm or those who had undergone aneurysm oblit-
eration or neurosurgical procedures were eligible for inclu-
sion. Given the scarcity of studies on unruptured cerebral an-
eurysms, we also discuss relevant findings from selective
studies on neurological effects of anesthetics and patients with
aneurysmal subarachnoid hemorrhage.

Data extraction

We performed a systematic search on MEDLINE to identify
studies. We used the participants, interventions, comparisons,
and outcomes (PICO) search tool [9] to determine the follow-
ing medical subject heading terms: “AneurysmORAneurysm
Surgery” AND “Nitrous Oxide OR Isoflurane OR Desflurane
OR Sevoflurane OR Ketamine OR Propofol OR Barbiturate
OR Thiopental OR Dexmedetomidine OR Opioids” AND
“brain OR intracranial OR cerebral OR cranium” AND
“Surgery OR Neurosurgery OR craniotomy OR endovascular
OR Vascular Surgical Procedures” AND “Neuroprotection
OR mortality OR morbidity” AND “anesthetics OR anesthe-
sia.” Additional reports were identified from reference lists of
retrieved reports and Google Scholar searches.

Table 1 Effects of common
anesthetic agents Agent CSF production CSF absorption CMR ICP CBF CBV

Nitrous oxide ± ± ↓ ↑ ↑ ±

Isoflurane ± ↑ ↓↓↓ ↑ ↑ ↑↑

Sevoflurane ? ? ↓↓↓ ↑ ↑ ↑

Desflurane ↑ ↓ ↓↓↓ ↑ ↑ ↑

Ketamine ± ↓ ± ↑↑ ↑↑ ↑↑

Dexmedetomidine ? ? ↓ ↓ ↓ ↓

Barbiturate ± ↑ ↓↓↓↓ ↓↓↓ ↓↓↓ ↓↓

Propofol ? ? ↓↓↓ ↓↓ ↓↓↓↓ ↓↓

Opioids ± ↑ ± ± ± ±

↑ indicates increase, ↓ indicates decrease, ± indicates little or no change, and ? indicates unknown effect. CSF
cerebrospinal fluid, CMR cerebral metabolic rate, ICP intracranial pressure, CBF cerebral blood flow, CBV
cerebral blood volume [6, 7]

2478 Neurosurg Rev (2021) 44:2477–2492



Method of synthesis

Two reviewers independently extracted the data from trial
reports, with adherence to the PRISMA guideline [10].
Details of the patient population, type of surgery, anesthetic
regimen, and outcomes were recorded. The data were extract-
ed only from studies published in English.

Results of the review

The initial search strategy captured a total of 287 studies.
From these, 28 studies were included in this study (Table 2
and Fig. 3) [10].

Anesthesia for cerebral aneurysms:
intravenous or inhalational agents?

There is currently no clear consensus whether intravenous
anesthesia, inhalational anesthesia, or a combination thereof
should primarily be used for surgical or endovascular man-
agement of UIA. Inhalational agents commonly used for these
procedures include volatile anesthetic agents such as
isoflurane, desflurane, and sevoflurane, as well as nitrous ox-
ide. Commonly used intravenous agents include propofol, ke-
tamine, and dexmedetomidine, which are typically

administered in combination with a short- or long-acting opi-
oids. Thiopental sodium and other barbiturates are still used in
certain countries, and benzodiazepines are also occasionally
administered as perioperative anxiolytics or anesthetic
adjuncts.

There are conflicting data on not only the perioperative
risks and benefits of these agents, including direct neurotoxic
effects or physiological side effects that can alter the outcome
of the procedure, but also their neuroprotective properties,
which become essential in cerebral aneurysm surgery due to
the potential neurological insults associated with these com-
plex procedures.

Inhalational anesthesia

Nitrous oxide

While nitrous oxide (N2O) has been used continuously in
clinical anesthesia for about 180 years, discussions about its
neurological effects are still ongoing [39]. In 1992, Lam et al.
described the important physiological effects of N2O on cere-
bral metabolism and intracerebral steal [40]. Although little
research has been carried out on the neurophysiological prop-
erties of N2O, it is now generally accepted that N2O lacks
neuroprotective effects in anesthetic doses [41].
Furthermore, N2O is known to increase cerebral metabolism,

Fig. 1 Systemic blood pressure should be monitored closely and
controlled to minimize risk of aneurysm rupture due to hypertension
while avoiding low blood pressure that can provoke cerebral ischemia.

BP blood pressure, CPP cerebral perfusion pressure, ICP intracranial
pressure, CBF cerebral blood flow
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CBF, and intracranial pressure (ICP) and can potentially ex-
acerbate an ischemic insult, all undesirable effects in the set-
ting of intracranial surgery [42].

The debate on N2O safety has continued to simmer, mainly
without any clinical neurological outcome data [42, 43]. In
2008, McGregor et al. assessed the clinical outcomes associ-
ated with N2O by analyzing the Intraoperative Hypothermia
for Aneurysm Surgery Trial (IHAST) data [11]. They evalu-
ated neurological outcomes at two weeks (i.e., delayed ische-
mic neurologic deficit (DIND)) and three months after aneu-
rysm surgery and found that in a population of patients poten-
tially at risk for ischemic injury, the use of N2O had no overall
impact on neurological outcome [11]. A subgroup analysis of
patients with temporary occlusion of a major cerebral artery
for permanent clipping of the aneurysm provided a more gran-
ular analysis to capture patients who experienced ischemic
events intraoperatively during exposure to N2O. In this sub-
group, intraoperative N2O administration was associated with
an increased risk of DIND. The long-term neurological out-
come was, nevertheless, not affected [12].

To our knowledge, data frommore recent studies assessing
the effects of N2O on neurological outcome after UIA surgery
are lacking [8]. Although intraoperative use of N2O is primar-
ily based on the anesthetist’s preference and differs between
institutions, most experts agree that it is best avoided during

endovascular procedures. In addition to its effects on CBF and
ICP, it is well known that N2O increases the risk of expansion
of micro air bubbles in enclosed spaces. This expansion is due
to N2O’s low potency, which results in high blood concentra-
tions, and its low blood/gas partition coefficient, which causes
N2O to move into an air compartment faster than air moves
out. Air embolization is rare during aneurysm obliteration but
can happen during contrast injection or fluid irrigation; expan-
sion of these air bubbles with N2O can augment the risk for
tissue ischemia and neurological injury [44]. Furthermore, it
may be reasonable to avoid N2O during open craniotomy for
UIA clipping if it is difficult to achieve sufficient brain relax-
ation, or in patients with disrupted autoregulation, such as
those with cerebral edema, ischemia, or vasospasm [45].

Isoflurane

Isoflurane is commonly used in neuroanesthesia due to its
modest effects on CBF and cerebral autoregulation [46]. The
neuroprotective effects of isoflurane have been studied widely
in animal models. Isoflurane administration in rats during re-
perfusion after ischemia reduces brain injury, improves neu-
rological outcome, and decreases neuronal apoptosis [47].

Isoflurane is generally associated with good blood pressure
control without significant change in cardiac output or reflex

Fig. 2 Anesthetic considerations during obliteration of UIA (unruptured intracranial aneurysms)
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tachycardia when administered in anesthetic concentrations to
normovolemic patients [48]. To further evaluate the cerebral
effects of isoflurane, Madsen et al. measured CBF and
CMRO2 during isoflurane-induced controlled hypotension in
ten patients undergoing craniotomy for clipping of a ruptured
aneurysm. CBF and CMRO2 were measured 5–13 days after
aSAH. Controlled hypotension to an average mean arterial
pressure (MAP) of 50–55 mmHg was induced by increasing
the inspired concentration of isoflurane, which resulted in a
significant decrease in CMRO2 but no change in CBF. After
clipping, the isoflurane concentration was reduced, and there
was a significant increase in CBF. While CMRO2 returned to
baseline, CBF increased above its pre-hypotensive value. It
was suggested that this advantageous supply-demand ratio
can offer protection to the brain tissue during periods of in-
duced hypotension [49]. Following prior clinical studies that
emphasized the use of high concentrations of isoflurane to
induce hypotension, decrease CMRO2, and stabilize CBF,
Meyer et al. used end-tidal isoflurane concentrations of 2.0
to 2.5 × minimum alveolar concentration (MAC) to induce

electroencephalographic (EEG) ISO electricity (see below).
At these high isoflurane concentrations, hypotension can oc-
cur due to myocardial depression and vasodilatation; there-
fore, a vasopressor agent was used to maintain blood pressure.
The study included six patients with aSAH and extended tem-
porary vessel occlusion time. Five of six patients made a good
recovery despite prolonged occlusion of major cerebral arter-
ies. Their findings supported the use of high dose isoflurane in
selective patients to suppress cerebral metabolism during an-
eurysm surgery, as long as it is hemodynamically tolerated
and when intraoperative EEG monitoring is used to carefully
titrate the anesthetic concentration [15]. However, it should be
noted that prolonged inhalation of isoflurane may reverse its
protective effects, as was demonstrated by an aggravated brain
injury in a rat model of transient focal ischemia [50].

Although more recent clinical studies looking at isoflurane
for UIA surgeries are lacking, in 2019, a retrospective analysis
of seven aSAH patients who underwent decompressive
craniectomy due to a critically elevated ICP showed that deep
sedation could rapidly be achieved after induction of general

Fig. 3 PRISMA flow diagram showing the process of study inclusion
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anesthesia with isoflurane, without a critical increase in ICP.
Adequate CPP was also achieved without a need for extended
vasopressor treatment [51].

Sevoflurane

The general neurological profile of sevoflurane is largely
comparable to isoflurane but with relatively smaller
vasodilatory effects. At concentrations of 1 MAC or less,
sevoflurane maintains global CBF (if MAP is unchanged),
reduces CMRO2, and minimally increases ICP, which can
be blunted by mild hyperventilation [52]. Supported by ani-
mal studies, it is argued that sevoflurane may induce neuro-
protection when administered during traumatic or ischemic
events [53, 54]. In 2018, Xu et al. reported that early exposure
to 3.4% sevoflurane for 5 h induced not only autophagy in rat
hippocampal cells but also apoptosis of neurons, potentially
leading to spatial learning deficits [55], raising questions
about the neuroprotective role of sevoflurane. The fact that
this high concentration of sevoflurane is seldom used in clin-
ical practice, particularly without other medications such as
opioid analgesics or intravenous anesthetics, makes it impos-
sible to determine the clinical relevance of their findings. In
fact, it is more likely that the co-administration of intraopera-
tive anesthetics influences their effects on cerebral metabo-
lism, inflammation, and injury, as was demonstrated by Bo
et al. in 2018. They showed that the addition of
dexmedetomidine to sevoflurane anesthesia could suppress
the sevoflurane-induced cell cycle arrest, inhibition of brain-
derived neurotrophic factor (BDNF), and tropomyosin recep-
tor kinase B (TrkB) expression and concluded that
dexmedetomidine could be used to prevent or mitigate
sevoflurane-induced neurotoxicity [56]. The use of
dexmedetomidine during sevoflurane anesthesia was also
studied in a randomized clinical trial of 120 patients undergo-
ing intracranial aneurysm embolization, and the addition of
dexmedetomidine resulted in better neuroprotection, de-
creased incidence of postoperative delirium, faster recovery,
and more stable hemodynamics [22].

Due to its bronchodilatory effects and relatively short
duration of action (low blood-gas solubility coefficient),
sevoflurane may be the ideal volatile agent for patients
with underlying chronic obstructive pulmonary disease
(COPD, Table 3). Conversely, it may not be the agent
of choice in patients with kidney disease, although clin-
ical trials have failed to confirm clinically relevant ef-
fects on renal function when higher fresh gas flows are
maintained. There is currently no consensus on the neu-
roprotective or neurotoxic effects of sevoflurane.
Specific clinical studies of the use of sevoflurane in
open clipping or endovascular repair of UIA are lack-
ing, and further investigation is warranted.

Desflurane

With its low blood-gas solubility coefficient, desflurane has
favorable pharmacokinetic properties relative to isoflurane,
including a more rapid emergence from anesthesia and post-
operative recovery of cortical functions that have been noted
in several in vitro, animal, and human studies. [57]

Several clinical and animal studies have looked at the ef-
fects of desflurane on cerebral hemodynamics. The effects of
desflurane on ICP were assessed in a porcine model of intra-
cranial hypertension, and at 0.5 to 1 MAC, desflurane was
associated with cerebral vasodilatation and higher ICP levels
compared to isoflurane and sevoflurane [58]. In humans, the
same vasodilatory effect was observed in patients given
desflurane, but the ICP did not increase significantly [59].
Although desflurane’s cerebrovascular effects in patients with
intracranial hypertension have not been thoroughly investigat-
ed, it is reasonable to avoid it in these patients to minimize the
risk for significant vasodilation that could lead to ICP eleva-
tion [52, 60].

Evidence regarding the use of desflurane in aneurysm clip-
ping is limited. In 2017, Lee et al. reported that the incidence
of TCD-evident vasospasm in patients who underwent emer-
gent clipping of cerebral aneurysms was higher with propofol
as compared to desflurane, but the incidence of angiographic
vasospasm, cerebral infarction, and interventions to treat va-
sospasm were similar between the groups [61]. Another study
found that in patients undergoing intracranial aneurysm clip-
ping, the plasma concentration of endothelin was lower when
desflurane was used, suggesting a potential benefit in
preventing acute cerebral vasospasm during aneurysm clip-
ping [16].

The risks and benefits of desflurane should be considered
carefully for each neurosurgical patients and procedure. As an
example, given its association with adverse respiratory events,
it may not be the ideal anesthetic agent in patients with severe
asthma or COPD.While it has advantageous pharmacokinetic
features, its physiological and neuroprotective properties are
not superior to other common anesthetics, including
sevoflurane and propofol. Although the associated side effects
of desflurane remain theoretical or experimental, its physio-
logical properties must be carefully considered during periop-
erative management of patients with UIA, especially those
with poor brain relaxation or intracranial hypertension [62].

Intravenous anesthetic agents

Ketamine

The use of ketamine in neuroanesthesia, including UIA oblit-
eration, is controversial. There is evidence that it may increase
ICP, CBF, and CMRO2 [63]; however, more recent animal
and human studies suggest that ketamine may actually be
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beneficial to brain-injured patients due to its effects on
NMDA receptors [64, 65].

Based on data from relevant randomized trials between
1994 and 2004, a systematic review suggested that with con-
trolled ventilation and co-administration of a GABA receptor
agonist, ketamine can be safely administered without raising
the ICP [66]. In another study of 20 patients who underwent
craniotomy for either brain tumor resection or cerebral aneu-
rysm clipping, ketamine did not increase ICP during
isoflurane or N2O anesthesia. The same study also showed
that middle cerebral artery blood flow velocity, mean arterial
blood pressure (MAP), and bilateral fronto-occipital proc-
essed EEG remained stable after the administration of keta-
mine, suggesting it can be used safely during neurosurgical
procedures [17].

Although clinical studies of ketamine use in the anesthetic
management of UIA surgery are lacking, one retrospective, ob-
servational study published in 2016 found that among 65 pa-
tients with SAH, administration of ketamine decreased ICP
and was not associated with a higher rate of neurological com-
plications. This study also found that the rate of delayed cerebral
ischemia (DCI)-associated cerebral infarction and the use of va-
sopressors for induced hypertension were lower when ketamine
was administered [18]. Currently, ketamine is avoided in patients
with elevated ICP, but based on available animal and human
data, it may prove to be a valuable agent for UIA obliteration
in the near future. A re-evaluation of its role in these patients is
suggested, particularly in those who may benefit from its sys-
temic effects (e.g., bronchodilation in patients with COPD).

Dexmedetomidine

Based on its favorable hemodynamic properties and an ability
to attenuate the cardiovascular responses to intubation,

pinning, and extubation, the introduction of dexmedetomidine
was met with enthusiasm among clinicians. It significantly
decreases both CBF and ICP [67, 68]. As an anesthetic ad-
junct, it decreases the amount of intravenous or volatile anes-
thetic agents required for induction and the need for opioid
analgesics intraoperatively [69].

Dexmedetomidine is commonly used for intracranial pro-
cedures and cerebral aneurysm surgery. A retrospective anal-
ysis of 12 patients undergoing endovascular procedures for
intracranial aneurysm management confirmed a stable hemo-
dynamic profile when dexmedetomidine was used as an anes-
thetic adjunct. Vital signs and the Ramsey sedation scale for
depth of sedation were analyzed every 10 min and showed no
statistically significant differences between time points [21].
Another retrospective analysis of 49 patients admitted to the
ICU after cerebral aneurysm surgery revealed a higher seda-
tion level in the dexmedetomidine group, with only one pa-
tient requiring physical restriction as compared to ten controls
[70]. Dexmedetomidine is effectively used in combination
with other anesthetics such as sevoflurane to reduce the stress
response during surgical clipping of intracranial aneurysms
and has also been used in selected patients as the sole sedative
agent during monitored anesthesia care for coil embolization
of unruptured cerebral aneurysms [22]. Randomized trials
with outcome data is, nevertheless, missing in this population.

Barbiturates

The neuroprotective properties of barbiturates have been well
documented in many clinical settings, including status epilep-
ticus and traumatic brain injury. Shapiro et al. described its
effects on ICP reduction in 1973 [71]. Subsequent animal
studies demonstrated its neuroprotective effects by reducing
CBF, ICP, and CMRO2 [72, 73]. In humans, however, these

Table 3 Anesthetic relevance of common coexisting diseases in UIA surgery

COPD CKD CLD CHF

Isoflurane ++ ++ ++ ++

Sevoflurane +++ + ++ ++

Desflurane + ++ ++ ++

Propofol ++ ++ +++ ++

Ketamine +++ ++ ++ ++

Opioids + + + +++

Comments Consider increased sensitivity
to respiratory effects of
analgesics and sedatives

Maintain higher fresh gas
flows given the concern
for fluoride nephrotoxicity
or production of compound
A with sevoflurane

Limit anesthetic dose minimize
risk of hypotension-hepatic
blood flow critically
dependent on hepatic arterial
blood pressure

Sensitive to hemodynamic
effects of anesthetics

COPD chronic obstructive pulmonary disease, CKD chronic kidney disease, CLD chronic liver disease, CHF congestive heart failure. +++, preferred;
++, can be used; +, not preferred
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effects have not consistently resulted in improved neurologi-
cal outcomes. An RCT of 300 patients undergoing coronary
artery bypass grafting (CABG) did not find a reduction in the
incidence of postoperative neurological deficits with thiopen-
tal [74]. Another study of 182 CABG patients found that even
though thiopental was associated with a significantly lower
incidence of persistent neuropsychiatric complications, hemo-
dynamic instability was more frequent, resulting in prolonged
use of inotropic support [75].

Clinical studies of barbiturate usage in the UIA population
are scarce. A study of 92 patients with cerebral aneurysms in
which 23 received pentobarbitone during clipping showed
that the complication rate was lower in the pentobarbital group
(17%) than the non-barbiturate group (21%) [76]. A case re-
port also documented how multiple thiopental boluses were
used in a patient undergoing a combined procedure involving
clipping of an intracerebral aneurysm and carotid endarterec-
tomy with an encouraging clinical outcome and a rapid recov-
ery with no postoperative neurological deficits reported [24].

Despite their suggested neuroprotective effects, barbitu-
rates are rarely used in the perioperative setting because of a
concern for adverse effects such as cardiorespiratory depres-
sion, prolonged duration of post-infusion clinical unrespon-
siveness, impaired white blood cell function, hypokalemia,
and hepatic and renal dysfunction [77]. While this drug class
should be used cautiously during cerebral aneurysm surgeries,
it can result in satisfactory intraoperative conditions and good
neurological outcomes if carefully administered.

Propofol

Because of its favorable hemodynamic, pharmacological, and
physiological properties, propofol remains one of the most
commonly used anesthetics for neurosurgical procedures, in-
cluding endovascular and open approaches to securing intra-
cranial aneurysms. It is well tolerated by most patients [78],
and its hemodynamic effects are readily managed with com-
mon vasopressors. Propofol decreases CBF, CMRO2, and
ICP and has been shown to have neuroprotective effects in
various models of neuronal injury. Animal models have dem-
onstrated its direct antioxidant properties that can protect
against oxidative stress as well as anti-inflammatory and
antiapoptotic properties [79, 80]. Its rapid recovery profile
also allows the possibility of prompt neurological examination
postoperatively.

Propofol has been evaluated in aneurysm surgery in multi-
ple studies. In 1993, Ravussin et al. evaluated 42 patients,
including seven with unruptured aneurysms, who underwent
cerebral aneurysm clipping using total intravenous anesthesia
with propofol. The propofol infusion rate was reduced post-
operatively to allow for early recovery and subsequent neuro-
logical examination, and they concluded that using a propofol
infusion for maintenance of burst suppression could be a

suitable alternative to isoflurane for aneurysm clipping [25].
Similarly, Guo et al. randomized 60 patients undergoing in-
tracranial aneurysm clipping to propofol post-conditioning or
sevoflurane and found improved mini mental status exam
(MMSE) andMontreal Cognitive Assessment (MoCA) scores
seven days after their surgery [31].

Due to its cerebral vasoconstrictive effects, propofol is gen-
erally considered to be an ideal anesthetic for effective brain
relaxation during aneurysm surgery. A 2014 meta-analysis by
Chui et al. showed that propofol-based anesthesia was associ-
ated with lower initial ICP values compared to maintenance
with volatile anesthetics; however, this finding did not trans-
late into better brain relaxation scores [2, 81]. A more recent
study of 15 patients undergoing elective surgery for UIA
found that cerebral circulation times were longer during
propofol anesthesia compared to sevoflurane-based anesthe-
sia, as were the circulation times in the internal carotid and
middle cerebral arteries [30]. The presence of an unruptured
intracranial aneurysm also did not affect the propofol-induced
reactivity of cerebral vessels [29]. Multiple studies have com-
pared propofol to other anesthetics for neurovascular proce-
dures [29–31], but most have focused on the hemodynamic or
neuroprotective effects of propofol, with only limited data
regarding its effects on neurological outcomes.

Opioids

Among opioid receptors, the delta-opioid receptor (DOR) has
received special attention for its proposed neuroprotective
properties. Early animal studies suggested that opioid receptor
agonists could increase survival rates during cerebral ischemia
[82]. Zhang et al. further elucidated this concept using neuro-
nal cultures from rat neocortex while studying glutamate-
induced neuronal injury. These investigators found that acti-
vation of DORs reduced injury by half, whereas mu- or kappa-
opioid receptors did not [83]. DORs are suggested to provide
neuroprotection by different mechanisms such as inhibiting
excitatory neurotransmitter release, increasing antioxidant ca-
pacity, and stabilizing ionic homeostasis [84].

In humans, however, mu-opioid receptor agonists are more
commonly used for analgesia during surgery. Their perioper-
ative use is limited primarily due to their respiratory depres-
sant effects, which can lead to hypercapnia with cerebral va-
sodilation and increased ICP. Fentanyl can decrease CBF and
CMRO2, but if ventilation is not controlled, it can lead to
hypercapnia and as a result an increase in ICP. Similarly,
remifentanil can reduce CBF and CMRO2, and although it is
not demonstrated to directly increase the ICP, it can also cause
respiratory depression and hypercapnia that can result in cere-
bral vasodilation [85].

Evidence from clinical studies on the use of opioids in UIA
is scarce; however, a few have shed light on the subject.
Degoute et al. found that remifentanil in combination with
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propofol or an inhalational agent could produce reliable hy-
potension when needed for certain phases of aneurysm sur-
gery [86]. In another study, Uchida et al. conducted a propen-
sity score-matched analysis of more than four thousand pa-
tients who underwent open intracranial aneurysm clipping and
found that the group who received remifentanil had signifi-
cantly lower in-hospital mortality than controls [32].
Remifentanil can be a good adjunct to the anesthetic regimen
if rapid recovery and postoperative neurological evaluation
are desired or if opioid-induced respiratory depression is con-
traindicated (e.g., patients with severe COPD), but more clin-
ical studies are needed to determine if its administration is
associated with improved outcomes after UIA.

Discussion

Obliteration of UIA can result in devastating complications
despite advances in surgical and endovascular techniques,
careful preoperative optimization, and enhanced anesthetic
and perioperative management of the patient. A thorough un-
derstanding of the anatomical features of the aneurysm, the
technical approach, physiological and metabolic challenges,
and the systemic and neurological effects of the anesthetic
agents is crucial for reducing the risk of neurological injury
in these patients. These cases also require preparedness for
perioperative complications, and implementation of resuscita-
tive and neuroprotective measures should these complications
occur [87]. Animal and human studies have documented the
neurophysiological and neuroprotective properties of com-
mon anesthetics, but there is only limited data regarding their
effects on neurological outcomes, particularly in patients with
UIA [41 , 47 , 62 , 72 , 73 , 79 , 80 , 82 , 88 , 89] .
Pharmacodynamic, cardiovascular, and neurophysiological
effects of common anesthetics have been extensively studied,
but not in the specific context of EVT or aneurysm clipping.
Endovascular aneurysm coiling can be complicated by intra-
procedural perforation by the microcatheter, guidewire, or coil
[87]. Thromboembolic events or vasospasm can also occur
and lead to cerebral ischemia with devastating neurological
injury [90]. Intra-arterial vasodilators are sometimes adminis-
tered, requiring careful titration of systemic vasopressors and
anesthetics to avoid hypotension and cardiovascular collapse.
Blood pressure fluctuations along with respiratory and other
physiological parameters such as temperature and glucose
levels must be meticulously controlled, and patient movement
should be avoided [1, 2, 8]. Similar to EVT, successful open
clipping of UIA is critically dependent on the perioperative
control of hemodynamic perturbations, optimization of cere-
bral perfusion and metabolism, careful fluid management, and
maintenance of cellular homeostasis. Blood pressure augmen-
tation with common vasopressors such as phenylephrine may
be required to improve the collateral blood supply by

increasing the CPP and should be considered especially when
the duration of temporary clipping is anticipated to exceed two
minutes. Increasing brain tolerance for ischemia by pharma-
cologically inducing electroencephalogram (EEG) silence or
burst suppression is another consideration. It is important to
note, nevertheless, that despite supporting evidence in patients
with prolonged (> 10 min) temporary clipping [91], pharma-
cological burst suppression or EEG silence is currently not
recommended for routine use in cases with temporary arterial
occlusion. Also, available literature provides limited data to
support a specific anesthetic regimen, and our understanding
of their physiological and outcome effects continues to
evolve. It is unlikely that smaller trials will have the required
power to identify significant outcome differences following
uncomplicated procedures, as long as the above perioperative
goals are met (Fig. 1). It is possible, however, that outcomes in
a subgroup of patients at risk for perioperative neurological
injury (e.g., those with aneurysm rupture, severe vasospasm,
or prolonged temporary clipping) are critically dependent on
the physiological and neuroprotective properties of the anes-
thetic agents used, in addition to perioperative hemodynamic,
metabolic, and respiratory parameters [6, 7, 77, 92, 93]. This
at-risk population would be an ideal target for future random-
ized trials to assess the protective effects of different anesthetic
agents during UIA obliteration.

Conclusion

The existing literature does not support any specific anesthetic
regimen during EVT or open craniotomy for the management
of UIA. Further studies are needed to compare the periopera-
tive physiological and clinical effects of different anesthetic
regimens and define their influence on neurological outcomes.
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